
Open Access

Journal of Mathematical &
Computer Applications

ISSN: 2754-6705

J Mathe & Comp Appli, 2024 Volume 3(6): 1-7

Review Article

Advanced Integration of Java EE Capabilities within CICS Liberty
JVM Architecture
Chandra Mouli Yalamanchili

*Corresponding author
Chandra Mouli Yalamanchili, Software Development Engineering - Sr Advisor 2, USA.

Received: December 03, 2024; Accepted: December 09, 2024, Published: December 17, 2024

Keywords: IBM Mainframe, z/OS, CICS TS, Java EE, Jakarta
EE, Liberty JVM, Java Applications in CICS, CICS Liberty

Introduction
While there are other options for running Java applications in
the CICS transaction server ecosystem, Liberty is optimal for
deploying enterprise Java applications. CICS Liberty is based on
Eclipse Open J9, specifically optimized for the z/OS platform to
take advantage of critical z/OS features such as high-performance
I/O subsystems, efficient workload management, and robust
security.

Java EE, now Jakarta EE, includes many features designed to
simplify and standardize enterprise application development.
Some of the core features include:
• CDI (Contexts and Dependency Injection)
• EJB (Enterprise JavaBeans)
• JPA (Java Persistence API)
• JMS (Java Message Service)
• Java EE security components.

When implemented on CICS Liberty, these features enable
developers to build enterprise-grade applications with modern
capabilities while retaining the reliability, scalability, and
transaction processing strengths of CICS and z/OS. Integrating
Java EE features into CICS Liberty allows organizations to
modernize their existing applications, enabling them to take
advantage of the rich ecosystem of Java-based tools, frameworks,
and libraries. Additionally, it provides an opportunity to offload
certain legacy workloads to Java-based workloads and reduce
costs by taking advantage of zIIP processing.

This paper explores different Java EE features and understands how
CICS Liberty implements these features, focusing on configuration

procedures, best practices, and common challenges encountered
during the integration process.

CICS Liberty Overview
CICS Liberty is a modular implementation (or profile) of WebSphere
Application Server (WAS) technology. Liberty provides support
for most of the Java EE features using configurable components
known as features. The OSGi (Open Services Gateway initiative)
framework and service registry enable Liberty to dynamically add
or remove services or features from the service registry when there
is a configuration change without the need to restart the JVM [1].

Some benefits of running Java EE applications using Liberty
include easier developer adoption, easier deployment into CICS
Liberty, low latency communication with existing CICS legacy
applications, and reduced application cost by taking advantage
of zIIP (z Integrated Information Processor) engines to process
Java workloads [1].

Below is the depiction of how CICS Liberty looks like in execution:

Figure 1: Depicting Liberty JVM Hosted in CICS and
Implementing some of the Java EE Features [1].

ABSTRACT
With the introduction of Liberty JVM within CICS (Customer Information Control System), IBM has enabled the deployment and execution of modern
computing or APIs straight in CICS and executed them next to legacy applications written in COBOL, HLASM, and other languages. Using Java EE
features brings enterprise-level capabilities like scalability, transactionality, security, and manageability. This integration of Java EE features also enhances
the performance of Java applications deployed in CICS environments.

This paper explores different Java EE features, such as Context and Dependency Injection (CDI), Enterprise Java Beans (EJB), Java Persistence API (JPA),
Java Transaction API (JTA), Java Message Service (JMS), and more, available to Java applications deployed into the CICS Liberty JVM environment. It
also explores how the Liberty JVM supports each feature and how the integration with CICS works in each case.

Software Development Engineering - Sr Advisor 2, USA

Citation: Chandra Mouli Yalamanchili (2024) Advanced Integration of Java EE Capabilities within CICS Liberty JVM Architecture. Journal of Mathematical &
Computer Applications. SRC/JMCA-228. DOI: doi.org/10.47363/JMCA/2024(3)196

J Mathe & Comp Appli, 2024 Volume 3(6): 2-7

As the picture illustrates, the Liberty JVM runs within the CICS
address space and supports several Java EE features. Running
within CICS improves unit of work management, taking benefit
of access through CICS for DB2 or MQ communications. While
it uses CICS integration to utilize CICS resources, the enterprise
Java application can interface with external components through
Java EE features like JPA and JMS.

