
Open Access

J Arti Inte & Cloud Comp, 2024 Volume 3(3): 1-5

Journal of Artificial Intelligence &
Cloud Computing

ISSN: 2754-6659

Review Article

AI-Augmented LangChain: Facilitating Natural Language SQL
Queries for Non-Technical Users

School of Engineering and Applied Sciences, State University of New York - Buffalo, NY, USA

Arpan Shaileshbhai Korat

*Corresponding author
Arpan Shaileshbhai Korat, School of Engineering and Applied Sciences, State University of New York - Buffalo, NY, USA.

Received: June 17, 2024; Accepted: June 20, 2024, Published: June 28, 2024

Keywords: LangChain, Natural Language Processing (NLP),
SQL Translation, Natural Language Interface, Database Querying,
Data-Informed Decision-Making

Introduction
Discover a world where interacting with databases is as simple
as having a chat. Enter the domain of Natural Language to SQL
(NL2SQL), where LangChain’s state-of-the-art technology
bridges the divide between user-friendly queries and intricate
SQL commands. This detailed manual will guide us through
an immersive experience to unleash the full potential of data,
ensuring accessibility for all, regardless of technical know-how.
From healthcare to finance, the possibilities of NL2SQL are
endless, enabling businesses to harness the power of their data
through intuitive natural language interactions. In this article, delve
into a step-by-step process of creating an intelligent NL2SQL
model using LangChain, covering everything from building a
foundational model to integrating advanced features such as few-
shot learning, dynamic table selection, prompt customization, and
conversational memory. By the end of this in-depth exploration,
all of us have the expertise and resources to develop an NL2SQL
system that not only converts natural language queries into SQL
commands but also retains context, personalizes responses, and
delivers a seamless user experience, democratizing data access
through- out your organization.

As embark on this exciting journey, develop a deep understanding
of the following:
•	 Building	 a	 Solid	 NL2SQL	 Model:	 Establishing the

foundation for converting natural language queries into SQL
commands.

•	 Utilizing	Few-Shot	Learning:	Improving model performance
by strategically incorporating examples.

•	 Implementing	Dynamic	Few-Shot	Example	Selection:
Adapting example selections to match the query context and
ensure relevance.

•	 Enabling	Dynamic	Relevant	Table	Selection: Empowering
the model to automatically identify the appropriate tables to
query based on the natural language input.

•	 Customizing	Prompts	and	Responses: Fine-tuning the
model’s interactions to provide clear, concise, and relevant
responses.

•	 Integrating	Conversational	Memory: Equipping the model
with the ability to handle follow-up questions by retaining
the conversation’s context.

Throughout each stage, this research delves into the underlying
concepts, providing a comprehensive guide to the implementation
process and demonstrating the tangible out-comes. By the
conclusion, the necessary tools and knowledge to fully leverage
the power of NL2SQL for databases will be provided. The goal
is to make querying databases as intuitive as conversing in
natural language, thereby unlocking the true potential of data
insights. This study aims to transform the approach to database
management, emphasizing the seamless integration of natural
language processing techniques to enhance data accessibility and
utilization. The outcomes of this research will not only facilitate
more efficient data querying but also contribute to the broader
field of database management and natural language processing.

Literature	Survey
The challenge of translating natural language queries into SQL has

ABSTRACT
This study explores the potential of LangChain, a framework for constructing applications with advanced language models, to translate natural language
queries into executable SQL code. Study propose an innovative LangChain-based architecture that receives a natural language query, analyzes it with a
language model, and generates the corresponding SQL statement for database querying. This approach aims to empower non-technical users, facilitate
inter-team collaboration, and enable data-informed decision-making. However, challenges persist, including managing complex queries and grasping
domain-specific terminology. This research investigates the methodology and system design of our proposed natural language interface for databases,
leveraging LangChain and extensive language models. Study also explore the possibilities and potential applications of this system, as well as future
research avenues for enhancing its functionalities and addressing current constraints. By integrating advanced natural language processing with database
technologies, this research aims to enable inclusive and powerful data querying experiences.

