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Introduction
Until the turn of the 19th century, fluid dynamics was an enigma to 
researchers. However, from the 1820s to the 1840s, Claude-Louis 
Navier and George Stokes independently worked on developing 
equations that could describe fluid flow at a molecular level. Their 
research bore a set of partial differential equations that describe 
fluid dynamics. These equations were named the Navier-Stokes 
equations (abbreviated as NS equations) [1]. From designing 
planes that generate the most lift to informing meteorologists 
about predicting the weather, the Navier-Stokes equations are 
essential to everyday life. Unfortunately, the NS equations are 
2nd order partial differential equations. This quality makes them 
incredibly complex to solve. They are so challenging that the Clay 
Mathematics Institute is offering a $1 million prize for the first 
person to either prove or disprove the existence of globally defined 
smooth solutions to the equations (“Millennium Problems”) [2]. 
Rather than finding exact solutions, this paper will explore how 
the explicit finite difference method (FDM) can approximate 
solutions to the NS equations. Like the Euler method (used for 
ordinary differential equations), FDM uses the Taylor Series and 
replaces differential terms with numerical approximations. These 
approximations make the problem much easier to solve [3]. This 
paper will answer the research question: To what extent is the 
finite difference method feasible to quickly generate accurate 
approximations to the Navier-Stokes equations? The finite 
difference methods will be tested on the lid-driven cavity flow 
problem - a universal benchmark for fluid dynamics.

Definitions
Derivatives are the rate of change or instantaneous slope at 
a particular point on a function (denoted by  d or ). They are 

computed on functions with only one independent variable. The 
derivative is algebraically defined using the following formula: 

Partial derivatives (denoted by d) build upon the notion of 
a derivative. Like derivatives, partial derivatives are the 
instantaneous slope at a particular point on a function; however, 
they are computed on functions with two or more independent 
variables. Partial derivatives are calculated by differentiating 
a function with respect to any of its independent variables and 
treating any other variables as constants. For a function f(x, y) its 
partial derivatives with respect to x and y can be calculated using 
the following formulas [4]:

The del operator (denoted by ∇) is a vector with the partial 
derivatives of a function. For a function with two independent 
variables, it can be calculated as follows:

The gradient (denoted as ∇f) is the del operator applied to a 
multivariable function. The divergence measures how much a 
function diverges from its origin. It is the dot product of ∇ and a 
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multivariable function written as ∇ · f(x, y). The curl measures 
the tendency of a fluid to swirl around its origin and is the cross 
product of ∇ and a multivariable function written as ∇ x f(x, y). 
It can be calculated as follows:

When considering the motion of a fluid at the boundary of a 
container, sometimes there may not be enough information to 
determine its properties. Thus, mathematicians use reasonable 
assumptions called boundary conditions to solve this problem. 
One type of boundary condition is the no-slip condition, which 
states that there is no change in the fluid’s velocity parallel to the 
boundary relative to the wall’s velocity. Another type of boundary 
condition is the impermeability boundary condition, which states 
that the fluid cannot permeate the boundary. This means there is 
no change in the fluid’s velocity component that is perpendicular 
to the boundary relative to the wall’s velocity [5].

Lid-Driven Cavity Flow Problem
The finite difference method’s feasibility will be measured by 
how it solves the lid-driven cavity flow problem. The lid-driven 
cavity flow problem is a simple problem used to test solutions to 
the Navier-Stokes equation. It states that a square cavity with side 
lengths of 1 is closed with stationary walls on every side except 
the top. On the top side, however, the wall is moving at a speed 
of 1 unit/second [6].

Figure 1: Visualization of the lid-driven cavity flow problem [6].

Navier-stokes Equations
The two-dimensional Navier-Stokes equations are a set of three 
equations that govern the motion of fluids. The first equation is 
as follows:

This is known as the continuity or conservation of mass equation. 
The variables x and y are the x and y dimensions respectively and 
the variables U and V are the velocities in the x and y dimensions 
respectively. This equation can also be rewritten as ∇ · f(x, y)=0; 
if the divergence is 0 then, on average, the fluid will not diverge 
towards or away resulting in a change in mass [7].

