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Introduction
A primary or main goal in the sequence of development process 
for armour material is to reduce weight of the armour while 
concurrently enhancing its ballistic impact resistance [1-2]. The 
material that is chosen for the armour should offer a healthy 
combination of improved hardness, good stiffness, lightweight 
while concurrently being affordable in price. Composite materials 
are often chosen as an attractive and potentially viable material for 
both bulletproof vests and armour vehicles. In essence, composites 
are a class of materials that offer a combination of have attractive 
qualities to include: 
(i) Stiffness, 
(ii)	 High	specific	strength	[σ/ρ]	
(iii) Low weight [3]. 

Due on account of their special qualities, these materials, i.e., 
composite materials, have been chosen for use in a spectrum of 
engineering applications to include the following [4-8]: 
(i) Biomedical
(ii) Sports
(iii) Naval and Even 
(iv) Aeronautical  
Despite possessing exceptional mechanical properties, such as 
(i)	 High	specific	strength	[σ/ρ]	
(ii)	 High	specific	stiffness	[[E/ρ]	
(iii) Good Corrosion Resistance

the composite materials are often not widely chosen for use 
in critical engineering applications primarly because of their 
vulnerability to damage from an impact that can arise from out-
of-plane loading. When compared with the conventional metallic 
materials like steel, the composite materials have a noticeably 
inferior resistance to impact loading or dynamic loading, which 
results in their susceptibility to damage. Further, the composite 
materials lack the superior energy-absorbing capability, i.e., 
toughness, of the metallic materials. This also includes their 
response to plastic deformation. Also, the composite materials 
are particularly vulnerable to impact loading for both high-velocity 
impact loading and low-velocity impact loading primarily because 
of their brittle nature. During the last few years, several techniques 
have been tried with the prime intent of improving or enhancing 
characteristics of the chosen composite material. Several 
techniques have been tried with the prime intent of enhancing the 
impact properties of composite materials, to include the following:
(i)	 The	use	of	toughened	fibre	and/or	matrix	
(ii)	 Nanofillers	
(iii) Fabric Thickness Stitching. 

The most promising approach appears to be “Hybrid” composite 
[9,10]. A single matrix phase containing two or more distinct 
fibers	is	known	or	referred	to	as	the	“hybrid”	composite.	These	
composites have been successfully used to reduce costs while 
concurrently improving overall quality. Typically, a hybrid 
composite is made up of the following: 
(i)	 High-cost	or	high-modulus	fibres,	such	as	boron	or	carbon	

fibre
(ii)	 Low-cost	or	low-modulus	fibres,	such	as	glass	fibre.	
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While	a	lower	modulus	fibre	is	more	cost-effective	and	damage-
tolerant,	a	higher	modulus	fibre	does	offer	the	advantages	of	
stiffness and adequate load-bearing capability. Thus, use of the 
“hybrid” composites instead of metals and even the traditional 
engineered composites, does result in reduced cost while 
concurrently achieving increased stiffness, enhanced strength, 
and improved mechanical qualities [11]. The most common 
“hybrid composite” is the Shape Memory Alloy Hybrid Composite 
[SMAHC].

Shape Memory Alloys (SMAs) can “remember” their initial shape 
when it is subjected to an external stimulus, such as 
(i) Thermomechanical Changes
(ii) Magnetic Changes [12-17]. 
A few common examples of the Shape Memory Alloy (SMA) are: 
(i) Nitinol [Ni-Ti]
(ii) Cu-Zn-Al alloy
(iii) Fe-Mn-Si alloy
(iv) Cu-Al-Ni alloy. 
The shape memory alloys (SMAs) have a high endurance in the 
plastic deformation regime while being incredibly ductile. The 
internal phase transition processes of the PE-SMA, caused by 
thermomechanical loading, are thought to be responsible for this 
unique characteristic [18,19]. Consequently, the shape memory 
alloy (SMA) embedded composite, also known as the SMA hybrid 
composite,	is	a	good	fit	for	several	applications,	such	as
(i) Automobile Bumpers
(ii) Helmets
(iii) Bird Strikes on Wings
(iv) Protection of Ballistic Armour Protection
Where resistance to both penetration and damage during ballistic 
impact is both crucial and essential [20,21]. A pseudo-elastic 
shape memory alloy [PE-SMA] does exhibit recoverable strains 
of 6%–8% coupled with a high strain to failure. A stress-induced 
phase shift that occurs upon loading of the shape memory alloy 
does give it high-strain capability. A plateau region is created in 
the stress versus strain curve when the pseudo-elastic SMA is 
stretched, transitioning from an austenite phase to the martensite 
phase. It is the phase transformation process that allows the Shape 
Memory	Alloy	(SMA)	to	absorb	significantly	more	energy	than	
the traditional alloy counterpart. To strengthen and concurrently 
increase the resistance to impact damage of the chosen composite 
materials, researchers have made every effort to investigate the 
use of SMA material in conjunction with composites [22]. The 
shape memory alloy (SMA) wires embedded in composite is 
shown in Figure 1.

Figure 1: Typical SMA wire embedded in a composite material 
[23].