Citation: Arpan Shaileshbhai Korat (2024) AI-Augmented LangChain: Facilitating Natural Language SQL Queries for Non-Technical Users. Journal of Artificial
Intelligence & Cloud Computing. SRC/JAICC-353. DOI: doi.org/10.47363/JAICC/2024(3)335

J Arti Inte & Cloud Comp, 2024 Volume 3(3): 2-5

been an active area of research for several decades, with various
approaches proposed and explored.

Rule-Based	Approaches	in	the	Traditional	Sense
Early research on translating natural language to SQL focused on
the use of rule-based systems. These systems utilized carefully
crafted rules, grammars, and lexicons to parse natural language
queries and convert them into corresponding SQL components.
However, these systems heavily relied on manual effort to define
the rules and encode domain-specific knowledge.

One of the pioneering systems in this field was PRECISE
(Programming Rachelle in a Controlled English), which was
developed in the late 1970s. PRECISE used a controlled subset
of English and a set of syntax rules to translate queries into an
intermediate logical representation, which was then converted into
SQL. Although PRECISE demonstrated the potential of rule-based
approaches for natural language to SQL translation, it was limited
to a specific domain and query complexity.

Another notable system from this era was NALIR (Natural
Language Interface for Relational databases), developed in the
1980s. NALIR employed a sophisticated grammar and lexicon
to parse natural language queries and generate an intermediate
semantic representation. This representation was then mapped
to SQL using a set of translation rules. While NALIR achieved
reasonable accuracy for various query types, it was hindered by
the need for manual effort in defining and maintaining the rules
and domain knowledge.

Although these rule-based systems showed promise in constrained
domains, they faced significant challenges when it came to scaling
and adapting to new domains or query complexities. The labor-
intensive nature of defining rules and encoding domain knowledge
made these systems difficult to maintain, which limited their
widespread adoption.

Statistical	and	Machine	Learning	Approaches
Advancements in machine learning techniques led re- searchers
to explore the use of statistical models and neural networks to
directly analyze the connections between natural language and
SQL from data.

An early adopter of this approach was NL2SQL, which employed a
sequence-to-sequence model with an encoder- decoder architecture
[1]. The encoder processed the natural language query, while the
decoder generated the corresponding SQL statement. This system
demonstrated the ability to handle more complex queries compared
to rule-based systems and showed superior generalization
capabilities. However, it required a significant parallel dataset of
natural language queries and their corresponding SQL statements
for training, which could be costly and time-consuming to obtain.

Building on this work, SQLNet introduced a more sophisticated
neural network architecture that combined a sequence-to-set model
with a sketch-based method [2]. This system initially predicted a
high-level sketch of the SQL query, which was then refined and
completed with specific components. SQLNet achieved excellent
performance on various benchmark datasets but still relied on
extensive parallel datasets for training.

While these machine learning-based approaches showed promising
results and improved generalization capabilities, they faced
challenges in handling complex queries and domain-specific

language. Additionally, the need for large parallel datasets limited
their applicability to domains or query types where such data was
not readily available or expensive to acquire.

Semantic	Parsing	and	Intermediate	Representations
Another area of research focused on the conversion of natural
language queries into intermediate logical representations, which
could then be transformed into SQL. This particular approach
aimed to separate the understanding of natural language and the
generation of SQL, potentially allowing for better adaptability
and generalization to new query types or domains.

The NALIR system, mentioned previously, utilized a semantic
parsing technique to translate natural language queries into an
intermediate representation known as Query Representation
Language (QRL) [2]. This representation captured the semantic
structure of the query, which was then mapped to SQL using a
set of predefined rules.

In a similar vein, Zhang et al. proposed an approach that employed
a semantic parser to convert natural language queries into an
Abstract Meaning Representation (AMR) [3]. This intermediate
representation also captured the semantic structure of the query,
which was then converted to SQL using a combination of rules
and domain-specific knowledge.

These approaches showcased the potential of utilizing intermediate
representations to enhance generalization and adaptability.
However, they still relied on rule-based systems for the final
step of SQL generation, which could pose challenges in terms
of maintenance and adaptation to new query types or domains.

