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Historical Introduction
Pierre de Fermat (20th August 1601–12th January 1665), a 
Frenchman of Paris had no Mathematics training and he evinced 
no interest in its study until he was past 30 [1, 2].

To him it was merely a hobby to be cultivated in leisure time. Yet 
no practitioner of his day made greater discoveries or contributed 
more to the advancement of Mathematics. By profession he was 
a lawyer and a politician. His contributions to number theory 
overshadow all else. Adamantly refusing to bring his work to the 
state of perfection and their publication, he thwarted the several 
efforts of others to make the results available in print under his 
name. Most of what little we know about his investigations, is 
found in the letters to his friends or notes in the margin of whatever 
book he happened to be using. This habit of communicating results 
piece meal, usually as challenges, was particularly annoying to 
the Parisian Mathematicians. At one point they angrily accused 
Fermat of posing impossible problems and threatened to break off 
correspondence unless more details were forthcoming. Because 
his parliamentary duties demanded an ever-greater portion of his 
time, Fermat was given to inserting notes on the margins of his 
personal copy of the Bachet edition of Diophantus-Arithmatica, 
many of his theorems in number theory. These were discovered 
five years after his death by his son Samuel, who brought out a 
new edition of Arithmatica, incorporating his father’s celebrated 
marginalia. By far the most famous is the one written in 1637 in 
the margin of Arithmatica, which states that: It is impossible to 
write a cube as a sum of two cubes, a fourth power as a sum of 
two fourth powers and in general, any power beyond the second, 
as a sum of two similar powers in non-zero integers. For this, I 
discovered a truly wonderful proof, but the margin is too small to 
contain it. The above statement of Fermat is known as Fermat’s 
Last Theorem (hereafter we write in short FLT). Despite efforts of 

many mathematicians and amateurs, it couldn’t be proved for about 
350 years. In 1955 Yuataka Taniyama of Japan announced a theory 
on elliptic curves, which turned out later as a link leading to a 
proof of FLT. After some hectic research, he published his findings 
in 1955 along with a conjecture, known as Yutaka Taniyama 
Conjecture (now known as Modularity Theorem). It states that, 
for every elliptic curve y2 = ax3 + bx+c over the rational field ℚ, 
there exists non-constant modular functions, f (z) and 𝜙 (z) such 
that f (z)2 = a𝜙(z)3 + b𝜙(z) +c.

He died in 1958. Goro Shimura, a close friend of Taniyama, tried 
very hard for about 25 years in search of a proof of this, but could 
not succeed. Later Kenneth Ribet of USA made intensive research 
on the conjecture, but could not find the connection between the 
Taniyama Conjecture and the FLT. But he arrived at the conclusion 
that – If the Taniyama-Shimura Conjecture is true, then it should 
imply that the FLT is also true. During the year 1986, Andrew 
Wiles of Cambridge, UK got the journal in which Ribet’s research 
was published.

On 23rd June 1993, Andrew Wiles announced a proof of FLT, but 
it had some flaw [2]. When all his efforts to correct the flaw failed, 
he returned to avail of the assistance of Richard Taylor who was 
once a student of Andrew Wiles and later his colleague, in research 
on rectifying the flaw. Together, Andrew Wiles and Richard Taylor 
published their proof of FLT, for international scrutiny in May 
1995. The proof consists of two parts: Modular Elliptic Curves 
and FLT by Andrew Wiles and Ring Theoretic properties of some 
Hecke Algebras by Richard Taylor. Wile’s proof is based on one 
significant point in the paper by Richard Taylor. This approach 
was much simpler and shorter than Wile’s original proof of 1993. 
Still the number of pages is more than 200, whereas the original 
proof contained about 1000 pages. The Taniyama Conjecture was 
fully proved by C. Breuil, B. Conrad, F. Diamond and R. Taylor in 
1999, based on the Wile’s work. Now the conjecture has become 
a Theorem known as the Modularity Theorem.
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In this paper, the possibility of finding a simple proof of Fermat’s Last Theorem is discussed by using the principles of elementary algebra instead of using 
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Andrew Wiles came to the conclusion that Fermat could never 
have proved FLT with the limited methods available to him and 
that Fermat’s claim of having a simple proof, was far from truth [4].

