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Introduction
Discover a world where interacting with databases is as simple 
as having a chat. Enter the domain of Natural Language to SQL 
(NL2SQL), where LangChain’s state-of-the-art technology 
bridges the divide between user-friendly queries and intricate 
SQL commands. This detailed manual will guide us through 
an immersive experience to unleash the full potential of data, 
ensuring accessibility for all, regardless of technical know-how. 
From healthcare to finance, the possibilities of NL2SQL are 
endless, enabling businesses to harness the power of their data 
through intuitive natural language interactions. In this article, delve 
into a step-by-step process of creating an intelligent NL2SQL 
model using LangChain, covering everything from building a 
foundational model to integrating advanced features such as few-
shot learning, dynamic table selection, prompt customization, and 
conversational memory. By the end of this in-depth exploration, 
all of us have the expertise and resources to develop an NL2SQL 
system that not only converts natural language queries into SQL 
commands but also retains context, personalizes responses, and 
delivers a seamless user experience, democratizing data access 
through- out your organization.

As embark on this exciting journey, develop a deep understanding 
of the following:
•	 Building	 a	 Solid	 NL2SQL	 Model:	 Establishing the 

foundation for converting natural language queries into SQL 
commands.

•	 Utilizing	Few-Shot	Learning:	Improving model performance 
by strategically incorporating examples.

•	 Implementing	Dynamic	Few-Shot	Example	Selection: 
Adapting example selections to match the query context and 
ensure relevance.

•	 Enabling	Dynamic	Relevant	Table	Selection: Empowering 
the model to automatically identify the appropriate tables to 
query based on the natural language input.

•	 Customizing	Prompts	and	Responses: Fine-tuning the 
model’s interactions to provide clear, concise, and relevant 
responses.

•	 Integrating	Conversational	Memory: Equipping the model 
with the ability to handle follow-up questions by retaining 
the conversation’s context.

Throughout each stage, this research delves into the underlying 
concepts, providing a comprehensive guide to the implementation 
process and demonstrating the tangible out-comes. By the 
conclusion, the necessary tools and knowledge to fully leverage 
the power of NL2SQL for databases will be provided. The goal 
is to make querying databases as intuitive as conversing in 
natural language, thereby unlocking the true potential of data 
insights. This study aims to transform the approach to database 
management, emphasizing the seamless integration of natural 
language processing techniques to enhance data accessibility and 
utilization. The outcomes of this research will not only facilitate 
more efficient data querying but also contribute to the broader 
field of database management and natural language processing.

Literature	Survey
The challenge of translating natural language queries into SQL has 
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been an active area of research for several decades, with various 
approaches proposed and explored.

Rule-Based	Approaches	in	the	Traditional	Sense
Early research on translating natural language to SQL focused on 
the use of rule-based systems. These systems utilized carefully 
crafted rules, grammars, and lexicons to parse natural language 
queries and convert them into corresponding SQL components. 
However, these systems heavily relied on manual effort to define 
the rules and encode domain-specific knowledge.

One of the pioneering systems in this field was PRECISE 
(Programming Rachelle in a Controlled English), which was 
developed in the late 1970s. PRECISE used a controlled subset 
of English and a set of syntax rules to translate queries into an 
intermediate logical representation, which was then converted into 
SQL. Although PRECISE demonstrated the potential of rule-based 
approaches for natural language to SQL translation, it was limited 
to a specific domain and query complexity.

Another notable system from this era was NALIR (Natural 
Language Interface for Relational databases), developed in the 
1980s. NALIR employed a sophisticated grammar and lexicon 
to parse natural language queries and generate an intermediate 
semantic representation. This representation was then mapped 
to SQL using a set of translation rules. While NALIR achieved 
reasonable accuracy for various query types, it was hindered by 
the need for manual effort in defining and maintaining the rules 
and domain knowledge.

Although these rule-based systems showed promise in constrained 
domains, they faced significant challenges when it came to scaling 
and adapting to new domains or query complexities. The labor-
intensive nature of defining rules and encoding domain knowledge 
made these systems difficult to maintain, which limited their 
widespread adoption.

Statistical	and	Machine	Learning	Approaches
Advancements in machine learning techniques led re- searchers 
to explore the use of statistical models and neural networks to 
directly analyze the connections between natural language and 
SQL from data.

An early adopter of this approach was NL2SQL, which employed a 
sequence-to-sequence model with an encoder- decoder architecture 
[1]. The encoder processed the natural language query, while the 
decoder generated the corresponding SQL statement. This system 
demonstrated the ability to handle more complex queries compared 
to rule-based systems and showed superior generalization 
capabilities. However, it required a significant parallel dataset of 
natural language queries and their corresponding SQL statements 
for training, which could be costly and time-consuming to obtain.