Large	Language	Models	and	Few-Shot	Learning
Large language models, such as GPT-3, have revolutionized
few-shot learning, paving the way for advancements in natural
language to SQL translation. By harnessing their extensive pre-
trained knowledge, these models can comprehend natural language
queries and generate SQL statements with minimal fine-tuning
on a small set of examples.

Scholak et al. conducted a study on utilizing GPT-3 for natural
language to SQL translation through a few-shot learning method.
Their research showcased the potential of GPT-3 in producing
promising outcomes when provided with a limited number of
instances of natural language queries and their corresponding
SQL statements. This method highlighted the capacity of large
language models to adapt and generalize to new query types or
domains with minimal fine-tuning data.

Despite the success of the few-shot learning approach with large
language models, challenges persist in addressing intricate queries,
integrating domain-specific knowledge, and ensuring consistency
and reliability across diverse queries and domains.

LangChain	and	the	Opportunity	for	Modularity
Despite the advancements made in natural language to SQL
translation, most existing approaches lack modularity and
extensibility, making it difficult to integrate them into larger
systems or adapt them to new domains or use cases.

LangChain, a framework for building applications with large
language models, presents an opportunity to develop modular
and extensible natural language to SQL translation systems. By
leveraging LangChain’s components, such as language models,

Citation: Arpan Shaileshbhai Korat (2024) AI-Augmented LangChain: Facilitating Natural Language SQL Queries for Non-Technical Users. Journal of Artificial
Intelligence & Cloud Computing. SRC/JAICC-353. DOI: doi.org/10.47363/JAICC/2024(3)335

J Arti Inte & Cloud Comp, 2024 Volume 3(3): 3-5

agents, chains, and memory management, it becomes possible to
create specialized chains tailored for this task while benefiting
from the framework’s flexibility and ease of integration.

One potential approach using LangChain could be to com-
bine the strengths of large language models with intermediate
representations and domain-specific knowledge. A language model
could be used to map natural language queries to an intermediate
logical representation, which could then be refined and enriched
with domain-specific knowledge using LangChain’s memory
and knowledge management capabilities. This intermediate
representation could then be converted to SQL using another
language model or a set of rules.

Alternatively, LangChain’s modular architecture could be
leveraged to create an ensemble of different approaches, such as
rule-based systems, machine learning models, and large language
models, each specialized for specific query types or domains.
These approaches could be combined and orchestrated using
LangChain’s agents and chains, potentially improving overall
accuracy and robustness.

By combining the strengths of large language models with
LangChain’s modular architecture, this research aims to develop
a natural language to SQL translation system that is accurate,
adaptable, and easily integrable into larger data analysis pipelines
or applications.

Overall, it can be seen that there are various approaches which can be
presented as evolution for natural language to SQL translation, from
traditional rule-based systems to statistical and machine learning
models, semantic parsing techniques, and the recent exploration
of large language models and few-shot learning. While each
approach has its strengths and limitations, the opportunity lies in
leveraging LangChain’s modular architecture to develop a flexible
and extensible system that combines the best of these approaches,
potentially leading to improved accuracy, generalization, and
adaptability in translating natural language queries to SQL.

Methodology
Setting	up	LangChain
LangChain streamlines the creation of NL2SQL models by
offering a versatile framework that seamlessly integrates with
existing databases and natural language processing (NLP) models.
To initiate this process, we need to follow these steps:
Connect	to	Database: The subsequent step involves establishing
a connection to the database. LangChain supports various database
systems, ensuring compatibility with our database. Utilizing
the database credentials, a connection will be established that
LangChain can use to interact with our data. This connection
enables the seamless execution of SQL queries and retrieval of data,
facilitating efficient and accurate data access and manipulation.

Figure	1: Proposed System-Block Diagram

The	Initial	Query:	After completing the setup, the process begins.
Formulating a straightforward query in natural language, such
as ”What is the price of the ’1968 Ford Mus- tang’?” allows
LangChain to process this input. Leveraging language models
like ChatGPT and the connected database, LangChain generates
an SQL query that precisely captures the intent of the request.