The second equation (denoted as B(x, y, t) and third equation C(x, 
y, t) (denoted as ) are the Navier-Stokes momentum equations in 
the x and y dimensions respectively [8].

In this equation, ρ is the density, P is the pressure, μ  is the dynamic 
viscosity coefficient and t is time. If all the terms are moved 
to one side, the equations can now be denoted as B(x,y,t) and 
C(x,y,t) where

Since B(x,y,t) calculates momentum in the x-dimension and   
C(x,y,t) calculates momentum in the y-dimension, the equations 
can be organized into a vector A(x,y,t), which represents the 2nd 

Navier-Stokes equation in 2 dimensions shown below: 

Deriving the Navier-Stokes Vorticity Transport Equation
The first step to solving the lid-driven cavity flow problem is to 
derive the Navier-Stokes Vorticity Equation by taking the curl of 
the 2nd Navier-Stokes equation, A(x,y,t). The curl is defined as 

∇ x f(x, y) which, in this case, is the cross product of

and                                                  To take the curl of two 2x1 

matrices, they must be arranged in a matrix that looks like this [9].    

In this matrix, i and j represent unit vectors in each dimension. 
The curl is determinant of this 2x2 matrix, which is shown by 
the formula below

This formula can be applied to the Navier Stokes equations to 
yield:
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Differentiating the C(x,y,t) with respect to x yields:

Note that the product rule (μv)ˈ = μ’v + μv’ is used to differentiate the 2nd and 3rd terms. The same process can be done to differentiate   
B(x,y, t) with respect to y:

Subtracting the first equation from the second yields:

This can further simplify to:

The term                                            is equal to zero since, according to the first Navier-Stokes equation,

This leaves the remaining terms to be as follows [9]:

Integrating the Stream Function and Vorticity Variables
According to the continuity function,                     it can be proved that U and V are       and        

respectively, where ψ is the streamfunction. This a useful substitution because it implies that for any function, ψ, the continuity 
equation will be satisfied. This can be proved as follows. If

             and               then substituting the variables into the continuity equation yields:                

Thus, for any function, ψ , the continuity equation is satisfied

Vorticity (ɷ) can be defined as                         to substitute the repeated binomial in the Navier Stokes equation with a single variable. 

This greatly simplifies the equation into the following:

This can be rearranged to solve for           as shown below [9]:
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Deriving Poisson’s Equation
Poisson’s Equation is a powerful equation that relates 
streamfunction to vorticity. It is derived by substituting U and V 

with        and         (Im) as shown below:

Deriving Taylor Series Approximations
To approximate derivatives in equations, the Taylor Series must be 
used. The Taylor series is an infinite sum composed of a function’s 
derivatives about an arbitrary point. This polynomial is equivalent 
to the original function. The Taylor Series formula is:

Derivatives are approximated by calculating the rate of change 
between two infinitely close points. Thus, the term, x ‒ x⋂ , must be 
small so that the series can converge. This term can be substituted 
with another variable h where h = x ‒ x⋂. This also means that x = 
x⋂+ h. The resulting equation is shown below:

However, these sums are infinite so when using them in 
calculations, they must be truncated. When the sum is truncated 
after a certain amount of terms, it becomes an approximation 
of the original function. Since this is an approximation - not an 
exact value - there is an inevitable error present. To express the 
error, a truncated Taylor Series is said to be nth-order accurate 
when terms of degree n and above are removed from the infinite 
sum. Error terms are represented as O(hn) where n is the order 
accuracy. Order accuracy is used to quantify error because, even 
though the exact error is not known, the order of magnitude of 
the error is known [10].

Consider this 2nd-order accurate Taylor Series expansion:

This is known as the forward difference approximation and can 
be rearranged to approximate the first derivative.

