
J Eng App Sci Technol, 2024 Volume 6(2): 1-6

Review Article Open Access

A Comparative Analysis and Benchmarking of Dynamic Application
Security Testing (DAST) Tools

Technical Account Manager at Amazon Web Services, USA

Vivek Somi

Journal of Engineering and Applied
Sciences Technology

ISSN: 2634 - 8853

*Corresponding author
Vivek Somi, Technical Account Manager at Amazon Web Services, USA.

Received: February 05, 2024; Accepted: February 12, 2024; Published: February 26, 2024

Keywords: Web Application, Security Vulnerability, Analysis
Security Testing, Static Analysis Security Testing, Dynamic
Analysis Security Testing, Interactive Analysis Security Testing,
Assessment Methodology, False Positive, False Negative, Tools
Combination

Introduction
In recent years, web apps have seen a surge in use across a wide
range of industries and governmental agencies. In order to stay
competitive, these apps need to be built frequently and as quickly
as feasible. Consequently, programmers either intentionally
include security holes in their code or rely on susceptible third-
party modules or components. Sometimes, their financial resources
are tight. Due to these instances, they often lose sight of security,
a crucial part of the development life cycle.

Furthermore, businesses often discover that engineers need more
security understanding, heightening the likelihood of creating
unsafe software. When conducting a security analysis, the analyst
must choose the most appropriate static (SAST), dynamic (DAST),
and interactive (IAST) analysis security testing tools in tandem,
bearing in mind the various forms of analysis security testing
(AST) and the abundance of security vulnerabilities present in
web applications' code and configurations [1]. The examined
online apps failed the OWASP Top Ten project, as confirmed by
many studies' findings [2-5]. “The most common and harmful
vulnerabilities are still SQL injection (SQLI) and cross-site
scripting (XSS).” Combining many similar technologies may
improve performance in terms of both true and false positives
[6-9]. Combining diverse strategies to utilise the synergies of
different instruments may improve the ratio of true positives
to false positives, according to many studies [10-12]. Both the
number of false positives (vulnerabilities discovered when none
existed) and the number of false negatives (vulnerabilities found)
may be decreased by combining the technologies presented in

these works. All security vulnerabilities reported by an AST tool,
including those found via human assessments, must be double-
checked, according to the reviewed literature. The security analyst
can efficiently resolve false positives; thus, they pose no genuine
threat. However, if the tool has not seen a false negative before,
it can be hard to find-and that might lead to severe problems.
Among these methods, you may find tools for static (SAST),
dynamic (DAST), and interactive (IAST) white box security
analysis. Time and highly trained personnel are needed for manual
analysis. In order to conduct a thorough analysis of the security of
a web application, it is essential to access all sections and levels
of the program, covering the whole attack surface. Additionally,
it is required to use technologies that automate security analysis
to the maximum extent feasible.

When evaluating fully functional, live software, it is known as
Dynamic Application Security evaluating (DAST), a subset of
penetration testing. Both automatic and manual methods exist for
executing DAST, which aims to identify security flaws in various
applications, including web, mobile, IoT, and cloud. DAST is an
essential component of software security assessments because it
mimics an external attacker by investigating the system without
knowing its underlying structure. Automated DAST systems
also remove the need for developers or security staff to rely on
their own knowledge and skills to mimic attacks and identify
exploitable flaws. The likelihood of vulnerabilities in the final
product may be reduced if developers adopt a security attitude
from the start of the software development life cycle [8]. Before
releasing a system to the public or a client, developers may use
DAST to identify and fix any security flaws. This lessens the
possibility of an assault succeeding and the harm it may do,
monetarily and to the reputation of the company. Since every
system operates differently, conducting optimum automated
dynamic testing of the whole software might be challenging.
Automated dynamic testing may still help with system security;

ABSTRACT
Cybersecurity is crucial in today's era of advanced technology, rapidly developing scientific understanding, and a completely interconnected global
society to guarantee high safety in all aspects of life. Furthermore, there is an ever-increasing number of difficulties and dangers to achieving security in
cyberspace. One of the most basic and essential ways to avoid cybersecurity is to conduct security testing for vulnerabilities. In order to make the most of
the potential synergies between various types of analysis tools, this paper combines static white box security analysis (SAST), dynamic black box security
analysis (DAST), and interactive white box security analysis (IAST) in that order. This investigation aims to improve security vulnerability detection while
decreasing false positives.

