
Open Access

Journal of Mathematical &
Computer Applications

ISSN: 2754-6705

J Mathe & Comp Appli, 2024 Volume 3(1): 1-13

Review Article

Automating The Deployment of MERN Stack on AWS App
Runner Using AWS Code Pipeline

USA

Aauti

*Corresponding author
Aauti, USA.

Received: January 17, 2024; Accepted: January 23, 2024, Published: January 30, 2024

Keywords: MERN, AWS, Cloud Computing, Programming,
Software Development

In this paper, we explore the adoption and implementation of
AWS App Runner, a managed platform service by Amazon
Web Services, tailored for streamlined application deployment.
AWS App Runner stands out for its capability to simplify the
deployment process by allowing developers to choose the desired
runtime environment, such as NodeJS, or leverage Docker to
containerize and deploy applications, particularly focusing on the
MERN stack. This service eliminates the complexities typically
associated with configuration and management, thereby facilitating
the deployment of APIs and web applications directly from source
code or container images. Additionally, it ensures scalability and
security within the AWS Cloud ecosystem.

The utility of AWS App Runner extends to its seamless integration
with Docker, where Docker images, including those from
Amazon's Elastic Container Registry (ECR), can be effortlessly
deployed. Our study delineates a comprehensive automation
strategy encompassing the entire deployment lifecycle of a MERN
Stack application using Docker within the AWS App Runner
environment. This encompasses leveraging AWS CloudFormation
for resource provisioning and adopting continuous integration
and continuous deployment (CI/CD) methodologies to achieve
efficient and automated application deployment. This paper aims
to provide a detailed exploration of the end-to-end automation
process, highlighting the practical and theoretical aspects of
deploying a containerized MERN Stack on AWS App Runner,
thereby demonstrating the efficiency and efficacy of managed
platform services in modern cloud environments.

•	 Prerequisites
•	 Example Project
•	 Setup a MongoDB Atlas
•	 Build For Production
•	 Externalize Environment Variables
•	 Dockerize the project
•	 Running WebApp on Docker
•	 Creating ECR with CloudFormation
•	 Pushing Docker Image to ECR
•	 Deploy CF Template through CLI
•	 Setup CodeCommit Repos
•	 Create a ServiceRole for CodePipeline
•	 Setup CI/CD With AWS CodePipeline for ECR Deployment
•	 Setup CI/CD With AWS CodePipeline For AppRunner

WebApp
•	 Testing the WebApp
•	 Summary
•	 Conclusion

Prerequisites
For individuals embarking on their journey in web development,
it is recommended to consult the following resource for a
comprehensive guide on developing and constructing applications
using the MERN stack. This material serves as an essential
foundation for beginners in the field.

• How To Develop and Build MERN Stack
(https://medium.com/bb-tutorials-and-thoughts/how-to-develop-
and-build-mern-stack-9a7a1099624)

ABSTRACT
This paper explores the deployment of web applications utilizing AWS App Runner, a managed platform that simplifies the deployment process by allowing
developers to select runtimes and deploy applications without the need for extensive configuration. It focuses on the advantages of using Docker runtime
for API execution and web application deployment, highlighting the ease of dockerizing applications and the seamless integration with Amazon Elastic
Container Registry (ECR). ECR provides a fully-managed Docker container registry, facilitating the efficient storage, management, and deployment of
Docker container images. Additionally, the paper discusses the role of AWS CodeCommit as a secure, scalable, managed source control service for hosting
private Git repositories, emphasizing its significance in the deployment pipeline. The combined use of these AWS services offers a streamlined, cost-
effective solution for deploying scalable and secure web applications directly from source code or container images to the AWS Cloud, thereby enhancing
the deployment process for developers.

Citation: Aauti (2024) Automating The Deployment of MERN Stack on AWS App Runner Using AWS Code Pipeline. Journal of Mathematical & Computer
Applications. SRC/JMCA-181. DOI: doi.org/10.47363/JMCA/2024(3)149

J Mathe & Comp Appli, 2024 Volume 3(1): 2-13

Docker Essentials
You need to understand Docker concepts such as creating images,
container management, etc. Below are some of the links that you
can understand about Docker if you are new.