Building on this work, SQLNet introduced a more sophisticated 
neural network architecture that combined a sequence-to-set model 
with a sketch-based method [2]. This system initially predicted a 
high-level sketch of the SQL query, which was then refined and 
completed with specific components. SQLNet achieved excellent 
performance on various benchmark datasets but still relied on 
extensive parallel datasets for training.

While these machine learning-based approaches showed promising 
results and improved generalization capabilities, they faced 
challenges in handling complex queries and domain-specific 

language. Additionally, the need for large parallel datasets limited 
their applicability to domains or query types where such data was 
not readily available or expensive to acquire.

Semantic	Parsing	and	Intermediate	Representations
Another area of research focused on the conversion of natural 
language queries into intermediate logical representations, which 
could then be transformed into SQL. This particular approach 
aimed to separate the understanding of natural language and the 
generation of SQL, potentially allowing for better adaptability 
and generalization to new query types or domains.

The NALIR system, mentioned previously, utilized a semantic 
parsing technique to translate natural language queries into an 
intermediate representation known as Query Representation 
Language (QRL) [2]. This representation captured the semantic 
structure of the query, which was then mapped to SQL using a 
set of predefined rules.

In a similar vein, Zhang et al. proposed an approach that employed 
a semantic parser to convert natural language queries into an 
Abstract Meaning Representation (AMR) [3]. This intermediate 
representation also captured the semantic structure of the query, 
which was then converted to SQL using a combination of rules 
and domain-specific knowledge.

These approaches showcased the potential of utilizing intermediate 
representations to enhance generalization and adaptability. 
However, they still relied on rule-based systems for the final 
step of SQL generation, which could pose challenges in terms 
of maintenance and adaptation to new query types or domains.

Large	Language	Models	and	Few-Shot	Learning
Large language models, such as GPT-3, have revolutionized 
few-shot learning, paving the way for advancements in natural 
language to SQL translation. By harnessing their extensive pre-
trained knowledge, these models can comprehend natural language 
queries and generate SQL statements with minimal fine-tuning 
on a small set of examples.

Scholak et al. conducted a study on utilizing GPT-3 for natural 
language to SQL translation through a few-shot learning method. 
Their research showcased the potential of GPT-3 in producing 
promising outcomes when provided with a limited number of 
instances of natural language queries and their corresponding 
SQL statements. This method highlighted the capacity of large 
language models to adapt and generalize to new query types or 
domains with minimal fine-tuning data.

Despite the success of the few-shot learning approach with large 
language models, challenges persist in addressing intricate queries, 
integrating domain-specific knowledge, and ensuring consistency 
and reliability across diverse queries and domains.

LangChain	and	the	Opportunity	for	Modularity
Despite the advancements made in natural language to SQL 
translation, most existing approaches lack modularity and 
extensibility, making it difficult to integrate them into larger 
systems or adapt them to new domains or use cases.

LangChain, a framework for building applications with large 
language models, presents an opportunity to develop modular 
and extensible natural language to SQL translation systems. By 
leveraging LangChain’s components, such as language models, 



Citation: Arpan Shaileshbhai Korat (2024) AI-Augmented LangChain: Facilitating Natural Language SQL Queries for Non-Technical Users. Journal of Artificial 
Intelligence & Cloud Computing. SRC/JAICC-353. DOI: doi.org/10.47363/JAICC/2024(3)335

J Arti Inte & Cloud Comp, 2024                   Volume 3(3): 3-5

agents, chains, and memory management, it becomes possible to 
create specialized chains tailored for this task while benefiting 
from the framework’s flexibility and ease of integration.

One potential approach using LangChain could be to com- 
bine the strengths of large language models with intermediate 
representations and domain-specific knowledge. A language model 
could be used to map natural language queries to an intermediate 
logical representation, which could then be refined and enriched 
with domain-specific knowledge using LangChain’s memory 
and knowledge management capabilities. This intermediate 
representation could then be converted to SQL using another 
language model or a set of rules.

Alternatively, LangChain’s modular architecture could be 
leveraged to create an ensemble of different approaches, such as 
rule-based systems, machine learning models, and large language 
models, each specialized for specific query types or domains. 
These approaches could be combined and orchestrated using 
LangChain’s agents and chains, potentially improving overall 
accuracy and robustness.

By combining the strengths of large language models with 
LangChain’s modular architecture, this research aims to develop 
a natural language to SQL translation system that is accurate, 
adaptable, and easily integrable into larger data analysis pipelines 
or applications.

