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Definition: If the solution sets of two equations (groups) have 
the same algebraic operation structure based on the equations 
(groups), the two equations (groups) are called isomorphic 
equations (groups), and their solution sets are equivalent.
 
Proof 1 of Fermat’s Last Theorem
Fermat’s last theorem
Given x, y, z ∈R+, n∈N, when n≥3, the equation xn+yn=zn has no 
rational solution.

Proofing
From the equation, it can be obtained 
(x/z) n+(y/z) n=l	         (1)
Let a=x/z, b=y/z, then Equation (1) is transformed into
an+bn=l	                       (2)

When n≥3, suppose the equation xn+yn=zn has rational solutions, 
then Equation (2) must also have rational solutions {a, b}, and 
any equation that is isomorphic to ( )″ + ( )″= I must also have 
rational solutions. Otherwise, it conflicts with the supposition that 
Equation (2) has rational solutions. Let ab=M, it is easy to know 
that when a and bare both rational numbers, M must be a rational 
number. Solve Equation (2), and it can be obtained

                                    ( without loss of generality, always let a>b)

If(1–4Mn)=0, then                  which is impossible when n≥3. 
Therefore (1–4Mn)>0, and(1–4M”) must be the square of a rational 
number. Otherwise, a and b are always irrational numbers, which 
also conflict with the supposition. Then let		    (3)
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ABSTRACT
Fermat’s last theorem was proposed by the 17th-century French mathematician Pierre de Fermat. He asserted that when the integer n > 2, there was no 
positive integer solution for the xn + yn = zn equation.

However, Fermat did not write down his proof, while his other conjectures contributed greatly to mathematics. Therefore, it inspired many mathematicians’ 
interests in this conjecture. Their	 corresponding work enriched number theory and promoted its development.

In 1995, Wiles proved that the theorem was valid when n > 2. However, his process of proof is tediously long. It is said that only a few world-class masters 
can understand it, which is confusing.

A Perfect cuboid, also known as a perfect box, refers to a cuboid whose edge lengths, diagonals of faces, and body diagonals are all integers. The mathematician 
Euler once speculated that a perfect rectangle might not exist. No one in the mathematical world has allegedly found a perfect cuboid. Meanwhile, no one 
has been able to prove that it does not exist.

Whats a Hellen triangle? A Helen triangle is a triangle whose sides and areas are rational numbers.

For thousands of years, triangles and their geometric properties have been studied intensively and thoroughly. With the understanding of Hellen triangles, 
people have found Hellen triangles with three integer heights and with three integer angle bisectors. However, Hellen triangles with three integer midlines 
have yet to be found.
	
After several years of research, the author discovered that the above three problems had commonalities and could be demonstrated using the same 
method. The same algebraic structure is the key to solving these three problems, such as the equations y=x3+ax2+bx+c and y=(x+3)3+a(x+3)2+b(x+3)+c 
are algebraically isomorphic. These two equations represent the same curve and are essentially indistinguishable. The above three problems can be solved 
with this property easily and concisely.
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(Any positive rational number can be written as then-th power of 
a positive number). From Equation (3), it can be obtained
                           must be the square of a rational number. Otherwise, 
a and b are always irrational numbers, which also conflict with 
the supposition. Then let	                    (3)
(Any positive rational number can be written as then-th power of 
a positive number). From Equation (3), it can be obtained

                                                                            (4)

Since Equation (4) is isomorphic to ( )n+( )n = 1, there must be 
rational number sets

                                                                              (5)

to make Equation (4) have rational solutions when n≥3. However, 
when n≥3, and a and bare both rational numbers, the (c2) of 
Equation (4) traverses all rational number sets {aQ+}, then there 
always exists            not belonging to {bQ+}, which means that 
Equation (4) does not have rational solution sets isomorphic to 
Equation (2). It conflicts with the supposition that Equation (2) 
has rational solutions.

Therefore, when n≥3, the equation xn+yn=zn has no rational 
solution.
QED.

Proof 2 of Fermat’s Last Theorem
Fermat’s last theorem
Given x, y,z∈R+, n∈N, when n≥3, the equation xn+yn=z” has no 
rational solution.

Proofing
From the equation, it can be obtained
                                                                         

(1) 
Let a=x/z, b=y/z, then Equation (1) is transformed into

                                                                          (2)

When n≥3, suppose the equation xn+yn=zn hasrational solutions, 
then Equation (2) must also have rational solutions {a, b}, and any 
equation that is isomorphic to ( )n+( )n = 1 must also have rational 
solutions. Otherwise, it conflicts with the supposition that Equation 
(2) has rational solutions. Let ab=M, it is easy to know that when 
a and bare both rational numbers, M must be a rational number. 
Square the two sides of Equation (2), and it can be obtained

                                                                            (3)

Extract roots of the two sides of Equation (3) simultaneously, and 
it can be obtained:

 
                                                                          (4)

                                                                                     (5) 

If(1-22an bn) = 0, then                      , which is impossible when 
n≥3. 

Therefore                      and                must be the square 
of a rational number. Otherwise, a and b are always irrational 
numbers, which also conflict with the supposition. Then let 
                      (6) 

(Any positive rational number can be written as then-th power of 
a positive number). From Equation (6), it can be obtained

                                                                           (7)
Since Equation (7) is isomorphic to ( )”+( )”=I, there must be 
rational number sets

                                                                            (8) 
to make Equation (7) have rational solutions when n≥3. However, 
when n≥3, and a and b are both rational numbers, the (c2) of 
Equation (7) traverses all rational number sets {aQ+}, then there 
always exists            not belonging to {bQ+}, which means that 
Equation (7) does not have rational solution sets isomorphic to 
Equation (2). It conflicts with the supposition that Equation (2) 
has rational solutions.