Below are examples of a few Java EE features available in CICS
Liberty that encompass several dependent features to provide
Java EE support:
• Jakartaee-10.0 - Combination of Liberty features that support

Jakarta EE 10.0 Platform. Support Java 11, 17, 21, and 23
versions [2].

• Jakartaee-8.0 - Combination of Liberty features that support
Jakarta EE 8.0 Platform. Supports Java 8, 11, 17, 21, and 23
versions [2].

• Javaee-7.0 - Combination of Liberty features that support
Java EE full 8.0 Platform. Supports Java 8, 11, 17, 21, and
23 versions [2].

The rest of the paper briefly explores different Java EE features
and how applications can implement them using CICS Liberty.

Contexts and Dependency Injection (CDI)
CDI is a powerful Java EE feature that provides a common
mechanism to inject components such as Enterprise JavaBeans
(EJBs) or managed beans into other components such as JavaServer
Pages (JSPs) or other EJBs [3].

Below are the main services provided by CDI:
• Contexts: CDI binds the lifecycle and interactions of stateful

components to well-defined but extensible lifecycle contexts
[4].

• Dependency Injection: CDI allows components to be
injected into an application in a type-safe way and to choose
at deployment time which implementation of a particular
interface to inject [4].

CDI Example
• Enabling CDI in the CICS Liberty JVM setup:
• The CDI feature must be added to the server.xml file, as

shown below

• The application needs to have either of the following to enable
CDI discovery [3].

a) Explicit bean archives must contain a beans.xml file in the
respective location based on archive type [3].

b) Implicit bean archives must contain one or bean classes with
bean-defining annotations or session beans [3].

c) Liberty provides a configuration option to enable implicit bean
archives, but it is recommended to use explicit bean archives
in CICS to avoid CPU overhead. Liberty has to scan each
application for the presence of CDI beans with an implicit
bean archive [3].

• Code example - The code example below illustrates the usage
of a simple CDI in the form of dependency injection for a
RESTful API service [5].

• Since the MyBean class has the @ApplicationScoped
annotation, only one instance is created and used for the
application's lifetime [5].

• The MyRestEndPoint class specifies the @RequestScoped
annotation, which means CDI creates an instance for each
API request and injects the same MyBean instance into each
API request [5].

Enterprise JavaBeans (EJB)
Enterprise JavaBeans (EJB) is a Java API and a subset of the
Java EE specification that simplifies the development of secure,
transactional, and portable applications. EJBs contain the business
logic of a server side application, and CICS Liberty fully supports
EJBs, including the Lite subset [6, 7].

Enterprise beans can be either session beans or message-driven
beans [7].
• A session bean contains business logic executed when a web

service client requests a new request.
• A message driven bean combines the features of a session

bean and a message listener, allowing a business component
to receive messages asynchronously. Commonly, these are
Java Message Service (JMS) messages [7].

Below are the features available in CICS Liberty to provide full
support to EJB applications:
• ejbLite-3.1 - Enables the subset of EJB features that support

the local session beans.
• mdb-3.1 - Enables the subset of EJB features related to

message-driven bean.
• ejbHome-3.2 - Enables support for the EJBLocalHome

interface.
• ejbRemote-3.2 - Enables support for remote EJB interfaces.
• ejbPersistentTimers-3.2 - Enables support for persistent EJB

timers.
• ejb-3.2 - Enables complete EJB 3.2 support.