•	 Docker Docs
	 (https://docs.docker.com/)
•	 Docker – A Beginners Guide
	 (https://medium.com/bb-tutorials-and-thoughts/docker-

a-beginners-guide-to-dockerfile-with-a-sample-project-
6c1ac1f17490)

•	 Docker – Image Creation and Management
	 (https://medium.com/bb-tutorials-and-thoughts/docker-

image-creation-and-management-9d91e4c277b1)
•	 Docker – Container Management
	 (https://medium.com/bb-tutorials-and-thoughts/docker-

container-management-with-examples-c280906158a8)
•	 Understanding Docker Volumes
	 (ht tps: / /medium.com/bb-tutorials-and-thoughts/

understanding-docker-volumes-with-an-example-
d898cb5e40d7)

AWS Prerequisites
Amazon Web Services (AWS), recognized as a pioneer in the
cloud computing domain, offers an extensive portfolio of over
200 services. It is crucial for users to understand and select
the appropriate AWS services that align with their specific
requirements. If you are new to AWS or just getting started you
can see the following article.

•	 How To Get Started with AWS
(https://medium.com/bb-tutorials-and-thoughts/how-to-get-
started-with-aws-9731a4f855a7)

Example Project
Here is an example of a simple tasks application that creates,
retrieves, edits, and deletes tasks. We actually run the API on the
NodeJS server, and you can use MongoDB to save all these tasks.

MERN Stack Example

Here is a GitHub link to this project. You can clone it and run it
on your machine.

Setup a MongoDB Atlas
The core of MongoDB Cloud is MongoDB Atlas, a fully managed
cloud database for modern applications. Atlas is the best way to
run MongoDB, the leading modern database. There are two ways
to deploy MongoDB on AWS and you can check them here on this
page. We are using a fully-managed MongoDB Cluster for this
post. Let’s create your MongoDB Account here. You can either
log in with any of your Gmail accounts or you can provide any
other email address to create the account.

MongoDB Login

Once you log in with your account you will see the dashboard
below where you can create clusters. Let’s create a cluster called
todo-cluster by clicking on build a cluster and selecting all the
details below. Make sure you select AWS Cloud.

MongoDB Pricing

Citation: Aauti (2024) Automating The Deployment of MERN Stack on AWS App Runner Using AWS Code Pipeline. Journal of Mathematical & Computer
Applications. SRC/JMCA-181. DOI: doi.org/10.47363/JMCA/2024(3)149

J Mathe & Comp Appli, 2024 Volume 3(1): 3-13

Make sure you select the Cloud Environment since we are
deploying this on AWS Cloud. You can click on the connect
button to see the details about connecting to the cluster. You need
to create a user and Allow Access from anywhere for now.

Connect to Cluster

You can see three ways of connecting to the cluster on the next
screen. We have created a cluster and it’s time to create a database.
Click on the collections to create a new database as below. I have
given a database name as tasks and the collection name is todos.

Creating a Database

Let’s insert the first document into the collection by clicking
the button insert document. We have seen three ways we can
connect to this cluster and read the collections. Let’s connect to
the database with Mongo Compass.

Creating a Collection

The first thing we need to do is to download and install Mongo
Compass from this link. Let’s get a connection string from the
Atlas dashboard as below.

Connection Ways

You can see the same collection in the MongoDB Compass as well.
Here is the connection string that you can connect to MongoDB.

mongodb+srv://admin123:admin123@todo-cluster.zpikr.
mongodb.net/?retryWrites=true&w=majority

Mongo Compass UI

Build for Production
Numerous approaches exist for constructing a MERN Stack for
production deployment, with the optimal strategy varying based
on the specific use case or deployment environment. This paper
delineates various methodologies for preparing the MERN Stack
for production use.
• How to Build MERN Stack for Production
(https://medium.com/bb-tutorials-and-thoughts/how-to-build-
mern-stack-for-production-1462e70a35cb)

Externalize Environment Variables
Reading environment variables is one of the most common things
that we do when we are building apps. It doesn’t matter whether
you are developing front end app or back-end API you have
so many variables that should be outside of your application
source code that makes your app or API more configurable. For
example, if you want to hide logger statements in production or
do something else based on the environment you can pass this as
an environment variable. If you want to change later all you need
to change is in one place.