As h approaches zero, the error term, O(h) , approaches 0 as well. 
Thus, a perfect approximation of the first derivative would be the 
limit as h approaches zero of the formula above.

Interestingly enough, this formula is also the formula to calculate 
the derivative from first principles which highlights the relationship 
between this Taylor Series expansion and the derivative!

Suppose instead of adding h, ‒ h was added. The Taylor Series 
would be shown as follows

This equation can also be rearranged create the backwards 
difference formula — used to approximate the first derivative.

The forwards difference formula overshoots the true derivative, 
which is proved since, O(h) must be subtracted from the 
approximation. Furthermore, the backwards difference formula 
undershoots the true derivative since O(h) is added to the 
approximation. Thus, the Taylor Series expansions of f(x⋂+h)  
and  f(x⋂‒h) can be subtracted from each other to create the central 
difference formula.

This same process can be applied to find the central difference 
approximation for the second derivative as shown below.

In fluid dynamics, it is convention to set  0 < h < 1 since the value 
must be very small. Thus, as the degree of h increases, the error 
term O(hn)  becomes smaller. Therefore, it can be concluded that 
the central difference formula is the most accurate since the error 
term will be the smallest [10].

Discretization and Substitution
The 2D grid can be discretized into a square grid within the cavity 
as follows where i and j refer to x and y dimensions respectively   
Δt refers to the change in time and Δt refers to the step size in the 
x and y spatial dimensions. The terms Δt, Δh are all analogous 
to h in the Taylor Series Expansions but they represent different 
physical qualities of the problem at hand. The variables to follow 

are denoted in the form        where i, j are the x and y dimensions 
and r represents the time step.

In the Navier-Stokes Vorticity Equation, the term         can be 

approximated using the forwards difference approximation while 
the rest of the terms can be approximated using the more accurate 
central difference approximation. The reason for this is because 
the first derivative central difference approximation uses points   
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f (t +1) and f (t ‒1)  but, at t = ⋂, there is no f (t ‒1) time step. Approximating the Navier-Stokes Vorticity Equation yields the following:

This can be rearranged to solve for vorticity at the next time step:

Poisson’s equation,                                      can also be approximated using central difference approximations and rearranged for

         as shown below [9]:

Boundary Conditions
Except for the top boundary which is moving horizontally at a 
speed of 1, the horizontal and vertical velocities are all 0 at the 
boundaries thanks to the impermeability and no-slip boundary 

conditions. Using Poisson Equation,                                 it can be 

concluded that for the vertical boundaries on the left and right,

        will be 0. This is because if a point on a vertical boundary 

is moved up or down, the horizontal velocity will always remain 
a constant zero thanks to the impermeability boundary condition. 
Likewise, for the top and bottom boundary, it can be concluded that   

        will always be zero because if a point is moved left or right, 

the vertical velocity will always remain constant. Thus, Poisson’s 
equation can be simplified at each boundary to be:

Additionally, Taylor Series expansions for the stream function 
at points adjacent to the boundary can be generated. If a cavity 
is discretized into a grid with nodes from 1 to n in the x and y 
dimensions where 1 and n are both points at the boundaries, the 
Taylor Series expansions for points adjacent to boundaries are:

Using the equations                                      and the vorticity at the 

boundaries, these expressions can be simplified to be:

If              and                 both need to be 0 at every point on the 

boundary, ψ must be a constant since the derivative of a constant 
is 0. Thus, ψ can be any constant however, for the sake of this 
paper, ψ = 0 at the boundary. This is done so that the first terms 
in the boundary condition Taylor Series’ above can be simplified. 
The resulting equations are:
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Each series can be truncated to become 3rd-order accurate. The 
velocity terms, U and V, for the bottom, left and right boundary 
are all equal to 0 since the walls are stationary. Finally, ɷ can be 
isolated for [9]:

Using all the discretized equations a computational solution can 
be determined.