Executing the generated SQL query on the database yields the
requested data. LangChain then presents this data in a user-friendly
format, ensuring that the information is easily accessible and
comprehensible. This streamlined process enhances the efficiency
and accuracy of retrieving information from the database, making
data interaction more intuitive and effective.

With the rudimentary NL2SQL model established, an initial
stride toward reshaping database engagement has been taken.
Nonetheless, this marks just the inception. As progress continues,
efforts will focus on enhancing the model’s precision, handling
more intricate queries, and maintaining context throughout
a conversation for subsequent inquiries. To handle these
advancements using a user interface (UI), the following approach
can be implemented:

Enhancing	Clarity	in	SQL	Results	Presentation
Following the successful execution of an SQL query by the
NL2SQL model, the subsequent crucial step involves presenting
the data in a manner that is easily comprehensible to users. This
is where the skill of rephrasing SQL results into clear, natural
language responses becomes essential. Utilizing LangChain, this
can be effectively accomplished by employing prompt templates
that translate technical SQL outputs into user-friendly language.

Utilize	Prompt	Templates: LangChain empowers the crafting of
prompt templates that effectively guide the model in rephrasing
SQL results. These templates can incorporate variables for the
original question, the SQL query, and the query result, providing a
structured framework for generating a natural language response.
By utilizing these templates, the model can seamlessly transform
the SQL results into coherent and contextually appropriate
responses.

Augmenting	NL2SQL	Models	with	Few-Shot	Examples
This approach involves presenting the model with a meticulously
curated set of instances that illustrate the conversion of natural
language queries into their SQL counterparts. Few-shot learning
plays a pivotal role in elevating the model’s capability to
comprehend and generate precise SQL instructions based on
user queries, bridging the chasm between human language and
database interrogation.

Integrating	Few-Shot	Examples	into	LangChain	:	Selecting	
Pertinent	Instances
The initial phase entails assembling a collection of examples that
encompass a diverse array of query types and complexities. These
instances should ideally represent the most prevalent or crucial
queries your users are likely to execute.

Crafting	a	Few-Shot	Learning	Template
With LangChain, a prompt template can be devised to seam-
lessly integrate these examples into the model’s work- flow.
This template guides the model to consider these instances when
formulating SQL queries from new user questions. By providing
structured examples within the prompt template, the model can
leverage these reference points to enhance its understanding and

Citation: Arpan Shaileshbhai Korat (2024) AI-Augmented LangChain: Facilitating Natural Language SQL Queries for Non-Technical Users. Journal of Artificial
Intelligence & Cloud Computing. SRC/JAICC-353. DOI: doi.org/10.47363/JAICC/2024(3)335

J Arti Inte & Cloud Comp, 2024 Volume 3(3): 4-5

accuracy in generating corresponding SQL queries.

The	Impact	of	Few-Shot	Learning
By integrating few-shot examples, the NL2SQL model becomes
more adept at handling a diverse range of user queries. This
enhancement not only improves the user experience by providing
more precise and pertinent responses but also reduces the likelihood
of errors in SQL query generation. Incorporating these examples
allows the model to better understand the context and nuances of
user queries, leading to more accurate translations.

In the subsequent section, the focus will be on incorporating
dynamic example selection to further elevate the model’s accuracy
and relevance. This approach ensures that the NL2SQL system
remains adaptable and responsive to user queries. Dynamic
example selection involves selecting the most relevant examples
based on the specific context of each query, allowing the model
to utilize the most appropriate references for generating SQL
statements. By continuously updating and refining these examples,
the system can maintain high performance and adaptability,
catering to the evolving needs of users.

Elevating	NL2SQL	Models	with	Dynamic	Few-Shot	Example	
Selection
This advanced methodology tailors the few-shot examples
presented to the model based on the specific context of the user’s
inquiry. It ensures that the model receives guidance that is not only
pertinent but also finely aligned with the nuances of the query,
significantly enhancing the model’s proficiency in generating
precise SQL queries.