• Reading Environment Variables in NodeJS api
(https://medium.com/bb-tutorials-and-thoughts/reading-
environment-variables-in-nodejs-rest-api-e75bb04b813d)

Citation: Aauti (2024) Automating The Deployment of MERN Stack on AWS App Runner Using AWS Code Pipeline. Journal of Mathematical & Computer
Applications. SRC/JMCA-181. DOI: doi.org/10.47363/JMCA/2024(3)149

J Mathe & Comp Appli, 2024 Volume 3(1): 4-13

When it comes to this application, there are two environment
variables, one is the Mongo Connection string, and another one
is PORT.

You must put these in the webpack.config.js file so that these
values are used when we dockerize the app for production.

• Webpack.config.js file
(https://gist.github.com/bbachi/aa25aec5b82320d28cc5ee137bb
8b8cf#file-webpack-config-js)

Dockerize the Webapp
Amazon EKS is a managed service that makes it easy for you
to run Kubernetes on AWS. The first thing you need to do is to
dockerize your project.

We use multi-stage builds for efficient docker images. Building
efficient Docker images are very important for faster downloads
and lesser surface attacks. In this multi-stage build, building a
React app and putting those static assets in the build folder is the
first step. The second step involves building the API. Finally, the
third step involves taking those static build files and API build
and serving the React static files through the API server.

We need to update the server.js file in the NodeJS API to let
Express know about the React static assets and send the index.
html as a default route. Here is the updated server.js file. Notice
the line numbers 41 and 20.

• Server.js file
(https://gist.github.com/bbachi/e828985a85cfb9da08164afa885
49211#file-server-js)

Let’s build an image with the Dockerfile. Here are the things we
need for building an image.

In constructing a production-ready application using the MERN
Stack, the process begins with a base image of node:14-slim.
Initially, both package.json files—one for the Node.js server
and the other for the React UI—are copied into the Docker
file system, with dependencies installed to enhance build
speed for subsequent changes. This preemptive step prevents
the redundancy of reinstalling dependencies with each source
modification. Following this, all source files are copied, and
dependencies installed, culminating in the execution of npm run
build to generate the React application assets within a 'build'
folder inside the 'ui' directory. The second stage also utilizes the
node: 14-slim base image, focusing on the Node.js environment
by copying its package.json into an './api' directory, installing
necessary dependencies, and incorporating the server.js file into
this directory. The final stage combines the elements, starting
again with the node:14-slim image, to amalgamate the built UI
and API files, concluding with the command node api.bundle.js
to run the bundled server application, thereby streamlining the
deployment of the MERN Stack for production.

Here is the Complete Dockerfile link where you can run on your
machine.

• Docker file
(https://gist.github.com/bbachi/06eecfc6c956d01c99180523c26

77c15#file-dockerfile)

Let’s build the image with the following command.

Running the Webapp on Docker
Once the Docker image is built. You can run the image with the
following command.

You can access the application on the web at this address http://
localhost

Example Project

Creating ECR with Cloud Formation
First, you need to understand the anatomy of the CloudFormation
template. We can’t go through everything here you can look at
the AWS Cloudformation docs here.