Therefore, when n≥3, the equation xn+yn=zn has no rational 
solution. 
QED.

Proof 3 of Fermat’s Last Theorem
Fermat’s last theorem: Given x, y, z ∈R+, n∈N, when n≥3, the 
equation xn+yn=zn has no rational solution.

Proofing
From the equation, it can be obtained

                                                                         (1)
Let a=x/z, b=y/z, then Equation (1) is transformed into
                                                                          (2)   

When n≥3, suppose the equation xn+yn=zn has rational solutions, 
then Equation (2) must also have rational solutions {a, b}, and 
any equation that is isomorphic to ( )n+( )n= 1 must also have 
rational solutions. Otherwise, it conflicts with the supposition 
that Equation (2) has rational solutions.

Suppose the following Equation Group ① is tenable.
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                                                                     (3)

                                                                     (4)

(Any positive rational number can be written as the n-th power 
of a positive number)
 
From Equation Group ①, it can be obtained
 
                                                                      (5)
                                                                      (6) 

Multiply equations (5) and (6), it can be obtained

That is,

                                                                        (7)

Since Equation (7) is isomorphic to, there must be rational number 
sets

                                                                                       (8)

to make Equation (7) have rational solutions when n≥3. However, 
when n≥3, and a and bare both rational numbers, the (c2) of 
Equation (7) traverses all rational number sets {aQ+ }, then there 
always exists ( ab) not belonging to {bQ+}, which means that 
Equation (7) does not have rational solution sets isomorphic to 
Equation (2). It conflicts with the supposition that Equation (2) 
has rational solutions.

Therefore, when n≥3, the equation xn+yn=zn has no rational 
solution. 
QED.

There is no Perfect cuboid
Euler great theorem
Given that Equation Group ① is tenable, where a,b,c,d,l1,l2,l3 ∈ 
R+, When l1,l2 and l3 are all rational numbers, Equation (4) has 
no rational solution.

                                                                         (1)
                                                                         (2)
       
                                                                         (3)

                                                                         (4)

Proofing
Suppose that Equation (4) has rational solutions when l1,l2 and 
l3 are all rational numbers. From Equation Group CD, it can be 
obtained

                                                                          (5)  

Multiply the two sides of Equation (5) by (abc)2, it can be obtained

                                                                                          (6)

Multiply the two sides of Equation (4) by (l1, l2, l3)
2, it can be 

obtained
 
                                                                                          (7)   
Since Equation (4) has rational solutions when l1, l2 and l3 are all 
rational numbers, Equation (7) must also have rational solutions. 
Then any equation that is isomorphic to ( )2+( )2+( )2=( )2 must also 
have rational solutions. Otherwise, it conflicts with the supposition 
that Equation (7) has rational solutions.

Because Equation (6) is isomorphic to Equation (7), there must 
exist rational solution sets

However, the                                           of Equation (6) traverse 

all rational number sets                                                       then 

there always exists                       not belonging which means 
that Equation (6) does not have rational solutions isomorphic to 
Equation (7). It conflicts with the supposition that Equation (7) 
has rational solutions.

Therefore, Equation (4) has no rational solutions when l1, l2 and 
l3 are all rational numbers.

It can be deduced from above that there is no Perfect cuboid.

There is no such thing as a Hellen triangle with all three 
midlines being integers Hellen Great Theorem
Given that Equation Group ① is tenable, where a, b, e, ma, mb, 
mc, S∈R+.

When ma, mb and mc, are rational numbers simultaneously, 
Equation (4) has no rational solution.

Proofing
Suppose that Equation (4) has rational solutions when ma, m6 
and m, are rational numbers simultaneously. It can be obtained 
from Equation Group ①:

                                                                                      (1)
                               
                                                                                      (2)

                                                                                       (3)
                                      
                                                                                       (4)
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                                                                                (5) 
Multiply the two sides of Equation (4) by S2m4

a/m
4

b/m
4

c/, then it 
can be obtained

                                                                                                 (6)

Multiply the two sides of Equation (5) by S2a4b4c4, then it can 
be obtained:
                                                                                             

(7)

Because Equation (4) has rational solutions when ma, mb and mc, 
are rational numbers simultaneously, there must exist rational 
solution sets

to make Equation (6) have rational solutions. Then any equation 
that is isomorphic to ( )4 +( )2=( )2 must also have rational solutions. 
Otherwise, it conflicts with the supposition that Equation (6) has 
rational solutions. Since Equation (7) is isomorphic to ( )4+( )2=( )2, 
there must exist rational solution sets

to make Equation (7) have rational solutions. However, the

                                                                   of Equation (7) traverse 

all rational number sets

then there always exists                    not belonging to{ (2Smambmc, Q+}, 
which means that Equation (7) does not have rational solution sets 
isomorphic to Equation (6). It conflicts with the supposition that 
Equation (6) has rational solutions.

Therefore, Equation(4) has no rational solutions when ma ,mb and 
mc, are rational numbers simultaneously.

As can be seen from the above, there is no Hellen triangle with 
all three midlines being integers.
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