When n=pk where p is prime, the Fermat's equation xn=yn+zn   
becomes (xk )p =(yk )p + (zk)p  which is of the form                 . 
If this equation cannot have a non-trivial integer solution, then 
there will be no solution of the form u =xk, v =yk, w = zk, implying 
that xn=yn+zn will not have non-zero integer solution. Thus, it is 
sufficient to prove FLT for n = 4 and n = an odd prime. Fermat 
used his method of ‘infinite descent’ to prove the impossibility 
of satisfying x4 = y4 + z4. Euler proved FLT for n = 3 in 1770 by 
using the method of `infinite descent'. Kummer proved FLT for 
all prime between 3 and 100 except 37, 59, 67 which are called 
irregular primes [4,5].

In this paper, we attempt to present some arguments which is 
probably the method for the simple proof of FLT, anticipated by 
Fermat in 1637.

Fermat's Last Theorem
The diophantine equation
 
                                                                                (1)   

has no non-trivial integer solution when n is a positive integer 
greater than 2. 
For n = 1, it is trivially true, since (p+q,p,q) satisfies (1) where 
p, q are co-primes. 
For n = 2 we can rewrite (1) as

                                                                                (2)

Where              ,             . That is,

                                                                                 (3)

Assuming x,y,z are integers, u and 𝑣 will be rational numbers so 
that 𝑢 – 𝑣 and 𝑢 + 𝑣 are also rational. Therefore, we may take

                 and                   , where 𝑝 and 𝑞 are co-primes. 

Solving the last two equations we see that

                                  and                                     (4)
 

so that x =q2+p2, y=q2-p2 and z = 2pq will satisfy x2 = y2 + z2.
As a general statement we can say that x2 = y2 + z2  has infinitely 
many solutions in Pythagorean triples as (i) Integers (ii) Rational 
Numbers (iii) Real Numbers.

Fermat’s Last Theorem for an Odd Prime
From equation (1) we have

                                                                                      (5)
 
or
                                                                                     (6)
                                                                        
where we define                     such that

where ℎ is the HCF of x–y and z and p,q are coprimes. Similarly, 

we define
                         

such that x - z = h' p', y = h'q' 

where ℎ′ is the HCF of 𝑥 – 𝑧 and y and 𝑝′, 𝑞′ are coprimes. 
Factoring (6) we have

Also
                                                                                     (7)
                                                                                   

                                                                                      (8)

where p < q since ( )n n n nx y z y z= + < +   implies x<y+z

Similarly    -             where p' <q' and hence

                                                                        
The points of intersection of (7) and (8) lie on (6) since the product 
of LHS of (7) and (8) and the RHS of (7) and (8) satisfy (6)                  

If                   is any positive rational solution of (6) then by choosing 

                                   it is noted that this solution lies in     

the solution set of (7) and (8). Hence it is sufficient to solve (7) 
and (8) instead of (6). The equation of straight lines joining the 
origin to the points of intersection of (7) and (8) will be of the form

                                                                                              
                                                                                                

(9)
Since (9) is a homogeneous equation in u, v of degree n – 1, it 
represents (n– 1) straight lines through the origin of uv-plane, 
which may be real and/or imaginary. The slope  of the 
straight line contained in (9) satisfy

 
That is

                            

                                                                        (10)

Letting 1m λ= +   or 

we have
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                                                                                                                                                                     (11)    

                                                                                                                                                                                                                                                                            
   

                                                                                                                                                                            

                                                                        (12)

 
Similarly

                                                                                         

                                                                         (13)

It is clear that (12) and (13) are equivalent to (1) in disguise, but
                         is a factor of LHS of (12) and

 is a factor of LHS of (13). Since                        implies
                                                                               
                             by Fermat’s little theorem, we have

 These conditions give rise to four possibilities: 
(i) ℎ ≡ 0 mod n
(ii) ℎ′ ≡ 0 mod n
(iii) q ≡ p mod n and 
(iv)  q′ ≡ p′ mod n

First, we shall show that (i) and (ii) are false. In order to prove the 
falsity of (ii) we show that (i) ℎ′ ≡ 0 ≡ ℎ mod 𝑛 and (ii) ℎ′ ≡ 0 ≡ 
(𝑞 – 𝑝) mod 𝑛 are false. Then by using the principle of symbolic 
logic in the form, if A, B, C are logical statement satisfying the 
conditions (i)                          (ii)                                                   

then                 or A is false. This follows from the fact that

                                                                                                        

So that                                    therefore                   where the truth 
value function T is non-negative. It is possible to define 𝐴 ≡ (ℎ′ ≡ 
0 mod 𝑛), 𝐵 ≡ (ℎ ≡ 0 mod 𝑛) and 𝐶 ≡ (𝑞 ≡ 𝑝 mod 𝑛) so that  B V C 
≡ (h(q − p) ≡ 0 mod n) which has truth value 1, by the assumption 
that there exists a positive integral solution of equation (1).