AWSTemplateFormatVersion: "version date"
Description: String
Metadata: Template Metadata
Parameters: Set of Parameters
Rules: Set of Rules
Mappings: Set of Mappings
Conditions: Set of Conditions
Transform: Set of Transforms
Resources: Set of Resources
Outputs: Set of Outputs

The only required one is the Resources of all these options in
the template file. Below is the template YAML file with which
we are creating the ECR repository through CloudFormation.
The first one is the version and description. The version has only
one value and in the description, you can put anything about

Citation: Aauti (2024) Automating The Deployment of MERN Stack on AWS App Runner Using AWS Code Pipeline. Journal of Mathematical & Computer
Applications. SRC/JMCA-181. DOI: doi.org/10.47363/JMCA/2024(3)149

J Mathe & Comp Appli, 2024 Volume 3(1): 5-13

your repo or deployment. Since it’s an ECR Repository, I have
given the following description. The next main thing is the
Resources section. Since we are creating only one resource which
is AWS AppRunner, I have added one resource called ECRRepo.
You can name it anything you want and the type is obviously
AWS::ECR::Repository. The main thing here is adding a policy
text where the users specified only can push the image into the
repository. In production, you should create a role here.

• ecr-template.yaml
(https://gist.github.com/bbachi/f47addffb396297502fd8789b75d
7cdc#file-template-ecr-yaml)

The output section contains the ARN of the ECR repository.
Let’s create this stack through AWS Console. You can do it either
console or AWS CLI. You can click on the Create Stack button.
On the next screen, you must upload the above YAML file by
selecting the second option.

Creating a Stack

Let’s give a stack name on the next screen.

Stack Details

Configure the Stack options on the below screen.

Configure the Stack

You can see the output ARN in the outputs section.

Output ARN

Let’s go and check the ECR console to see if this repository is
created or not.

ECR Console

Pushing Docker Image to ECR
We have created an ECR repository in the above section. Let’s
create a docker image from the example project section above
with the following command.

docker build -t webapp.

You can view further instructions after creating the Docker image
in the top right corner.

Viewing Push Commands

You should authenticate first, then tag and finally push the docker
image. Let’s follow these commands.

Citation: Aauti (2024) Automating The Deployment of MERN Stack on AWS App Runner Using AWS Code Pipeline. Journal of Mathematical & Computer
Applications. SRC/JMCA-181. DOI: doi.org/10.47363/JMCA/2024(3)149

J Mathe & Comp Appli, 2024 Volume 3(1): 6-13

Push Commands

You can tag and push the image with the following command.

Once the image is pushed, you can view it on the ECR Console.

Image Pushed

Creating CloudFormation Template
We need to create multiple resources for the AppRunner Template,
which we will go through one by one in this section. The initial
ones are the version, description, and parameters. The version has
only one value and in the description, you can put anything about
your repo or deployment. Since it’s a NodeJS REST API on App
runner, I have given the following description. You can provide
the parameters while deploying the template.

Container Image: This is the ECR Image URL. You can fetch it
from the ECR Console.
Environment: The environment you want to deploy this stack
such as dev, test, prod, etc.
Welcome Message: This is the environment variable you want
to pass while deploying the template.
Image Repository Type: There are two types that the App Runner
service accepts at this time of writing: ECR and ECR_PUBLIC

You can have conditions on your template so that we can execute
something based on that. You can define that under the section
called Conditions. Since the App Runner only accepts ECR and
ECR_PUBLIC we are putting a condition for that. Here is a
complete YAML file.

• ECR Template YAML
(https://gist.github.com/bbachi/9cf4e6a88ca6414426f869b47d5
3ac34#file-template-yaml)

AWS Cloud Formation Command’s
Here are some of the commands that you can run through AWS
CLI to create and update the stack. You can explore more on
AWS Docs.

Deploy CF Template Through CLI
Let’s create a resource through CLI with the following command.
Make sure you update the command with your path of the file
location.

aws cloudformation create-stack
 --stack-name nodejs-restapi
 --template-body <file://file-location>
 --parameters ParameterKey=Environment,ParameterValue=
dev ParameterKey=WelcomeMessage,ParameterValue="Wel
come from the CLI"

You can see the resources created on the respective screens below.

Cloud Formation Events

You can see the outputs listed on the AWS CloudFormation
console.