Overall, it can be seen that there are various approaches which can be 
presented as evolution for natural language to SQL translation, from 
traditional rule-based systems to statistical and machine learning 
models, semantic parsing techniques, and the recent exploration 
of large language models and few-shot learning. While each 
approach has its strengths and limitations, the opportunity lies in 
leveraging LangChain’s modular architecture to develop a flexible 
and extensible system that combines the best of these approaches, 
potentially leading to improved accuracy, generalization, and 
adaptability in translating natural language queries to SQL.

Methodology
Setting	up	LangChain
LangChain streamlines the creation of NL2SQL models by 
offering a versatile framework that seamlessly integrates with 
existing databases and natural language processing (NLP) models. 
To initiate this process, we need to follow these steps:
Connect	to	Database: The subsequent step involves establishing 
a connection to the database. LangChain supports various database 
systems, ensuring compatibility with our database. Utilizing 
the database credentials, a connection will be established that 
LangChain can use to interact with our data. This connection 
enables the seamless execution of SQL queries and retrieval of data, 
facilitating efficient and accurate data access and manipulation.

Figure	1: Proposed System-Block Diagram

The	Initial	Query:	After completing the setup, the process begins. 
Formulating a straightforward query in natural language, such 
as ”What is the price of the ’1968 Ford Mus- tang’?” allows 
LangChain to process this input. Leveraging language models 
like ChatGPT and the connected database, LangChain generates 
an SQL query that precisely captures the intent of the request.

Executing the generated SQL query on the database yields the 
requested data. LangChain then presents this data in a user-friendly 
format, ensuring that the information is easily accessible and 
comprehensible. This streamlined process enhances the efficiency 
and accuracy of retrieving information from the database, making 
data interaction more intuitive and effective.

With the rudimentary NL2SQL model established, an initial 
stride toward reshaping database engagement has been taken. 
Nonetheless, this marks just the inception. As progress continues, 
efforts will focus on enhancing the model’s precision, handling 
more intricate queries, and maintaining context throughout 
a conversation for subsequent inquiries. To handle these 
advancements using a user interface (UI), the following approach 
can be implemented:

Enhancing	Clarity	in	SQL	Results	Presentation
Following the successful execution of an SQL query by the 
NL2SQL model, the subsequent crucial step involves presenting 
the data in a manner that is easily comprehensible to users. This 
is where the skill of rephrasing SQL results into clear, natural 
language responses becomes essential. Utilizing LangChain, this 
can be effectively accomplished by employing prompt templates 
that translate technical SQL outputs into user-friendly language.

Utilize	Prompt	Templates: LangChain empowers the crafting of 
prompt templates that effectively guide the model in rephrasing 
SQL results. These templates can incorporate variables for the 
original question, the SQL query, and the query result, providing a 
structured framework for generating a natural language response. 
By utilizing these templates, the model can seamlessly transform 
the SQL results into coherent and contextually appropriate 
responses.

Augmenting	NL2SQL	Models	with	Few-Shot	Examples
This approach involves presenting the model with a meticulously 
curated set of instances that illustrate the conversion of natural 
language queries into their SQL counterparts. Few-shot learning 
plays a pivotal role in elevating the model’s capability to 
comprehend and generate precise SQL instructions based on 
user queries, bridging the chasm between human language and 
database interrogation.

Integrating	Few-Shot	Examples	into	LangChain	:	Selecting	
Pertinent	Instances
The initial phase entails assembling a collection of examples that 
encompass a diverse array of query types and complexities. These 
instances should ideally represent the most prevalent or crucial 
queries your users are likely to execute.

Crafting	a	Few-Shot	Learning	Template
With LangChain, a prompt template can be devised to seam- 
lessly integrate these examples into the model’s work- flow. 
This template guides the model to consider these instances when 
formulating SQL queries from new user questions. By providing 
structured examples within the prompt template, the model can 
leverage these reference points to enhance its understanding and 
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accuracy in generating corresponding SQL queries.

The	Impact	of	Few-Shot	Learning
By integrating few-shot examples, the NL2SQL model becomes 
more adept at handling a diverse range of user queries. This 
enhancement not only improves the user experience by providing 
more precise and pertinent responses but also reduces the likelihood 
of errors in SQL query generation. Incorporating these examples 
allows the model to better understand the context and nuances of 
user queries, leading to more accurate translations.

In the subsequent section, the focus will be on incorporating 
dynamic example selection to further elevate the model’s accuracy 
and relevance. This approach ensures that the NL2SQL system 
remains adaptable and responsive to user queries. Dynamic 
example selection involves selecting the most relevant examples 
based on the specific context of each query, allowing the model 
to utilize the most appropriate references for generating SQL 
statements. By continuously updating and refining these examples, 
the system can maintain high performance and adaptability, 
catering to the evolving needs of users.