Citation: Vivek Somi (2024) A Comparative Analysis and Benchmarking of Dynamic Application Security Testing (DAST) Tools. Journal of Engineering and Applied
Sciences Technology. SRC/JEAST-E139. DOI: doi.org/10.47363/JEAST/2024(6)E139

J Eng App Sci Technol, 2024 Volume 6(2): 2-6

however, since DAST is application-agnostic, a single DAST tool
can be modified to conduct security checks on many systems and
apps. Web applications that use new techniques, such as AJAX
technologies, increase the demands on the tools. “Studying DAST
tools' behaviour and vulnerability-finding capabilities is crucial
for ensuring high-security software systems and making them
more challenging to attack, as these tools have diverse strengths
and shortcomings.”

Problem Statement
Vulnerabilities in online apps and APIs pose a growing hazard
to organisations in the modern digital world. Exploiting these
vulnerabilities may result in devastating data breaches, service
interruptions, and monetary losses. It is now impossible to find
security flaws in an application during runtime without automated
Dynamic Application Security Testing (DAST) techniques that do
not need access to the source code. Nevertheless, organisations are
finding it more challenging to choose the best DAST technology
to fulfil their security needs because of the wide variety of options
and the quick development of online applications. In order to help
organisations make educated choices, it would be helpful if top
DAST products were thoroughly analysed and benchmarked. To
assist organisations in selecting the best solution for application
security, this research compares the leading automated DAST
solutions now available and assesses their efficacy, efficiency,
and usability.

Literature Review
The most critical types of vulnerabilities are included in the
OWASP Top Ten project. The OWASP Top Ten project was
not passed by the web apps that were assessed, according to
many publications [2-4]. Web applications in organisations and
companies connected through the Internet and intranets support
various business functions. However, they are also susceptible
to a wide range of attacks that aim to gain economic advantage,
privileged information, denial of service, extortion, etc., by
exploiting vulnerabilities in their design, implementation, or
operation. “These vulnerabilities are part of the OWASP Top
Ten project. Codes written in the.NET framework (C# or Visual
Basic), iOS's Swift, or PHP are just a few examples of the many
web programming languages available today”. Based on much
research, Java is the most often used language [13,14]. These
days, many people choose Node.js, Python, and C++. Nowadays,
web apps rely on technologies like AJAX, HTML5, flash, and
Javascript frameworks like Angular, Vue, React, Jquery, Bootstrap,
etc. [15,16]. “Vaadin is a framework for developing collaborative
web apps using HTML5 UIs and Java backends. Developers
should undergo secure code development training to avoid security
holes in web application source code.” Using secure languages
that verify memory and type at build time is another way to avoid
this. Java, C# and Rust are among these languages [1]. Every
configuration of navigators, applications, and database servers
must adhere to security standards, which designers and developers
must follow. Installing a Web Application Firewall is just one piece
of the puzzle regarding online security [17-19].

DAST tools are black box analysis tools that can attack all of a
web application's external source inputs while running [20]. In
the first stage, they attempt to crawl the online application to find
all the potential inputs that may be used to attack it. “In addition
to automated crawling that incorporates information about the
online application, such as programming languages, application
servers, database servers, authentication, and session methods, the
human crawling phase must use the tool as an intercepting proxy.”

Following the crawling step, the tools launch a recursive assault
on all identified web application source inputs, injecting malicious
payloads at each stage. After that, a security vulnerability is
checked by syntactically analysing each HTTP response.