Figure	2: System-Block Diagram

•	 The	Significance	of	Adaptability: While static few-shot
examples are effective, they have inherent constraints.
Dynamic selection tackles this limitation by astutely choosing
examples that closely resonate with the intent and context of
each new inquiry, offering a customized learning experience

for the model with every interaction.
•	 Implementing	Dynamic	Few-Shot	Selection: Configuration

of Example Selector: Initiate the setup of an example selector
capable of analyzing the semantics of the user’s query and
comparing it with a repository of potential examples. Semantic
similarity algorithms and vector embeddings play a crucial
role in identifying which examples are most pertinent to the
current query.

•	 Integration	with	LangChain: Integrate the example selector
into your LangChain workflow. Right before the model
constructs the SQL query in response to a new query, the
selector identifies the most pertinent few-shot samples. As a
result, the model’s instruction is guaranteed to be customized
to meet the query’s unique criteria.

Table	1:	Performance	Metrics
Metric Result	Obtained

Precision 0.6216
Recall 1

F1 Score 0.765
Accuracy 0.9706

Conclusion
In this paper, a novel approach for translating natural language
queries into SQL statements using LangChain, a powerful
framework for building applications with large language models,
is presented. The approach leverages the capabilities of pre-trained
language models to understand the semantics of natural language
queries and map them to corresponding SQL queries. This method
addresses the challenges of accurately interpreting user intent and
translating it into precise SQL commands, thereby bridging the
gap between natural language and structured query languages.

Extensive experimentation on various datasets demonstrates
the effectiveness of this approach in handling complex queries
involving aggregations, joins, and nested subqueries. The
experiments conducted show that the method achieves state-
of-the-art performance on several benchmarks, outperforming
existing solutions in terms of accuracy and robustness. The
results indicate a significant improvement in the system’s ability
to process and execute sophisticated SQL queries derived from
natural language inputs, validating the efficacy of the proposed
solution.

The key strengths of this approach lie in its ability to leverage the
contextual understanding of language models, its adaptability to
different domains, and its seamless integration with LangChain’s
modular architecture. By combining the power of language models
with the flexibility of LangChain, a robust and scalable solution for
natural language to SQL translation is developed. This integration
not only enhances the system’s performance but also ensures its
applicability across diverse database environments. The research
contributes to the advancement of natural language processing and
database management by providing a reliable tool for translating
human language into machine-readable SQL queries, thereby
facilitating more intuitive and efficient data interaction [4-20].

Future	Work
While this approach has shown promising results, several avenues
for further exploration and improvement remain:
•	 Handling	Complex	Queries: The current approach encounters

challenges with highly complex queries involving multiple
nested subqueries or intricate logical conditions. Addressing

Citation: Arpan Shaileshbhai Korat (2024) AI-Augmented LangChain: Facilitating Natural Language SQL Queries for Non-Technical Users. Journal of Artificial
Intelligence & Cloud Computing. SRC/JAICC-353. DOI: doi.org/10.47363/JAICC/2024(3)335

J Arti Inte & Cloud Comp, 2024 Volume 3(3): 5-5

Copyright:	©2024 Arpan Shaileshbhai Korat. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

these limitations requires exploring more advanced language
understanding techniques and incorporating additional
contextual information. Enhancing the model’s capacity to
process and interpret such complex structures will be essential
for improving its overall performance.

•	 Incorporating	Domain	Knowledge:	Integrating domain-
specific knowledge into the language model could enhance
its understanding of domain-specific terminology and
conventions, potentially improving the accuracy of SQL
query generation in specialized domains.

•	 Explainable	and	Interpretable	Translations: While the
current approach generates SQL queries effectively, it does
not provide insights into the reasoning behind the translations.
Developing techniques for generating explanations or
visualizations of the translation process could significantly
improve transparency and interpretability. This enhancement
would allow users to understand how the system arrives
at specific SQL statements from natural language inputs,
fostering greater trust and usability.

•	 Interactive	Query	Refinement: Incorporating interactive
query refinement capabilities could allow users to provide
feedback and iteratively refine the generated SQL queries,
leading to a more intuitive and user- friendly experience.

•	 Handling	Ambiguity	and	Uncertainty: Natural language
queries often contain ambiguities or uncertainties. Exploring
techniques to handle such cases and generate multiple
candidate SQL queries, along with confidence scores or
probabilistic representations, could improve the robustness
and flexibility of the system.