EJB Example
Below is a quick example showcasing the usage of EJB bean.
1. Define the EJB:

@ApplicationScoped
public class MyBean {
int i=0;
public String sayHello() {
return "MyBean hello " + i++;
}
}

@RequestScoped
@Path("/hello")
public class MyRestEndPoint {
@Inject MyBean bean;
@GET
@Produces (MediaType.TEXT_PLAIN)
public String sayHello() {
 return bean.sayHello();
}
}

<featureManager>
<feature>cdi-2.0</feature>
</featureManager>

@Stateless // Marks this class as a Stateless EJB
public class GreetingService {
 public String getGreeting(String name) {
 return "Hello, " + name + "!";
 }

Citation: Chandra Mouli Yalamanchili (2024) Advanced Integration of Java EE Capabilities within CICS Liberty JVM Architecture. Journal of Mathematical &
Computer Applications. SRC/JMCA-228. DOI: doi.org/10.47363/JMCA/2024(3)196

J Mathe & Comp Appli, 2024 Volume 3(6): 3-7

2. Inject and use the EJB bean to execute client requests:

Enabling EJB Feature in Liberty
• Like CDI, the EJB feature must be added to the feature manager

component in server.xml to enable it in CICS Liberty.

EJB Transactionality & CICS UOW (Unit of Work)
EJBs support two types of transaction management: container-
managed and bean-managed. Container managed transactions provide
a transactional context for calls to bean methods and are defined
using Java annotations or the deployment descriptor file ejbjar.xml.
Bean-managed transactions are controlled directly through the Java
Transaction API (JTA). In both cases, the CICS unit of work (UOW)
remains subordinate to the outcome of the Liberty JTA transaction unless
the CICS JTA is disabled through <cicsts_jta Integration="false"/>
server.xml element [8].

The picture below illustrates how CICS Liberty supports different JTA
transaction attributes [8].

Figure 2: EJB Transaction Support [8].

Java Persistence API (JPA)
The Java Persistence API (JPA) is a Java EE feature that
simplifies data persistence between Java objects and relational
databases. It abstracts the direct SQL interaction through the
ORM (Object-Relational Mapping) mechanism. Several ORM
and JPA implementations, such as EclipseLink, Hibernate, etc.,
can connect applications to relational databases. CICS Liberty
uses EclipseLink as the default JPA implementation.

CICS Liberty provides two options to interact with the relational
databases, as mentioned below:
• JPA - This option uses the Java EE standard API to implement

the database operations by abstracting the actual SQL queries
or DB communications. It uses type 4 DB2 drivers that use
the distributed service of DB2, providing better resiliency. It
is platform-agnostic and can be migrated to other platforms
if needed, as it does not rely on native code.

• JDBC - It's a low-level Java API that provides a client
interface for database query execution. With this option,
the Java application must handle DB operations such as
SQL query construction, handling results, etc. As this is a
low-level API, it gives more control to the application to
build the queries that would improve its performance. The
application must manage most of the functionality around
database communication directly, like coming up with SQL
queries to execute and connection management. Using JDBC
API within CICS Liberty provides some advantages in the
form of optimized z/OS connection pooling and native DB
code, which offers better performance when interacting with
DB2 on z/OS. There are two DB driver options to implement
JDBC API:

• Type 4 mode: In this mode, the driver is independent of the

DB client. There is no client, and communication happens
through the DB server's TCP/IP name and port; it provides
more resiliency. Java directly handles all TCP/IP command
execution and routing to DB2 [9].

• Type 2 mode: In this mode, the driver depends on the DB2
client to establish connections via OS API calls to TCP/IP,
and the DB2 client location must be in the library path. DB2
client uses the entries in the local catalogs and only requires
the database name. In type 2 mode, the DB2 client reroutes
and Sysplex mechanisms are used, and client-side connection
concentration is unavailable [9].