Lastly, potential false negatives and false positives must be
manually corrected in the vulnerability report. Here, unlike with
white box tools, nobody knows where the app's code is hiding. The
active web app's user interface is the test's target. In comparison to
SAST techniques, DAST methods often find fewer true positives
and fewer false positives [10,21]. Vulnerability scanning during
software deployment is now possible with the help of DAST
tools. In order to get analytical data, it is necessary to mimic the
actions of an attacker.

Furthermore, these tools may be run apart from the application's
programming language. The DAST tools constantly improve
and add new features, such as JWT authentication, attack vectors
(XML, JSON, etc.), and vulnerability detection techniques. One
of their standout features is fuzzing, which involves testing the
application to see if it fails, like changing form entries.

The focus of Kalle Rindell, Karin Bernsmed, and Martin
Gilje Jaatun's efforts was software development security risk
management as technical debt. Specifically, they identified four
main categories of technical debt: requirements, architecture, code,
and testing [8]. “Fully Secure (FS), Optimally Secure (OS), and
Satisfactorily Secure (SS) are some of the security objectives that
Neha Mahendra and Mohammad Muqeem used to structure their
work. That got them very close to settling on success criteria” [9].
Fang You-yuan, Gu Tian-yang, and Shi Yinsheng looked at the
various software security testing approaches and spoke about how
software security testing is classified. The pros and cons of different
approaches and the range of their applications are discussed in
this paper's conclusion [10]. Richard Amankwah and Patrick
Kwaku Kudjo developed a web vulnerability scanner to find
vulnerabilities by combining the best features of previous methods
[11]. In order to help developers and security test managers,
Rajendra Gokhale and Susheel Kumar Sharma highlighted the
difficulties associated with web application security testing [12].
Along with others, Atsuo Hazeyama has been working hard to
build a knowledge foundation and methodology for safe software
development. This is useful for evaluating the efficacy of the
testing procedures [22]. Dheerendra Singh, Arunima Jaiswal, and
Gaurav Raj catalogued the problems and difficulties associated
with security testing. An in-depth examination of the changing
difficulties in security testing has touched on topics such as cross-
site scripting, SQL injection, cross-site request forgery, and XML
injection [23]. Niek To make penetration testing more successful,
Jan van den Hout worked on its implementation approaches and
proposed a standardised methodology to get the best results [24].
D. Rajya Lakshmi and S. Suguna Mallika compiled a list of web
application testing methods and their benefits and drawbacks and
published it in [14]. Critical vulnerability to overall vulnerability
count ratio estimation was a focus of Devanshu Bhatt's study. He
discusses the application's potentially exploitable vulnerability
access routes [15]. According to the research of Tosin Daniel
Oyetoyan, Bisera Milosheska, Mari Grini, and Daniela Soares
Cruzes, a mix of tools may be necessary for a more thorough
security assessment when using SAST [16]. In order to show the
potential uses of penetration testing, Daniel Dalalana Bertoglio
and Avelino Francisco Zorzo conducted comprehensive mapping
research [17]. The difficulties, effects, and remedies of SAST
methods have been outlined by Jinqiu Yang, Lin Tan, John Peyton,

Citation: Vivek Somi (2024) A Comparative Analysis and Benchmarking of Dynamic Application Security Testing (DAST) Tools. Journal of Engineering and Applied
Sciences Technology. SRC/JEAST-E139. DOI: doi.org/10.47363/JEAST/2024(6)E139