Computational Solution
From here on out, the problem becomes too complex to solve 
on paper thus, Matlab must be used to carry out the remaining 
calculations. An iterative method is needed to approximate the 
function. There are 3 main types: Jacobi, Gauss-Seidel and 
Successive-over-relaxation (SOR). The method this paper will 
use is SOR because it requires the least amount of iterations. To 
comprehend how this method works, one must first understand the 
Gauss-Seidel Method. When given a set of equations, the Gauss-
Seidel method start with the first equation and set every variable 
to be zero except for one which will be known as a. The method 
will then solve for a assuming that every variable is zero. Then, 
all the variables in the second equation are set to zero except the 
variable to be solved, b, for and any variables already computed. 
The variable, b, is updated as the most recent solution. This process 
loops over the set of equations until all the variable values begin 
to converge. Once all the variables change by a small specified 
error each iteration (usually a very small number like 10-7), the 
method is completed as the variables values have converged. 
The SOR method uses the same steps except it takes a weighted 
average using the previous values of a variable when calculating 
the updated value of the variable to converge much faster [11].

The code used to generate the solution is adapted from Joe 
Molvar’s ‘2D Lid Driven Cavity Flow Solver’ on MathWorks 
file exchange shown in Appendix A [12, 13].

Experiment
Different real-life applications require different levels of accuracy 
when approximating the Navier-Stokes equations. For example, an 
aerospace engineer requires much more accuracy when compared 
to a video game designer. Thus, to put the efficiency of this method 
to the test, the step size used in the finite difference approximation 
will be modified and the time taken to run the algorithm will be 
measured. The algorithm was run with 6 different conditions: 4, 
8, 16, 32, 64 and 128 nodes along each side of the cavity (node 
count). Since the side length of the square is 1, the step size is 

calculated by using the formula:

U, V and stream function were plotted at the next time step.

Node Count U-Velocity V-Velocity Streamfunction

Figure 2: Average Runtime of Finite Difference Method Algorithm 
Plotted With Exponential Line of Best Fit

Table 1: Lid-Driven Cavity Flow Problem Solved Using the 
Finite Difference Method at Different Node Counts

Node 
Count per 

side

Time (s) Average 
(s)

4 3,433 3,616 3,560 3,373 3,424 3,4812

8 4,145 3,997 4,020 4,373 4,061 4,1192

16 4,247 4,121 4,190 4,271 4,215 4,2088

32 4,856 4,900 4,847 4,946 4,857 4,8812

64 7,273 7,191 6,869 7,299 6,999 7,1262

128 25,853 25,801 25,071 25,992 25,272 25,5978

Evaluation
It is important to consider that the finite difference method is 
not perfect. Each Taylor Series approximation used to replace a 
differential term caused errors. While the exact error cannot be 
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determined, using the error terms from the centered, forward, 
and backwards difference formulas, the order of magnitude of 
the error is known. In the Navier-Stokes Vorticity Equation, all 
the differential terms that were partial derivatives with respect to 
x or y were approximated with central difference approximations 
except for the partial derivative term with respect to t which was 
approximated with a central difference approximation. The central 
difference method has an error of  O(h2) meaning the error of 

nodes at the same timestep is O(h2). The term         was approximated 

using a forwards difference approximation with an error of O(h). 
Since O<h<1, the greatest error caused by using Taylor Series is  
O(h). Thus, the error of the Navier-Stokes equations using the 
finite difference method is O(h) (Yew) [10].

One way to decrease this error is by using a forward difference 

approximation to approximate           at the first time step and use a 

central difference approximation to approximate every successive 
timestep. It was previously mentioned that the central difference 

method could not be used to approximate        because there was 

not enough information; however after information for 2 timesteps 
is created, there will be enough meaning the finite difference 
method can operate at a higher accuracy. Furthermore, higher 
order accurate Taylor Series approximations can be generated 
by increasing the number of terms to increase the accuracy. For 
example, with the following Taylor Series’ a centered difference 
approximation can be generated:

The difference between the first and second equation and the 
difference between the third and fourth equation can be taken to 
yield 2 equations