JPA Implementation Example
Implementing the JPA feature in CICS Liberty would be similar
to open Liberty. Below is a simple example of the same:
• Entity class - Java persistent object mapped to a table in a

relational database.

public class GreetingServlet extends HttpServlet {
 @EJB
 private GreetingService greetingService; // EJB injection
 @Override
 protected void doGet(HttpServletRequest req, HttpServletResponse
resp) throws IOException {
 String name = req.getParameter("name");
 String greeting = greetingService.getGreeting(name != null ? name
: "World");
 resp.getWriter().write(greeting);
 }
}

<featureManager>
<feature>ejb-3.2</feature>
</featureManager>

@Entity
@Table(name = "EMPLOYEE")
public class Employee {
 @Id
 private int id;
 private String name;

 // Getters and Setters
 public int getId() {
 return id;
 }

Citation: Chandra Mouli Yalamanchili (2024) Advanced Integration of Java EE Capabilities within CICS Liberty JVM Architecture. Journal of Mathematical &
Computer Applications. SRC/JMCA-228. DOI: doi.org/10.47363/JMCA/2024(3)196

J Mathe & Comp Appli, 2024 Volume 3(6): 4-7

• DAO (Data Access Object) is the abstraction layer between
the application and the database functions.

• CICS Liberty configurations server.xml, need to add a JPA
feature to the Liberty JVM, as shown below.

• Include the JPA feature.
• Data source element needs to be defined to access DB2

through data source.
• Need to provide the path to JDBC drivers as well through

library element.

• Peristence.xml is the configuration file that provides the JPA
API's configuration parameters and defines the DB's data
source.

JDBC Implementation Example for CICS Liberty
• Java class with JDBC code:

• Liberty server.xml configuration for type 4 mode doesn't use
CICS DB2 connection for communication with DB2.

public void setId(int id) {
 this.id = id;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }
}

public class EmployeeDAO {
 private EntityManagerFactory emf = Persistence.createEntity
ManagerFactory("CICSJPA");

 public void saveEmployee(Employee employee) {
 EntityManager em = emf.createEntityManager();
 em.getTransaction().begin();
 em.persist(employee);
 em.getTransaction().commit();
 em.close();
 }
}

<server>
 <!-- Enable JPA Feature -->
 <featureManager>
 <feature>jpa-3.0</feature>
 </featureManager>

 <!-- Define the Datasource -->
 <dataSource id="DefaultDataSource" jndiName="jdbc/
DefaultDS">
 <jdbcDriver libraryRef="DB2Lib"/>
 <properties.db2.jcc databaseName="DBNAME"
serverName="hostname" portNumber="port" user="dbuser"
password="dbpassword"/>
 </dataSource>

 <library id="DB2Lib">
 <file path="/path-to-db2-driver/db2jcc4.jar"/>
 </library>
</server>

<persistence xmlns="https://jakarta.ee/xml/ns/persistence"
version="3.0">
 <persistence-unit name="CICSJPA">
 <class>com.example.Employee</class>
 <properties>
 <property name="jakarta.persistence.jdbc.url"
value="jdbc:db2://hostname:port/DBNAME"/>
 <property name="jakarta.persistence.jdbc.user"
value="dbuser"/>
 <property name="jakarta.persistence.jdbc.password"
value="dbpassword"/>
 <property name="jakarta.persistence.jdbc.driver" value="com.
ibm.db2.jcc.DB2Driver"/>
 </properties>
 </persistence-unit>
</persistence>

public class EmployeeJDBC {
 public void fetchEmployee(int employeeId) {
 String sql = "SELECT NAME FROM EMPLOYEE WHERE
ID = ?";
 try (Connection conn = DriverManager.getConnection("jdbc:db2://
hostname:port/DBNAME", "dbuser", "dbpassword");
 PreparedStatement stmt = conn.prepareStatement(sql)) {

 stmt.setInt(1, employeeId);
 ResultSet rs = stmt.executeQuery();

 while (rs.next()) {
 System.out.println("Employee Name: " + rs.getString("NAME"));
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

<server>
 <featureManager>
 <feature>jdbc-4.3</feature>
 </featureManager>

 <dataSource id="DefaultDataSource" jndiName="jdbc/
DefaultDS">
 <jdbcDriver libraryRef="DB2Lib"/>
 <properties.db2.jcc databaseName="DBNAME"
serverName="hostname" portNumber="50000" user="dbuser"
password="dbpassword"/>
 </dataSource>