J Eng App Sci Technol, 2024 Volume 6(2): 3-6

and Kristofer A. Duer. Developers may benefit more from the
suggested methods for using SAST techniques [18]. Working
on online testing methodologies, Kamran Ali and Xia Xiaoping
categorise web testing into multiple types, each requiring a unique
methodology [19]. Several prominent vulnerability scanners have
been uncovered and evaluated by Supriya Gupta and Lalitsen
Sharma [25]. Regarding software projects, Shafagat Mahmudova
spoke about the dangers and how to analyse them to ensure they
are secure [26]. Software development lifecycle (SDLC) security
testing was the focus of research by Neha Mahendra and Suhel
Ahmad Khan, who compiled a comprehensive, organised overview
of relevant frameworks, approaches, and methodologies [27].
“Ina Schieferdecker, Juergen Grossmann, and Martin Schneider
developed a model-based security testing procedure based on
the SUT's architectural and functional models, threat, fault, risk
models, and weaknesses and vulnerabilities” [28,29]. Shaikh
Abdullah Al-Malaise Al-Ghamdi Security testing techniques
were proposed in a survey on software testing methods. “These
techniques included code reviews, static analysis, fuzz injection,
source and binary code fault injection, risk analysis, vulnerability
scanning, and penetration testing. Under perfect circumstances,
Vidyabhushan Anantrao Upadhye and Shashank D Joshi were able
to determine a vulnerability scanner's capabilities” [30].

Open Source Dast Tools
Open-source and commercial DAST tools abound, each with
its own unique set of advantages and disadvantages in terms
of architecture, functionality, and performance. This section
introduces and describes some open-source tools that were
considered for the assessment.

Arachni
One robust Ruby framework for evaluating the safety of online
apps is Arachni, which Tasos Laskos first created [31]. Windows,
Mac OS X, and Linux users may use the tool's web-based graphical
user interface (GUI) in addition to its command line interface
(CLI). Because it uses a meta-analysis to assess the findings and
features a self-training mechanism during scanning, Arachni is
an intelligent tool. “Versatility for complicated applications using
technologies like JavaScript, HTML5, DOM manipulation, and
AJAX is made possible by its integrated browser environment,
which permits analysis of client-side code”. This allows the system
to handle input vectors that are invisible by conventional scanners
effectively and to provide excellent coverage to contemporary
online apps. Arachni is well-documented and supports proxy. At
the time of writing, Arachni was on the verge of obsolescence;
Ecsypno, the business that developed it, created a commercial
tool called Codename SCNR, its replacement.

Black Widow/Black Ostrich
The academic proof of concept tool Black Widow was created in
2021 by Eriksson et al. In order to overcome significant obstacles in
scanning contemporary online applications, the authors developed
a crawler that looks for links and relationships between various
components of an application [32]. Eriksson et al. have created
its successor, Black Ostrich, which aims to address a significant
problem with current crawlers: failing input validation [33]. A
new capability it has is the ability to exploit validation regular
expression patterns to generate malicious input that manages
to evade validation. Due to their exclusive focus on cross-site
scripting (XSS) vulnerabilities, Black Widow and Black Ostrich
have significant limitations.

Nikto
Open source and written in Perl, Nikto is a web server scanner
that supports Windows, MacOS, and Linux. Chris Sullo and
David Lodge designed it. The program dynamically scans for
common web server vulnerabilities, obsolete versions, and
misconfigurations using a signature-based approach [34]. It also
looks for these issues. Because it lacks stealth functionality, it will
run a web server test as quickly as possible, drawing attention to
itself in log files and maybe even an intrusion detection system.
In addition to proxy support, Nikto's simple design includes a
command line interface (CLI) and a collection of plugins. The
tool and its capabilities are also well-documented.

Nuclei
A cyber security firm called Project Discovery created an open-
source Nuclei project [35]. Web application vulnerability scanning
is only one of its many uses; it can also explore infrastructure,
cloud platforms, web servers, and networks for exploitable
vulnerabilities and help fix them. Its template-based approach
greatly enhances the tool's versatility in handling different testing
situations. Users may build and distribute YAML-based templates,
which form the tool's basis. Specific security flaws are identified
and addressed using the procedures outlined in the templates. These
procedures include outlining potential attack paths, identifying the
vulnerability, its severity, priority, and, if applicable, associated
exploits. A command line interface (CLI) and comprehensive
documentation are among Nuclei's many features.