Ballistic Performance of Shape Memory Alloy Hybrid 
Composites [SMAHCs]
A	Low-Velocity	Impact	(LVI)	below	11	m/s,	a	High-Velocity	
Impact	(HVI)	below	500	m/s,	a	ballistic	impact	below	2000	m/s,	
and	hypervelocity	impact	beyond	2000	m/s	are	the	four	distinct	
types	of	impacts	that	can	be	classified	based	on	velocity	attained	
by the impactor as is shown in Figure 2 [24,25].

Figure 2: The Types of Ballistic Impact on a Composite Material 
[24].

Low Velocity Ballistic Impact on Shape Memory Alloy Hybrid 
Composite [SMAHC]
Lidan Xu et al found from their independent study that the Shape 
Memory Alloy Hybrid Composite [SMAHC] has a substantially 
higher	 impact	 resistance	 than	 the	 Glass-Fiber	 (GF)/epoxy	
composite	material	[26].	They	also	found	that	under	the	influence	
of a low-velocity impact failure of the SMAHC was noticeably 
greater	than	that	of	the	Glass	Fibre	(GF)/epoxy	composite	due	
on account of the excellent energy absorption capacity of the 
Shape Memory Alloy (SMA). The low-velocity impact response 
of a composite plate to include SMA wires was examined [27]. 
Results of their independent study demonstrated that the SMA 
wires, primarily at energies below 10 J, can increase the damage 
tolerance	capability	of	the	glass	fiber-reinforced	laminates.	Low-
velocity	impact	properties	of	the	carbon	fibre-reinforced	polymer	
(butylene terephthalate) and the Shape Memory Alloy (SMA) 
wires produced by resin transfer moulding were studied by 
Aurrekoetxea et al. [28]. They discovered that due on account of a 
higher	maximum	permissible	load,	the	SMA	does	have	a	beneficial	
impact on the maximum absorbed energy. The low-velocity impact 
response of a doubly curved, symmetric cross-ply laminated 
panel containing embedded SMA wires was investigated [29]. An 
examination of their model provided results that demonstrated the 
benefits	of	using	Shape	Memory	Alloy	(SMA)	wires	in	composite	
panels especially when there is a transverse low-velocity impact. 
Meo et al studied using both numerical method and experimental 
method to examine the response of a smart hybrid thermoplastic 
composite plate to a low-velocity impact [30]. In comparison to 
the traditional composite constructions, an observable increase 
in the damage resistance and ductility of the composite structure 
was noted upon the embedding of Shape Memory Alloy (SMA) 
wires. The impact of biaxial loading on the low-velocity impact 
performance	of	a	E-glass/epoxy-laminated	composite	plates	was	
investigated both experimentally and numerically by Kursun et 
al. [31]. The variation of force with time, variation of energy 
with time, and even failure of the composite laminate obtained 
from	finite	element	stress	analysis	did	reveal	a	good	correlation	
with the experimental test results. Rim et al performed a series 
of low-velocity ballistic experiments by varying the positions 
of the Shape Memory Alloy (SMA) through the thickness [32]. 
It was found that the impact resistance of the SMAHC revealed 
significant	improvement.	Ling	et	al	showed	that	the	SMAHC	did	
have lesser delamination energy when compared one-on-one with 
their regular counterpart [33]. A similar study was conducted to 
evaluate the damage behaviour and residual strength of the glass-
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fiber	reinforced	plastic	(GFRP)	laminates	with	embedded	shape	
memory alloy (SMA) wires [SMA-GFRP] by Kang et al. under 
conditions	of	low-velocity	impact	and	fixed	temperature	condition	
[34-35]. They discovered the primary cause of impact damage 
to the SMA-GFRP laminate was delamination of the reinforcing 
fibers,	with	the	major	axis	aligned	well	with	the	orientation	of	
the	reinforcing	fibers.	Gou-Cai	Yu	et	al.	investigated	the	impact	
behaviour	of	carbon	fibre	aluminium	laminates	(CARALL)	at	
low velocities [36]. Primary goal of their independent study was 
to	determine	and/or	to	establish	if	the	carbon	fibre	could	be	used	
as a reinforcement and characteristics of the chosen aluminium 
alloy	did	affect	or	influence	the	low-velocity	impact	response	of	
the Carbon Fiber Aluminum Laminate (CARALL). 

Besides numerical investigations, the dynamic behaviour of Shape 
Memory Alloy (SMA) – Fibre-Reinforced Plastic (FRP) laminate 
under	the	influence	of	low-velocity	impact	was	also	investigated	by	
both theoretical analysis and modelling [37-42]. The experiments 
clearly demonstrated that the Shape Memory Alloy (SMA) wires 
can increase both the damage resistance and impact resistance of 
the Fiber-Reinforced Plastics (FRPs) while concurrently making 
them tenacious. Low-velocity impact on a SMAHC in comparison 
to a traditional composite counterpart is summarized in Figure 3. 

Figure 3: The advantages of shape memory alloy hybrid 
composites (SMAHCs) for the study of low velocity impact.