 <library id="DB2Lib">
 <file path="/path-to-db2-driver/db2jcc4.jar"/>
 </library>
</server>

Citation: Chandra Mouli Yalamanchili (2024) Advanced Integration of Java EE Capabilities within CICS Liberty JVM Architecture. Journal of Mathematical &
Computer Applications. SRC/JMCA-228. DOI: doi.org/10.47363/JMCA/2024(3)196

J Mathe & Comp Appli, 2024 Volume 3(6): 5-7

• Liberty server.xml configuration for type 2 mode, this can
be done either through a DB2 CICS connection or a CICS
aware connection, using the DB2CONN resource defined
in CICS [10].

• The dataSource definition should have transactionality
disabled to allow CICS to manage the transactions.

• Liberty JDBC using CICS DB2CONN resource:

• CICS JDBC using CICS DB2CONN resource:

As discussed, there are several options and different ways to
implement Java applications with DB functionality using CICS
Liberty. Using JPA API would help make the application platform
agnostic and easier to maintain. In contrast, JDBC API gives more
control over the implementation to build efficient SQL queries,
manage connection pools, manage transactionality, etc.

Java Message Service (JMS)
Java Message Service (JMS) API allows enterprise Java
applications to create, send, receive, and read messages. CICS
Liberty provides support to multiple JMS clients through the
features listed below [11]:

• WebSphere MQ JMS 2.0 (wmqJmsClient-2.0) client
• WebSphere Application Server JMS 2.0 (wasJmsClient-2.0)

client

CICS Liberty also supports hosting the JMS server through the
wasJmsServer-1.0 feature, but this paper further explores the JMS
client support and details the configuration [11].

From Java applications (including CICS Liberty JVM), we can
access IBM MQ through IBM MQ classes for Java or IBM
MQ classes for JMS (the latter is the preferred approach) [12].
Application using MQ classes for JMS can connect to queue
manager in either client or bindings mode [13].
• In client mode, IBM MQ classes for JMS connect to the queue

manager over TCP/IP [13].
• In bindings mode, IBM MQ classes for JMS connect directly

to the queue manager using the Java Native Interface (JNI)
[13].

CICS Liberty JVM, running in standard mode, can connect to
a queue manager using bindings or client-mode connections.
Binding mode will work only when there is no CICS connection
to the same queue manager from the same CICS regions. CICS
Liberty, running in integrated mode, can connect to a queue
manager only using a client mode connection [14].

Below are the steps to enable JMS in CICS Liberty JVM [15]:
• Add the wmqJmsClient-2.0 feature to the server.xml file to

allow Liberty to load the IBM MQ bundles needed to define
the JMS resources, such as connection factory and activation
specification properties.

• We need to add the zosTransaction-1.0 feature to the feature
list if CICS Liberty will be connecting to the queue manager
in binding mode.

• We must provide the zFS path to the IBM MQ RA (Resource
Adapter).

• We must add the JMS connection factory to server.xml to
connect to the IBM MQ queue manager.

• Client mode example

<server>
 <featureManager>
 <feature>jdbc-4.2</feature>
 </featureManager>

 <library id="db2Type2Driver">
 <fileset dir="/usr/lpp/db2v12/jdbc/classes"
includes="db2jcc4.jar db2jcc_license_cisuz.jar"/>
 <fileset dir="/usr/lpp/db2v12/jdbc/lib"
includes="libdb2jcct2zos4_64.so"/>
 </library>

 <dataSource id="db2Type2" jndiName="jdbc/
db2Type2" transactional="false">
 <jdbcDriver libraryRef="db2Type2Driver"/>
 <properties.db2.jcc driverType="2"/>
 <connectionManager agedTimeout="0"/>
 </dataSource>

 <library id="global">
 <fileset dir="/usr/lpp/db2v12/jdbc/classes/"
includes=”db2jcc4.jar”/>
 </library>
</server>

<server>
 <featureManager>
 <feature>cicsts:jdbc-1.0</feature>
 </featureManager>