OpenVAS
Greenbone AG's Open Vulnerability Assessment System
(OpenVAS) is a C and Rust-based open-source project that
evolved from the Nessus project [36]. Among its contents are
the network vulnerability scanner OpenVAS and several industrial
and Internet protocols at low and high levels. The tool sends and
generates the vulnerability detection tests and threat information
via a feed. It checks the systems for a number of characteristics
and may scan firewalls, switches, and servers for any security
holes. These features include operating systems, open ports,
program installations, user accounts, file system layouts, and
customizations. “The OpenVAS platform offers comprehensive
reporting and documentation, a command line interface, and a
web-based graphical user interface.”

W3af
The Python web security scanner W3af created by Andres Riancho
is modular, with two primary sections: the core and the plugins
[37]. The plugins count on the core for functionality and for
organizing the scan process. Though a host of plugins exists, the
main features of W3af are the crawler, audit, and assault. The
auditing plugin obtains the injection points and URLs from the
crawler plugin to find vulnerabilities through the transmission
of custom data. At last, the attack plugin intends to exploit the
security vulnerabilities found by the audit plugin. The program
provides a command line interface (CLI) and a graphical user
interface (GUI). But the tool is not updated in the recent times.

Benchmarking Results
Reviewing several application security tools reveals beneficial
information about their usefulness, effectiveness, and suitability
for improved software application security [38]. Despite their
crucial function in quickly identifying vulnerabilities, SAST tools
have specific limitations. Analyses demonstrate that SAST tools
can help discover common vulnerabilities but usually generate
many false positives. As a result of this problem, teams might

Citation: Vivek Somi (2024) A Comparative Analysis and Benchmarking of Dynamic Application Security Testing (DAST) Tools. Journal of Engineering and Applied
Sciences Technology. SRC/JEAST-E139. DOI: doi.org/10.47363/JEAST/2024(6)E139

J Eng App Sci Technol, 2024 Volume 6(2): 4-6

face development delays while they take the time to validate
and troubleshoot these reports. In addition, SAST's focus on
source code makes it possible to miss runtime vulnerabilities
and environmental configuration issues that can only arise during
operational use. An analysis of SonarQube and Fortify Static
Code Analyzer took place. Results showed that both tools feature
extensive detection mechanisms; however, they vary in how easy
they are to integrate and their effect on the development cycle.
The interface of SonarQube became known for being friendly
to developers, combined with a lower rate of false positives
compared to Fortify, which is more comprehensive but takes
additional time to lower its false positive rate. DAST tools
enable an outside perspective on applications that are running,
identifying vulnerabilities exploitable in an application when
deployed. The finding showed that DAST tools work well at
modelling external attacks and identifying runtime issues, but
they are limited in their applicability. Being external tools,
DASTs might miss vulnerabilities within an application's internal
framework, especially those that do not expose themselves through

external interfaces. OWASP ZAP and Burp Suite are renowned
for their success in simulating attacks. OWASP ZAP received
recognition for its simple design and ease of use, which makes it
appropriate for inclusion in the development cycle. Because of its
extensive analysis features, Burp Suite was better suited to those
in the security profession. RASP tools introduce a new method
by merging defence with application functionality and instantly
reacting to real-time attacks. Investigation results indicated that
RASP tools deal effectively with vulnerabilities by monitoring
application behaviour and blocking exploitation attempts. The
barriers related to performance impact and the notoriously tricky
integration of these tools within current application designs hamper
the uptake of RASP technology. Contrast Security and Imperva
RASP confirmed their significant resources for preventing threats
from detected and undetected vulnerabilities. Contrast Security
stood out for its methods, which were conducive to developers
and subtly affected application performance. While delivering
solid defences, Imperva RASP needs more careful tuning and
configuration to achieve optimal performance.