High Velocity Ballistic Impact on Shape Memory Alloy Hybrid 
Composite [SMAHC]
Several researchers have successfully conducted a study on 
high-velocity ballistic impacts on the Shape Memory Alloy 
Hybrid Composites (SMAHCs). At ballistic speeds, the contact 
period	between	the	projectile	and	the	composite	is	significantly	
reduced, resulting in essentially a localized response from the 
impact loading rather than global deformation. When struck at 
low velocity, it was discovered that size of the damage decreased 
as length of the beam grew. On the other hand, at a higher speed, 
the damage-induced did not depend on length of the beam [43]. 
At greater velocities, an extra damaging mechanism known as the 
“shear plug” is present primarily because the high-velocity impact 
energy is distributed across a much smaller space. The material 
surrounding the perimeter of the projectile is sheared and forced 
forward due on account of the high pressure that is produced at 
the point of impact, resulting in the creation of a hole or “plug” 
that is slightly larger than diameter of the projectile and does tend 
to grow larger as it penetrates into the chosen composite material. 
Until such time the impact energy of the projectile is reduced to 
a	point	where	the	fibres	do	begin	to	offer	some	shear	resistance,	

this procedure is repeated for the subsequent plies [44]. Ahmadi 
et al. investigated the resistance to high-velocity impact of the 
glass	fiber-reinforced	laminates	having	various	thickness	ratios	
[i.e.,	 thickness	of	the	glass/epoxy	ply	to	the	thickness	of	the	
aluminium sheet) [45]. Verma et al found from their independent 
study	that	the	ballistic	limit	of	PE-SMA	graphite-fiber	reinforced	
plastics GFRPs) (maximum 72.72%) is much higher than that of 
the homogeneous counterpart [46]. They also showed that the 
PE-SMA did experience maximum strain and thereby getting 
damaged at the point of impact. This is shown in Figure 3. 

Figure 4: Micrographs Showing: 
(a) Pull-Out of Shape Memory Alloy (SMA)
(b) Evidence of Different Damage [46].

Eslami et al studied the insertion of a shape memory alloy (SMA) 
wire into a composite does cause the elasticity modulus to increase 
and the compressive stress to be released or decrease, both of which 
tend to improve overall mechanical properties of the resultant 
composite material [47,48]. A few impact experiments with high 
ballistic velocities have been carried out to both determine and 
understand the post-impact structural strength of the chosen and 
studied composite material [49]. It was discovered that for a 
certain type of impactor the severity of damage increases with an 
increase in impact energy up to the penetration velocity, which is 
often referred to as the ballistic limit, when the projectile barely 
perforates the intended target [50,51]. The post-impact structural 
strength of the resultant composite material reduces in proportion to 
the	degree	and/or	severity	of	the	damage.	Nevertheless,	the	degree	
of damage does reduce when the level of impact energy does rise 
above the penetration velocity. There is adequate documentation in 
the published literature on high-velocity impact dynamic studies 
on Shape Memory Alloy Hybrid Composites {SMAHCs}.

Conclusions
Shape	memory	alloy	hybrid	composites	find	themselves	useful	
for	a	spectrum	of	applications	in	the	defence	field,	particularly	
in the domain of impact dynamics. In this paper, low-velocity 
impact dynamics and high-velocity impact dynamics of Shape 
Memory Alloy Hybrid Composite (SMAHC) is presented and 
the following conclusions are drawn:

1)		Despite	their	excellent	strength-to-weight	[σ	/ρ]	ratio,	high	
specific	strength	[σ	/ρ],	high	specific	stiffness	(E	/ρ),	and	good	
corrosion resistance, composite materials are not widely chosen for 
use in critical engineering applications primarily because of their 
vulnerability to damage arising from an impact that resembles out-
of-plane loading, an overall inferior resistance to impact loading, 
coupled with lower energy-absorbing capability.
2)   The pseudoelastic shape memory alloy does exhibit a 
recoverable strain of 6 % –8 % coupled with a high strain to 
failure. The stress-induced phase shift that occurs upon loading 
does give the shape memory alloy (SMA) its high-strain capability. 
A plateau region is created in the stress versus strain curve when 
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the pseudoelastic Shape Memory Alloy (SMA) is stretched, 
transitioning from an austenite phase to the martensite phase. 
This phase transformation process is what allows the SMA 
to	absorb	significantly	more	energy	than	the	other	competing	
materials. To strengthen and increase the impact damage resistance 
of a composite material, researchers have made an attempt to 
investigate the use of a shape memory alloy (SMA) material in 
conjunction with the desired composite material.
3)   In comparison to the traditional composite materials, the 
SMAHCs possess the following: 
(i) Higher ballistic impact resistance
(ii) Increased damage tolerance
(iii) Good ductility
(iv) Less delamination energy
(v) Excellent energy absorption capability. 
These qualities make them a better substitute to the traditional 
composite counterpart. 
4)   Insertion of a shape memory alloy (SMA) wire into the 
chosen composite Material does cause the elasticity modulus 
to increase and the compressive stress to be gradually released, 
both of which contribute to improving the mechanical properties 
of the composite. 
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