The first equation can be multiplied by 8 and the difference of the 
first and second equation can be calculated. Finally, the equation 
can be rearranged to approximate the first derivative with an 
error of O(h4)

Thus, through increasing the order accuracy of Taylor Series 
approximations, the accuracy of the finite difference method can be 
increased! Since computers can perform simple arithmetic such as 
this at a very quick rate, the use of more accurate approximations 
will have a minuscule effect on the computational time required. 
However, one flaw is that more points are required for more 

accuracy. In the example above, 4 points are required compared to 
the 2 points previously used in centered difference approximations. 
To conclude, the finite difference method is very flexible because 
provides variable levels level of accuracy needed to solve different 
real-world problems — the approximations can be tweaked to 
favor accuracy or quick computational runtime.

While there is no limit to how large the step size can be, there is a 
limit to how small the step size can be. This is because the finite 
difference method is not unconditionally stable meaning under 
some conditions; the calculated values will begin to diverge. The 
limit to how small the step size can be is called the Courant’s 

Number (Co) which is given by the formula                 where U is the 

velocity, t is the time step and h is the step size. For the finite 
difference method to be stable, the Courant number at all the nodes 
must be less than 1. Since velocity multiplied by time is distance, 
a Courant number greater than 1 means that the fluid has travelled 
a greater distance than the step size. This causes the fluid to “skip”
cells, which results in the divergence. In this example,   was 0.001, 

the greatest velocity was 0.9 and the smallest Δh was 

therefore, the largest Courant number in the experiment was 

0.1152. By solving the inequality                   the greatest value

possible was           before an unstable approximation would be 
reached. 

Finally, the experiment showed that this finite difference method 
algorithm was linear in time complexity. This means that as nodes 
are added, the time taken for the algorithm to complete increases 
linearly. This can be shown by graphing the time taken for each 
condition. Note that instead of representing the nodes per side 
on the x-axis, the x-axis represents (nodes per side) since the 
number of nodes inside a square grid increases exponentially as 
the number of nodes on a side increases.

Table 2: Average of 5 trials measuring the runtime of each 
algorithm with varying numbers of nodes

This graph proves that the algorithm has a linear time complexity. 
A linear time complexity means that as the number of nodes 
increases, the time taken to run the algorithm increases at a linear 
rate. The line of best fit of the graph is 0.00133x + 3.39 with an 
R2 = 0.99. The extremely high R2 shows that the line of best fit 
is very accurate in predicting the runtime of the finite difference 
method algorithm for different number of nodes. In real life, 
most problems require much more nodes and computations, so, 
mathematicians can use the line of best fit to predict how long the 
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finite difference method will take to solve [14].

Conclusion
The finite difference method is feasible for simple problems that 
prioritize speed over accuracy. The finite difference method error is 
O(h) which is quite high. Additionally, the step size, time step size 
and velocity are all limited due to Courant’s number. The Courant’s 
number limit also implies that using the finite difference method 
for fast-flowing fluid causes accuracy to be sacrificed to ensure the 
Courant’s number stays below zero. However, the finite difference 
method is very quick and computationally simplistic. It requires 
no more than simple algebra and has a linear time complexity. 
The finite difference method offers itself to predicting ventilation 
inside homes or to biological uses such as modeling the flow of 
blood in the human body. Both these processes do not require 
perfect accuracy and through the finite difference method, they 
can be computed very quickly. In studying ventilation of homes, 
simulations can be run many times over to ensure the most optimal 
air quality for those living in the environment. By studying these 
simulations, more efficient and safe ventilation systems can be 
created that improve air quality. Studying the flow of blood with 
the finite difference method can help pharmaceutical companies 
understand the bio distribution of a drug they create and understand 
how to better target specific organs with a computationally “cheap” 
algorithm. Furthermore, the use of the Taylor Series offers the 
finite difference method great flexibility. The finite difference 
method can create approximations that are slightly more accurate 
by using Taylor Series’ with more terms to reduce the error. Further 
research should be done to compare the finite difference method to 
the other main methods like the finite element method and finite 
volume method to create a more balanced review on ways to 
solve the Navier-Stokes Equations. To conclude, while the finite 
difference method may not be the most accurate method to solve 
the Navier-Stokes equations, very quick offers approximations 
are accurate enough for most general uses.