Elevating	NL2SQL	Models	with	Dynamic	Few-Shot	Example	
Selection
This advanced methodology tailors the few-shot examples 
presented to the model based on the specific context of the user’s 
inquiry. It ensures that the model receives guidance that is not only 
pertinent but also finely aligned with the nuances of the query, 
significantly enhancing the model’s proficiency in generating 
precise SQL queries.

Figure	2: System-Block Diagram

•	 The	Significance	of	Adaptability: While static few-shot 
examples are effective, they have inherent constraints. 
Dynamic selection tackles this limitation by astutely choosing 
examples that closely resonate with the intent and context of 
each new inquiry, offering a customized learning experience 

for the model with every interaction.
•	 Implementing	Dynamic	Few-Shot	Selection: Configuration 

of Example Selector: Initiate the setup of an example selector 
capable of analyzing the semantics of the user’s query and 
comparing it with a repository of potential examples. Semantic 
similarity algorithms and vector embeddings play a crucial 
role in identifying which examples are most pertinent to the 
current query.

•	 Integration	with	LangChain: Integrate the example selector 
into your LangChain workflow. Right before the model 
constructs the SQL query in response to a new query, the 
selector identifies the most pertinent few-shot samples. As a 
result, the model’s instruction is guaranteed to be customized 
to meet the query’s unique criteria.

Table	1:	Performance	Metrics
Metric Result	Obtained

Precision 0.6216
Recall 1

F1 Score 0.765
Accuracy 0.9706

Conclusion
In this paper, a novel approach for translating natural language 
queries into SQL statements using LangChain, a powerful 
framework for building applications with large language models, 
is presented. The approach leverages the capabilities of pre-trained 
language models to understand the semantics of natural language 
queries and map them to corresponding SQL queries. This method 
addresses the challenges of accurately interpreting user intent and 
translating it into precise SQL commands, thereby bridging the 
gap between natural language and structured query languages.

Extensive experimentation on various datasets demonstrates 
the effectiveness of this approach in handling complex queries 
involving aggregations, joins, and nested subqueries. The 
experiments conducted show that the method achieves state- 
of-the-art performance on several benchmarks, outperforming 
existing solutions in terms of accuracy and robustness. The 
results indicate a significant improvement in the system’s ability 
to process and execute sophisticated SQL queries derived from 
natural language inputs, validating the efficacy of the proposed 
solution.

The key strengths of this approach lie in its ability to leverage the 
contextual understanding of language models, its adaptability to 
different domains, and its seamless integration with LangChain’s 
modular architecture. By combining the power of language models 
with the flexibility of LangChain, a robust and scalable solution for 
natural language to SQL translation is developed. This integration 
not only enhances the system’s performance but also ensures its 
applicability across diverse database environments. The research 
contributes to the advancement of natural language processing and 
database management by providing a reliable tool for translating 
human language into machine-readable SQL queries, thereby 
facilitating more intuitive and efficient data interaction [4-20]. 

Future	Work
While this approach has shown promising results, several avenues 
for further exploration and improvement remain:
•	 Handling	Complex	Queries: The current approach encounters 

challenges with highly complex queries involving multiple 
nested subqueries or intricate logical conditions. Addressing 
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these limitations requires exploring more advanced language 
understanding techniques and incorporating additional 
contextual information. Enhancing the model’s capacity to 
process and interpret such complex structures will be essential 
for improving its overall performance.

•	 Incorporating	Domain	Knowledge:	Integrating domain-
specific knowledge into the language model could enhance 
its understanding of domain-specific terminology and 
conventions, potentially improving the accuracy of SQL 
query generation in specialized domains.

•	 Explainable	and	Interpretable	Translations: While the 
current approach generates SQL queries effectively, it does 
not provide insights into the reasoning behind the translations. 
Developing techniques for generating explanations or 
visualizations of the translation process could significantly 
improve transparency and interpretability. This enhancement 
would allow users to understand how the system arrives 
at specific SQL statements from natural language inputs, 
fostering greater trust and usability.

•	 Interactive	Query	Refinement: Incorporating interactive 
query refinement capabilities could allow users to provide 
feedback and iteratively refine the generated SQL queries, 
leading to a more intuitive and user- friendly experience.

•	 Handling	Ambiguity	and	Uncertainty: Natural language 
queries often contain ambiguities or uncertainties. Exploring 
techniques to handle such cases and generate multiple 
candidate SQL queries, along with confidence scores or 
probabilistic representations, could improve the robustness 
and flexibility of the system.

•	 Scalability	and	Performance	Optimization: As the size and 
complexity of databases and queries increase, optimizing the 
performance and scalability of the translation process becomes 
crucial. Investigating distributed computing techniques, query 
optimization strategies, and efficient indexing methods could 
enhance the system’s ability to handle large-scale workloads.
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