Table 1: Comparison of SAST, DAST, and RASP
Feature SAST DAST RASP
Method of Operation Examines source code without

executing it
Evaluates running applications by

simulating attacks
Integrates into the application to
detect and defend against attacks

in real-time
Stage in SDLC Early in the development cycle Post-development, preproduction Production/runtime
Type of Issues Detected Syntax errors, security flaws

such as buffer overflows, SQL
injections

Runtime issues, authentication/
authorization errors, session

management issues

Real-time attacks, malicious
inputs, runtime vulnerabilities

Integration Integrated into the development
process

Part of the broader AST strategy
used in staging environments

Embedded within the application,
it operates in a production

environment
Granularity Examines code at a granular level Evaluates the application as a

whole
Monitors and protects at runtime,

providing contextual insights
Remediation Assistance Provides early detection and

fixing of issues
Identifies issues in a running
state, providing context for

runtime vulnerabilities

Provides immediate protection
and mitigation

Coverage Source code, configuration files HTTP requests, responses,
session data

Data flow, control flow, internal
connection information

False Positives This can be higher due to a lack
of runtime context

Generally lower as it evaluates
actual runtime behaviour

Low, as it operates in the actual
runtime environment

Advantages Early detection of wide range of
detectable issues

Effective in identifying runtime-
specific vulnerabilities

Immediate and continuous
protection, context-aware defence

Disadvantages May miss runtime-specific issues Requires a running application,
potential for environmental

dependencies

Overhead on application
performance, complexity in

integration

Scope
This study concentrates on analyzing and benchmarking open-
source DAST tools, such as Arachni, Black Widow, Nikto,
OpenVAS, W3af and Nuclei. The range includes assessing tools on
principal performance metrics such as the accuracy of vulnerability
detection, the occurrence of false positives, integration ease with
CI/CD pipelines, usability, reporting capabilities, and compliance
assessments. The study will likewise analyse the limitations of
DAST tools, such as their incapacity to reveal business logic
flaws or vulnerabilities that do not become visible during runtime.
To complete a thorough understanding of every tool's function,
benchmarking will vary across application types, covering both
web applications and APIs. The study aims to deliver organizations
practical insights and recommendations for selecting the most

suitable DAST tool based on their identified needs and security
contexts. This study also provides a comparison of SAST, DAST
and RASP testing methodologies.

Conclusion
Overall, this intensive evaluation of application security tools
points out the necessity of using a varied strategy to secure software
applications in the digital landscape. The paper examines static
analysis techniques, dynamic analysis tools, and runtime protection
systems to highlight their inherent strengths and limitations. Tools
for Static Application Security Testing (SAST) are vital for quick
vulnerability detection. However, they have their downsides,
notably the high incidence of false positives and the unsuitability
for detecting runtime problems. Dynamic Application Security

Citation: Vivek Somi (2024) A Comparative Analysis and Benchmarking of Dynamic Application Security Testing (DAST) Tools. Journal of Engineering and Applied
Sciences Technology. SRC/JEAST-E139. DOI: doi.org/10.47363/JEAST/2024(6)E139

J Eng App Sci Technol, 2024 Volume 6(2): 5-6

Testing (DAST) tools deliver helpful information about runtime
vulnerabilities, although they do so with the constraint of limited
access to the application's internal workings. Runtime Application
Self-Protection (RASP) technologies have become a hopeful
answer for addressing real-time threat mitigation; however,
challenges surrounding integration and performance deserve
attention. The research supports a layered security methodology
by exploiting the cooperative strengths of SAST, DAST, and RASP
tools to form a powerful defence against various cyber threats.
This integral approach improves applications' security posture
and corresponds with the changing dynamics of cyber risks and
the rising complexity of cyber attackers.

References
1.	 Felderer M, Büchler M, Johns M, Brucker AD, Breu R, et al.

(2016) Security Testing: A Survey. In Advances in Computers.
Elsevier: Cambridge, MA, USA 101: 1-51.

2.	 Homaei H, Shahriari HR (2017) Seven Years of Software
Vulnerabilities: The Ebb and Flow. IEEE Secur. Priv. Mag
15: 58-65.