Appendix A: Joe Molvar’s Finite Difference Method Code

%%% GIVENS
Nx = 32; L = 1; Wall_Velocity = 1; 
% Nodes X; Domain Size; Velocity

mu = 0.01; 
Dynamic Viscosity;

dt = 0.001; maxIt = 50000; maxe = 1e-7; 
% Time Step; Max iter; Max error

%%% SETUP 1D GRID
Ny = Nx; 
h=L/(Nx-1); 
x = 0:h:L; 
y = 0:h:L;
im = 1:Nx-2; i = 2:Nx-1; ip = 3:Nx; 
jm = 1:Ny-2; j = 2:Ny-1; jp = 3:Ny;

%%% PRE-LOCATE MATRIXES
Vo = zeros(Nx,Ny); 
St = Vo; 
Vop = Vo; 
u = Vo; 
v = Vo;

%%% SOLVE LOOP SIMILAR USING SUCCESSIVE-OVER-
RELAXATION

for iter = 1:maxIt

 %%% CREATE BOUNDARY CONDITIONS
 % Top
 Vo(1:Nx,Ny) = -2*St(1:Nx,Ny-1)/(h^2) - Wall_Velocity*2/h; 
 % Bottom
 Vo(1:Nx,1) = -2*St(1:Nx,2) /(h^2); 
 % Left
 Vo(1,1:Ny) = -2*St(2,1:Ny) /(h^2); 
 % Right
 Vo(Nx,1:Ny) = -2*St(Nx-1,1:Ny)/(h^2); 
 
 %%% PARTIALLY SOLVE VORTICITY TRANSPORT 
EQUATION
 Vop = Vo;
 Vo(i,j) = Vop(i,j) + (-1*(St(i,jp)-St(i,jm))/(2*h) .*...
 (Vop(ip,i)-Vop(im,j))/(2*h)+(St(ip,j)-St(im,j))/(2*h) .*...
 (Vop(i,jp)-Vop(i,jm))/(2*h)+...
 mu*(Vop(ip,j)+Vop(im,j)-4*Vop(i,j)+Vop(i,jp)+...
 Vop(i,jm))/(h^2))*dt;
 
 %%% PARTIALLY SOLVE ELLIPTICAL VORTICITY 
EQUATION 
 FOR STREAM FUNCTION
 St(i,j) = (Vo(i,j)*h^2 + St(ip,j) + St(i,jp) +...
 St(i,jm) + St(im,j))/4;
 
 %%% CHECK FOR CONVERGENCE
 if iter > 10
 error = max(max(Vo - Vop))
 if error < maxe
 break;
 end
 end
end

%%% CREATE VELOCITY FROM STREAM FUNCTION
u(2:Nx-1,Ny) = Wall_Velocity;
u(i,j) = (St(i,jp)-St(i,jm))/(2*h); 
v(i,j) = (-St(ip,j)+St(im,j))/(2*h);

%%% PLOTS
cm = hsv(ceil(100/0.7)); cm = flipud(cm(1:100,:));
figure(1); 
contourf(x,y,u’,23,’LineColor’,’none’);
title(‘U-velocity’); 
xlabel(‘x-location’); 
ylabel(‘y-location’)
axis(‘equal’,[0 L 0 L]); 
colormap(cm); colorbar(‘westoutside’);

figure(2); h=streamline(X,Y,u’,v’,xstart,ystart,[0.1, 200]);
title(‘Stream Function’); 
xlabel(‘x-location’); 
ylabel(‘y-location’)
axis(‘equal’,[0 L 0 L]); 
set(h,’color’,’k’)
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