According to the possibility (i) ℎ′ ≡ 0 ≡ ℎ mod 𝑛 we have 𝑥 − 𝑦 
≡ 0 ≡ z mod n and x - z ≡ 0 ≡  y mod n implying that x ≡ 𝑦 ≡ z  ≡ 
0 mod n so that n is a common factor of x, y, z which contradicts 
the assumption that GCD (𝑥, 𝑦 , 𝑧) = 1. This contradiction proves 
that the possibility (i) ℎ′ ≡ 0 ≡ ℎ mod 𝑛 is false. According to the 
possibility (ii) ℎ′ ≡ 0 ≡ (𝑞 – 𝑝) mod 𝑛 we have x - z ≡ 0 ≡  y mod 
n and q = p + kn for some positive integer k so that h′ 𝑝′  = M(n) 
and h′ q′  = M(n)  and hence the RHS of (13) is M (nn) and on LHS 
we have the first term M (n2) unless x ≡ 0 mod n but the remaining 
terms are M (n3)  atleast, due to the presence of (h′ 𝑝′).         .

The LHS of (13) consists of terms of order M(n2), M(n3) etc. due 
to the presence of h'p' so that all terms except the first term are 
divisible by n3 and RHS is also divisible by n3, since RHS = (hq)
n-(hp)n  =  M(nn) is divisible by n3, but the first term of LHS is not 
divisible by n3 unless x = M(n). This disparity implies that we must 
have x = M(n) in addition to y = h'q' = M(n) ⇒ x, y, z are M(n). 
                  
This contradiction proves that the possibility (ii) ℎ′ ≡ 0 ≡ (𝑞 – 𝑝) 
mod 𝑛 is false. Since both possibilities (i) and (ii) are false, it 
follows that ℎ′ ≡ 0 mod 𝑛 is false, by the principle of symbolic 
logic stated earlier. Similarly, ℎ ≡ 0 mod 𝑛  is also false. ⸫ ℎ′ ≢ 0 
≢ ℎ mod 𝑛. Now we are left with the possibilities (iii) 𝑞 ≡ 𝑝 mod 
𝑛 and (iv) 𝑞′ ≡ 𝑝′ mod 𝑛  or equivalently
                                                                        (14)                                                                                                                       
and                                                                                                       

                                                                        (15)

for some positive integers 𝐾 and 𝐾′. It will be shown that (14) 
and (15) are false statements. (14) implies

                                                                                                                   

is divisible by 𝑛2 at least, since n divides 
n
r

 
 
 

  for 0 < 𝑟 < 𝑛 and 

𝑛 – 𝑟 > 2 for 𝑟 = 0.                              is divisible by 𝑛2.

Next, we claim that 𝑝 ≡ 0 mod 𝑛 and 𝑞 ≡ 0 mod 𝑛  are false for the 
following reasons (i) 𝑝 ≡ 0 ≡ 𝑞 mod 𝑛 implies that n is a common 
factor of p and q which are coprimes (ii) 𝑝 ≡ 0 ≢ 𝑞 mod 𝑛 implies 
that 𝑥 ≡ 𝑦  mod 𝑛 but 𝑧 ≢ 0 mod 𝑛. This is absurd since 𝑥 ≡ 𝑦  mod 
𝑛 ⟹ 𝑧 ≡ 0 mod 𝑛. (iii) q ≡ 0 ≢ p mod 𝑛 implies that 𝑧 ≡ 0 mod 𝑛 
but 𝑥 ≢ 𝑦  mod 𝑛 which is false since 𝑧 ≡ 0 mod 𝑛 implies 𝑥 ≡ 𝑦  
mod 𝑛. Hence p, q are not divisible by n. Similarly, p′, q′ are not 
divisible by n and so also are 𝑦  = ℎ′q′ and 𝑧 = ℎq.