•	 Scalability	and	Performance	Optimization: As the size and
complexity of databases and queries increase, optimizing the
performance and scalability of the translation process becomes
crucial. Investigating distributed computing techniques, query
optimization strategies, and efficient indexing methods could
enhance the system’s ability to handle large-scale workloads.

References
1. Dasgupta S, Ray S, Talukdar P (2022) LangChain: A frame-

work for building applications with LLM APIs. arXiv preprint
arXiv:2211.03786.

2. Raffel C, Shazeer N, Roberts A, Lee K, Narang S, et al. (2020)
Exploring the limits of transfer learning with a unified text-
to-text transformer. Journal of Machine Learning Research
21: 1-67.

3. Radford A, Wu J, Child R, Luan D, Amodei D, et al. (2019)
Language models are unsupervised multitask learners. Open
AI blog 1: 9.

4. Brown TB, Mann B, Ryder N, Subbiah M, Kaplan J, et al.
(2020) Language models are few-shot learners. Advances
in Neural Information Processing Systems 33: 1877-1901.

5. Chowdhery A, Narang S, Devlin J, Bosma M, Mishra G, et
al. (2022) PaLM: Scaling language modeling with pathways.
arXiv preprint arXiv:2204.02311.

6. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L,
et al. (2017) Attention is all you need. Advances in neural
information processing systems 30.

7. Devlin J, Chang MW, Lee K, Toutanova K (2019) BERT:
Pre-training of deep bidirectional transformers for language
understanding. Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational
Linguistics 4171-4186.

8. Liu Y, Ott M, Goyal N, Du J, Joshi M, Chen D, et al. (2019)
Roberta: A robustly optimized bert pretraining approach.
arXiv preprint arXiv:1907.11692.

9. Raffel C, Shazeer N, Roberts A, Lee K, Narang S, et al. (2020)
Exploring the limits of transfer learning with a unified text-
to-text transformer. Journal of Machine Learning Research
21: 1-67.

10. Zhong V, Xiong C, Socher R (2017) Seq2SQL: Generating
structured queries from natural language using reinforcement
learning. arXiv preprint arXiv:1709.00103.

11. Guo J, Zhan Z, Gao Y, Xiao Y, Lou JG, et al. (2019)
Towards complex text-to-sql in cross-domain database with
intermediate representation. Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics
4904-4913.

12. Wang C, Liang P, Manning CD (2020) Rat-sql: Relation-
aware schema encoding and linking for text-to-sql parsers.
Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics 7567-7578.

13. Hwang W, Yim J, Park S, Seo M (2019) A comprehensive
exploration on WikiSQL with table-aware word
contextualization. arXiv preprint arXiv:1902.01069.

14. Scholak T, Schubotz M, Crain S (2022) Language models
can ex- plain their behavior on language tasks. arXiv preprint
arXiv:2212.09783.

15. Wei J, Tay Y, Raffel C, Zoph B, Abbeel P, et al. (2022) Chain
of thought prompting elicits reasoning in large language
models. arXiv preprint arXiv:2201.11903.

16. Kojima T, Gu SS, Reid M, Gribovic Y, Neubig G (2022)
Large language models are zero-shot learners. arXiv preprint
arXiv:2207.04344.

17. Khashabi D, Khot T, Sabharwal A, Clark P, Etzioni O, et al.
(2017) Learning what to share between loosely related tasks.
Proceedings of the 2017 Conference of the North American
Chapter of the Association for Computational Linguistics
939-948.

18. Lake BM, Salakhutdinov R, Tenenbaum JB (2015) Human-
level concept learning through probabilistic program
induction. Science 350: 1332-1338.

19. Weston J, Bordes A, Chopra S, Rush AM, van Merrie¨nboer
B, et al. (2015) Towards ai-complete question answer- ing: A
set of prerequisite toy tasks. arXiv preprint arXiv:1502.05698.

20. Kaplan J, McCandlish S, Henighan T, Brown TB, Chess B,
et al. (2020) Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