 <library id="db2Library">
 <fileset dir="/usr/lpp/db2v12/jdbc/classes"
includes="db2jcc4.jar db2jcc_license_cisuz.jar"/>
 <f i lese t d i r=" /usr / lpp/db2v12/ jdbc/ l ib"
includes="libdb2jcct2zos4_64.so"/>
 </library>

 <cicsts_jdbcDriver libraryRef="db2Library"/>

 < c i c s t s _ d a t a S o u r c e j n d i N a m e = " j d b c /
cicsDb2DataSource"/>
</server>

<featureManager>
<feature>wmqJmsClient-2.0</feature>
<feature>jndi-1.0</feature>
</featureManager>

<featureManager>
 <feature>zosTransaction-1.0</feature>
</featureManager>

<variable name="wmqJmsClient.rar.location" value="/path/to/
wmq/rar/wmq.jmsra.rar"/>

<jmsConnectionFactory jndiName="jms/wmqCF"
connectionManagerRef="ConMgr6"> < p r o p e r t i e s .
wmqJms transportType="CLIENT" hostName="localhost"
port="1414" channel="SYSTEM.DEF.SVRCONN"
queueManager="QM1"/>
</jmsConnectionFactory>
<connectionManager id="ConMgr6" maxPoolSize="10"/>

Citation: Chandra Mouli Yalamanchili (2024) Advanced Integration of Java EE Capabilities within CICS Liberty JVM Architecture. Journal of Mathematical &
Computer Applications. SRC/JMCA-228. DOI: doi.org/10.47363/JMCA/2024(3)196

J Mathe & Comp Appli, 2024 Volume 3(6): 6-7

• Binding mode example

• Add queue definitions to server.xml

• If we used binding mode, we must provide the native library
to connect to the queue manager

• If the inbound messages need to be supported, we must add
the MDB feature in server.xml (mdb-3.2) and the action
spec in either client or binding mode to handle the incoming
messages and deliver them to message-driven beans.

As with other features, CICS Liberty has some unique features for
implementing JMS, and it needs special consideration to choose
the right connection modes to achieve efficient performance from
JMS usage to integrate with the MQ queue manager.

CICS Liberty & Security
While this paper doesn't explore the details of setting up security,
below is an illustration of how different security components work
to help secure the enterprise Java applications running in CICS
Liberty JVM [16].

Figure 3: Illustrating Different Security Components that will help in Securing Enterprise Applications Running in CICS Liberty [16].

Below is the high level summary of key security features provided
by CICS Liberty for Java EE applications [16]:
•	 Role Based Access Control: Ensures granular access control

by assigning roles and permissions at the application level.
Enterprise applications can implement role-based access
control using features of EJB roles.

•	 SAF (System Authorization Facility) Integration:
CICS Liberty can integrate with z/OS’s SAF registry for
identity management and resource protection using the
`cicsts:security-1.0` feature. SAF registry integration through
CICS security features relies on the angel service behind the
scenes.

•	 OAuth Based User Authentication: Enables token based
user authentication for API based applications.

•	 Secure Session Management: Manages user sessions
securely with expiration policies and secure cookies.

•	 TLS Encryption: CICS Liberty supports the TLS by using
the RACF key ring as a security manager to store the key
stores needed. We can also use AT-TLS to secure the transport
layer for client to server communication.

•	 Secure Session Management: Manages user sessions
securely with expiration policies and secure cookies.

Conclusion
Integrating Java EE features into CICS Liberty enables
organizations to modernize their mainframe applications, taking
advantage of powerful features like CDI, EJB, and JPA while
maintaining the stability and performance of their legacy systems.
CICS and z/OS customization and optimal implementation of these
features allow Java enterprise applications to benefit from the
high processing power of CPUs much more efficiently. Following
best practices, developers can build scalable, maintainable, and
efficient enterprise applications in CICS Liberty.

References
1. IBM Corporation (2016) Modernizing Your Business

Applications with IBM CICS and Liberty. IBM Redbooks
https://www.redbooks.ibm.com/redpapers/pdfs/redp5334.pdf.