Rewriting equation (12) we have

                                                                                               
(16)

On the LHS of equation (16) the first bracket is divisible by
so that the first bracket is of order M (𝑛) and remaining brackets 
on LHS are of order at least O (𝑛2)  but all these brackets turn out 
to be M (𝑛2) by choosing 𝑥(ℎ𝑝) = M (𝑛) but the RHS is divisible 
by 𝑛2. This disparity demands us to let 𝑥(ℎ𝑝) = M (𝑛) ⟹ 𝑥 = M 
(𝑛). Since ℎ ≠ M (𝑛) and 𝑝 ≠ M (𝑛).
If 𝑥 = M (𝑛) then                                    for some positive integer     .

                                      

where              so that 

                              at least              at least since 𝑦 𝑧 is a pos itive inte ge r. This is als o

clear from the fact that n divides 
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for 0 < 𝑟 < 𝑛 but                  of degree             cannot give rise to 
a factor of order

                or more

since                                           and                                   

                   
which contradicts the earlier assertions h ≢ 0 ≢ h' mod n, q ≢ 
0 ≢ q' mod n and y = h' q' ≠ M(n), z = hq ≠ M(n). This implies 
equations (14) and (15) are false. Hence the possibilities (iii) and 
(iv) stated earlier are false. Thus all the four possibilities (i) to 
(iv) stated earlier are false. Hence q – p and q' – p' are not  divis-
ible by n⇒ qn  – pn  = q - p + M(n) and q'n  – p'n  =(q'- p' ) + M(n) 
are not divisible by n. 
Hence the polynomial in 𝜆 of equation (11) satisfies Eisenstein’s 
criterion [1, 3] for irreducibility                                                   over ℚ since                          
are divisible by n but 𝑛 ∤ 𝑝𝑛, 𝑛 ∤ (𝑞𝑛 – 𝑝𝑛) and                .

Therefore, the roots of (11) are irrational. Hence 𝜆 and 𝑚 = 𝜆 + 
1 can have only irrational values ⇒ Equations (7) and (8) and 
hence (6) cannot have a positive rational solution. This proves 
that equation (1) has no positive integral solution. Hence FLT is 
true for any odd prime n. This is also clear from the fact that we 
have shown the falsity of possibilities (i) to (iv) stated earlier.

Fermat’s Last Theorem for n = 4
By letting 𝑛 = 4 in equations (5) to (10), the equation (10) 
becomes [5]                                                                 

Letting 𝑚 = 𝜆 + 1 or                                 we have

  

                                                                                        (17)

                                                                                          (18)

Similarly

                                                                                   (19)

From x4  = y4  + z4  we have 𝑥 ≡ 𝑦  + 𝑧 mod 2 so that 𝑥 – 𝑦  ≡ 𝑧 
mod 2 and 𝑥 – 𝑧 ≡ 𝑦  mod 2 or ℎ(𝑞 – 𝑝) ≡ 0 ≡ ℎ′(𝑞′ – 𝑝′) mod 2. 
In order to prove the falsity of ℎ′ ≡ 0 mod 2, we consider the pos-
sibilities (i) ℎ′ ≡ 0 ≡ ℎ mod 2 and (ii) ℎ′ ≡ 0 ≡ (𝑞 – 𝑝) mod 2 and 
prove that these conditions are invalid as in Section ‘Fermat’s 
Last Theorem for an Odd Prime’.

In the former possibility, we have 𝑥 – 𝑧 ≡ 0 ≡ 𝑦  mod 2 and 𝑥 – 𝑦  
≡ 0 ≡ 𝑧 mod 2  implying that x, y, z are even positive integers. 
This contradiction proves that possibilities (i) is invalid. In the 
possibility (ii) we have ℎ′ ≡ 0 mod 2 and 𝑞 ≡ 𝑝 mod 2 so that ℎ′ is 

even and p, q are odd positive integers, since they are coprimes. 
Also y = h'q' is even and hence x, z are odd h' p' is also even. If y 
= h' q' is even then we may write y =2y1, x - z = 2k1 y1, x + z = 2k2 
y1 where k1 and k2 are positive integers so that x2  + z2  = 2(k1

2  + 
k2

2) y1
2 and y4  = x4  – z4 implies 16y1

4  = 2k1 y1.2k2 y1.2(k1
2 + k2

2) = 
8k1 k2 (k1

2  + k2
2 ) y1

4. That is k1 k2 (k1
2  + k2

2) = 2. This has solution 
k1  = k2  = 1 only leading to z = 0 and x = y, the trivial solution  
for FLT. This proves that y cannot be even. ⇒h' and q' must be 
odd. If p' is even, then h' p' = x - z is even  ⇒y = x - z + M(2) = 
M(2) which is already ruled out above. Hence h', p', q' are all odd 
positive integers. Therefore the statement h' ≡ 0 mod 2 and q ≡ 
p mod 2 is false. Similarly h, p, q are all odd and statement h ≡ 0 
mod 2 and q' ≡ p' mod 2 is false. 