3.	 Barabanov A, Markov A, Tsirlov V (2017) Statistics of
software vulnerability detection in certification testing.
In International Conference Information Technologies in
Business and Industry 2018; IOP Publishing: Tomsk, Russia
1-8.

4.	 Sołtysik-Piorunkiewicz A, Krysiak M (2020) The Cyber
Threats Analysis for Web Applications Security in Industry
4.0. In Towards Industry 4.0—Current Challenges in
Information Systems; Studies in Computational Intelligence;
Springer: Cham, Switzerland https://link.springer.com/
chapter/10.1007/978-3-030-40417-8_8.

5.	 OWASP Foundation (2023) OWASP Top Ten 2017 https://
owasp.org/index.php/Top_10_%202017-Top_10.

6.	 Algaith A, Nunes P, Fonseca J, Gashi I, Viera M (2018)
Finding SQL injection and cross site scripting vulnerabilities
with diverse static analysis tools. In Proceedings of the
14th European Dependable Computing Conference, IEEE
Computer Society, Iasi, Romania 10-14.

7.	 Nunes P, Medeiros I, Fonseca JC, Neves N, Correia M, et
al. (2018) An empirical study on combining diverse static
analysis tools for web security vulnerabilities based on
development scenarios. Computing 101: 161-185.

8.	 Bermejo JR, Bermejo J, Sicilia JA, Cubo J, Nombela JJ (2020)
Benchmarking Approach to Compare Web Applications
Static Analysis Tools Detecting OWASP Top Ten Security
Vulnerabilities. Comput. Mater. Contin 64: 1555-1577.

9.	 Nunes P, Medeiros I, Fonseca JC, Neves N, Correia M, et al.
(2018) Benchmarking Static Analysis Tools for Web Security.
IEEE Trans. Reliab 67: 1159-1175.

10.	 Antunes N, Vieira M (2015) Assessing and Comparing
Vulnerability Detection Tools for Web Services: Benchmarking
Approach and Examples. IEEE Trans. Serv. Comput 8: 269-
283.

11.	 Monga M, Paleari R, Passerini E (2009) A hybrid analysis
framework for detecting web application vulnerabilities.
In Proceedings of the 2009 ICSE Workshop on Software
Engineering for Secure Systems, Vancouver, BC, Canada
25-32.

12.	 Higuera JB, Aramburu CA, Higuera JRB, Sicilia MA,
Montalvo JAS (2020) Systematic Approach to Malware
Analysis (SAMA). Appl. Sci 10: 1360.

13.	 Nanz S, Furia CA (2015) A comparative study of programming
languages in rosetta code. In Proceedings of the 37th
International Conference on Software Engineering 2015,

Florence 1: 16-24.
14.	 Aruoba SB, Fernández-Villaverde J (2015) A comparison of

programming languages in macroeconomics. J. Econ. Dyn.
Control 58: 265-273.

15.	 Beasley RE (2020) Ajax Programming. In Essential ASP.
NET Web Forms Development; Apress: Berkeley, CA, USA

 https://link.springer.com/book/10.1007/978-1-4842-5784-5.
16.	 Moeller JP (2016) Security for Web Developers: Using

Javascript, HTML and CSS; O’Reilly Media: Sebastopol,
Russia https://www.abebooks.com/9781491928646/Security-
Web-Developers-Using-JavaScript-1491928646/plp.

17.	 Razzaq A, Hur A, Shahbaz S, Masood M, Ahmad HF, et al.
(2013) Critical analysis on web application firewall solutions.
In Proceedings of the 2013 IEEE Eleventh International
Symposium on Autonomous Decentralized Systems (ISADS),
Mexico City, Mexico 1-6.

18.	 Holm H, Ekstedt M (2013) Estimates on the effectiveness of
web application firewalls against targeted attacks. Inf. Manag.
Comput. Secur 21: 250-265.

19.	 Tekerek A, Bay O (2019) Design and implementation of an
artificial intelligence-based web application firewall model.
Neural Netw. World 29: 189-206.