2. IBM Corporation (2024) CICS Liberty features. IBM https://
www.ibm.com/docs/en/cics-ts/6.x?topic=server-liberty-
features#features__cics-features.

3. IBM Corporation (2024) Context and Dependency
Injection (CDI). IBM https://www.ibm.com/docs/en/cics-
ts/6.x?topic=server-context-dependency-injection-cdi.

4. Oracle Corporation (2017) Overview of CDI. Oracle https://
javaee.github.io/tutorial/cdi-basic002.html#GIWHL.

<jmsConnectionFactory jndiName="jms/qm1"
connectionManagerRef="ConMgr6"> <properties.
wmqJms transportType="BINDINGS" queueManager="QM1"/>
</jmsConnectionFactory>
<connectionManager id="ConMgr6" maxPoolSize="10"/>

<jmsQueue id="jms/queue1" jndiName="jms/queue1">
<properties.wmqJms baseQueueName="QUEUE1"
baseQueueManagerName="QM1"/>
</jmsQueue>

<wmqJmsClient nativeLibraryPath="/opt/mqm/java/lib64"/>

Citation: Chandra Mouli Yalamanchili (2024) Advanced Integration of Java EE Capabilities within CICS Liberty JVM Architecture. Journal of Mathematical &
Computer Applications. SRC/JMCA-228. DOI: doi.org/10.47363/JMCA/2024(3)196

J Mathe & Comp Appli, 2024 Volume 3(6): 7-7

5. Open Liberty, IBM Corporation (2024) Context and
Dependency Injection (CDI) Open Liberty https://openliberty.
io/docs/latest/cdi-beans.html.

6. IBM Corporation (2024) Enterprise JavaBeans (EJB) IBM
https://www.ibm.com/docs/en/cics-ts/6.x?topic=server-
enterprise-javabeans-ejb.

7. Oracle Corporation (2024) Enterprise JavaBeans Technology.
Oracle https://javaee.github.io/tutorial/overview008.
html#BNACL.

8. IBM Corporation (2024) Using JTA transactions in EJBs.
IBM https://www.ibm.com/docs/en/cics-ts/6.x?topic=ejb-
using-jta-transactions-in-ejbs.

9. IBM Corporation (2024) 50 DB2 Nuggets #32 : Resource
Info - Comparing JDBC Type 4 and type 2 connections.
IBM https://www.ibm.com/support/pages/50-db2-nuggets-
32-resource-info-comparing-jdbc-type-4-and-type-2-
connections.

10. IBM Corporation (2024) Configuring database connectivity
with JDBC. IBM https://www.ibm.com/docs/en/cics-
ts/6.x?topic=server-configuring-database-connectivity-jdbc.

11. IBM Corporation (2024) Java Message Service (JMS). IBM
https://www.ibm.com/docs/en/cics-ts/6.x?topic=server-java-
message-service-jms.

12. IBM Corporation (2024) CICS and IBM MQ IBM https://
www.ibm.com/docs/en/cics-ts/6.x?topic=fundamentals-cics-
mq .

13. IBM Corporation (2024) Connection modes for IBM MQ
classes for JMS. IBM https://www.ibm.com/docs/en/ibm-
mq/9.4?topic=applications-connection-modes-mq-classes-
jms.

14. IBM Corporation, “How it works: IBM MQ classes for JMS
with CICS.”, IBM 2024. Retrieved November 2024 from
https://www.ibm.com/docs/en/cics-ts/6.x?topic=mq-how-
it-works-classes-jms-cics

15. IBM Corporation (2024) Configuring a Liberty JVM server
to support JMS. IBM https://www.ibm.com/docs/en/cics-
ts/6.x?topic=server-configuring-liberty-jvm-support-jms.

16. IBM Corporation (2024) How it works: CICS Liberty
security. IBM https://www.ibm.com/docs/en/cics-
ts/6.x?topic=applications-how-it-works-cics-liberty-security.

Copyright: ©2024 Chandra Mouli Yalamanchili. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