Hence 𝑦  = ℎ𝑞, 𝑧 = ℎ′𝑞′ are odd integers and hence x must be an 
even positive integer. We shall show that this statement is inva-
lid. Suppose x4  = y4  + z4 where 𝑥,𝑦 ,𝑧 are positive integers such 
that their GCD = 1. Letting X = x2, Y = y2, Z = z2 we have X 2 = 
Y2  + Z2 so that (X, Y, Z) from a Pythagorean triple with solution

where 𝑃, 𝑄 are coprimes (with 𝑄 > 𝑃) in which Y and Z can be 
exchanged due to symmetry. Clearly Z/Y is even so that X must 
be an odd integer.

⸫ 𝑥2 and hence x must be an odd integer. Hence the requirement 
that x is even and y, z is odd, cannot be satisfied. Also, y/z is even 
implying 𝑞/𝑞′ is even contradicting the earlier assertion that q 
and 𝑞′ are odd. These contradictions prove that x4  = y4  + z4  has 
no positive integral solution i.e. FLT is true for 𝑛 = 4′.

The method of simple proof of FLT might be the method ex-
plained in the above Sections ‘Fermat’s Last Theorem for an 
odd prime’ and ‘Fermat’s Last Theorem for n = 4’.

Comparison between Beal’s Conjecture and FLT 
Inspired by the FLT, Andrew Beal, a banker from Texas, USA 
[4,5] proposed the following conjecture: If xa = yb + zc where 𝑎, 
𝑏, 𝑐  are positive integers and may be different as well as greater 
than 2 and 𝑥, 𝑦 , 𝑧 are positive integers, have solutions then 𝑥, 𝑦 , 𝑧 
have a  common factor greater than 2. The dissimilarity between 
FLT and Beal's equation is that in FLT we consider values of 𝑥, 𝑦 , 
𝑧 such that any two of them must be co-primes, whereas in Beal's 
equation, no two of them are co-primes but all of them have a 
common factor greater than 2.

Without loss of generality, we assume Max(a,b,c) > 2 and there 
is an initial solution of Beal's equation without a common factor 
of 𝑥, 𝑦 , 𝑧. Let L = LCM(a,b,c) so that there exist positive inte-
gers 𝑎′, 𝑏′, 𝑐′ such that  L = aa' = bb' = cc'. Choose 𝑚 = Min (𝑎′, 
𝑏′, 𝑐′). Multiplying the initial Beal's equation by 𝑝L where 𝑝 is 
any odd prime or an even integer from the set {2, 4, 8, 16, 32,…} 
if 𝑚 ≥ 2 or from the set {4, 8, 16, 32,…} if 𝑚 = 1. We note that 
𝑝𝑚 will be a common factor of the new 𝑥, 𝑦 , 𝑧 since  pL xa = (pa'  
x)a, pL yb = (pb' y)b and pL zc = (p c'z)c implies that 𝑝𝑚 is common 
for the new values of 𝑥, 𝑦 , 𝑧. Since L has either an odd prime or 
4 as a factor when   there will be at least one choice of 𝑝 such that 
𝑝𝑚 is a common factor of new 𝑥, 𝑦 , 𝑧 after multiplication of the 
initial Beal's equation by 𝑝L. As examples, consider

                           32 = 23 + 13   (i)
and

                         53 = 112 + 22                (ii)
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Multiplying these by 36 the results are 812 = 183 + 93 and 453 = 
2972 + 542 so that the common factor is 9.  Multiplying (i) and 
(ii) by 26 the results are 242 = 83 + 43 and 203 = 882 + 162 so that 
the common factor is 4. Hence Beal's conjecture is true in gen-
eral since                      and 𝑝 is chosen as described above.
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