20.	 Mirjalili M, Nowroozi A, Alidoosti M (2014) A survey on
web penetration test. Adv. Comput. Sci 3: 107-121.

21.	 Vega EAAA, Orozco LS, Villalba LJG (2017) Benchmarking
of Pentesting Tools. Int. J. Comput. Electr. Autom. Control
Inf. Eng 11: 602-605.

22.	 Mohino JDV, Higuera JB, Higuera J-RB, Montalvo JAS,
Higuera B, et al. (2019) The Application of a New Secure
Software Development Life Cycle (S-SDLC) with Agile
Methodologies. Electronics 8: 1218.

23.	 OWASP Foundation (2023) OWASP Benchmark Project
https://www.owasp.org/index.php/ Benchmark.

24.	 Nanz S, Furia CA (2015) A comparative study of programming
languages in rosetta code. In Proceedings of the 37th
International Conference on Software Engineering 2015,
Florence, Italy 1: 16-24.

25.	 OWASP Foundation (2023) OWASP Testing Guide,
2020. Available online: https://owasp.org/www-project-
websecurity-testing-guide/.

26.	 Huth M, Nielsen F (2019) Static Analysis for Proactive
Security. Computing and Software Science. Lecture Notes
in Computer Science; Springer: Cham, Switzerland 374-392.

27.	 Al-Amin S, Ajmeri N, Du H, Berglund EZ, Singh MP (2018)
Toward effective adoption of secure software development
practices. Simul. Model. Pr. Theory 85: 33-46.

28.	 Sipser M (2006) Introduction to the Theory of Computation,
2nd ed.; Thomson Course Technology: Boston, MA, USA.

29.	 Singh D, Sekar VR, Stolee KT, Johnson B (2017) Evaluating
How Static Analysis Tools Can Reduce Code Review Effort.
In Proceedings of the IEEE Symposium on Visual Languages
and Human-Centric Computing, Raleigh, NC, USA 11-14.

30.	 Yang J, Tan L, Peyton J, Duer KA (2019) Towards better
utilizing static application security testing. In Proceedings of
the 41st International Conference on Software Engineering:
Software Engineering in Practice, Montreal, QC, Canada
25-31.

31.	 Tasos Laskos (2023) Arachni - Web Application Security
Scanner Framework https:// github.com/Arachni/arachni.

32.	 Benjamin Eriksson, Giancarlo Pellegrino, Andrei Sabelfeld
(2021) Black Widow: Blackbox Data-driven Web Scanning.
In: 2021 IEEE Symposium on Security and Privacy (SP)
1125-1142.

33.	 Benjamin Eriksson, Amanda Stjerna, Riccardo De Masellis,

Citation: Vivek Somi (2024) A Comparative Analysis and Benchmarking of Dynamic Application Security Testing (DAST) Tools. Journal of Engineering and Applied
Sciences Technology. SRC/JEAST-E139. DOI: doi.org/10.47363/JEAST/2024(6)E139

J Eng App Sci Technol, 2024 Volume 6(2): 6-6

Philipp Rüemmer, Andrei Sabelfeld (2023) Black Ostrich: Web
Application Scanning with String Solvers. In: Proceedings
of the 2023 ACM SIGSAC Conference on Computer
and Communications Security. CCS ’23. Association for
Computing Machinery 549-563.

34.	 Chris Sullo, David Lodge (2023) Nikto 2.5 https://cirt.net/
Nikto2.

35.	 Project Discovery (2023) Nuclei https://github.com/
projectdiscovery/nuclei

36.	 Greenbone (2023) Greenbone OpenVAS https://www.
openvas.org/.

37.	 Andres Riancho (2023) W3af https://github.com/
andresriancho/w3af.

38.	 Seth A (2022) Comparing effectiveness and efficiency of
interactive application security testing (IAST) and runtime
application self-protection (RASP) tools. North Carolina
State University 31.

Copyright: ©2024 Vivek Somi. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