Template Created

Citation: Aauti (2024) Automating The Deployment of MERN Stack on AWS App Runner Using AWS Code Pipeline. Journal of Mathematical & Computer
Applications. SRC/JMCA-181. DOI: doi.org/10.47363/JMCA/2024(3)149

J Mathe & Comp Appli, 2024 Volume 3(1): 7-13

Project Running Through AWS App Runner

Setup CodeCommit Repos
The first step of CI/CD and automation flow is setting up the
repositories on the AWS CodeCommit. AWS CodeCommit is a
secure, highly scalable, managed source control service that hosts
private Git repositories.

Code Commit Process

We are going to create two repositories: one for MERN Stack and
another one for Cloudformation templates. Make sure you have
Administrator access or access to the Codecommit to create the
repos for the AWS user you created. I have AdministratorAccess
that allows me to create repositories.

Permissions

You can go to the AWS CodeCommit and create a repository
below.

Creating a Repository

Once created, you can clone it in different ways using HTTPS,
SSH, and HTTPS (grc). You can use any of these methods to
connect to this repository. If you want to use HTTPS, you must
create Git credentials for your IAM user in the IAM section.
Finally, I have created two repositories, and we can push the code
later once we go through other important sections. You can copy
all the source code from the example project in the above section
to the AWS CodeCommit repository below.

Let’s create another repository called app_cf_templates and push
these two Yaml files into the repo. We can put these templates
in this repo.

• Template-ecr.yaml
(https://gist.github.com/bbachi/0d983547fd99f056ea21b880e73
013f6#file-template-ecr-yaml)
• Teamplet-apprunner.yamlfile (https://gist.github.com/bbachi/3e
bbee23c3c1fefb2fb7319f9f5f21a2#file-template-apprunner-yaml)

Create a Service Role for Code Pipeline
We have pushed the code to the AWS CodeCommit Repos in
the above section. It’s time to create a service role for the AWS
Codepipeline to create the required resources when you run the
pipeline.

Let’s go to IAM dashboard Click on Roles and create role. Add
these policies.

Citation: Aauti (2024) Automating The Deployment of MERN Stack on AWS App Runner Using AWS Code Pipeline. Journal of Mathematical & Computer
Applications. SRC/JMCA-181. DOI: doi.org/10.47363/JMCA/2024(3)149

J Mathe & Comp Appli, 2024 Volume 3(1): 8-13

AmazonEC2ContainerRegistryFullAccess
AWSAppRunnerFullAccess
AWSCloudFormationFullAccess
AWSAppRunnerServicePolicyForECRAccess
AWSCodeCommitFullAccess
AmazonS3FullAccess

Service Role

You need to create one custom inline policy for AWS Codepipeline
to create necessary roles while running the AWS CloudFormation.
I have called this policy iam-create-role

Setup CI/CD with AWS CodePipeline for ECR Deployment
We have pushed the code to the AWS CodeCommit Repos in the
above section. Access the CodePipeline dashboard below and
click on the button Create pipeline.

You can name the pipeline anything and you can select the
servicerole created above or you can choose to create a new
service role and the above policies to the role.

Pipeline Settings

You can click on the next button and choose the source where you
read the code. I have selected AWS CodeCommit.

Selecting Source

Citation: Aauti (2024) Automating The Deployment of MERN Stack on AWS App Runner Using AWS Code Pipeline. Journal of Mathematical & Computer
Applications. SRC/JMCA-181. DOI: doi.org/10.47363/JMCA/2024(3)149

J Mathe & Comp Appli, 2024 Volume 3(1): 9-13

Select the right repository and the branch you want to deploy.

Source Stage

Since we are running the AWS Code Formation to create the ECR,
we can skip the build stage.

Skip Build Stage

Skip Build Stage

You can’t skip the deployment stage. I have chosen AWS
CloudFormation as a Deployment provider. Make sure you select
the right template from the repository.

Choose the right role that we created above.

More Settings

Once you confirm everything and create a pipeline, you can see
the pipeline created successfully and in progress status.

Pipeline in Progress

Citation: Aauti (2024) Automating The Deployment of MERN Stack on AWS App Runner Using AWS Code Pipeline. Journal of Mathematical & Computer
Applications. SRC/JMCA-181. DOI: doi.org/10.47363/JMCA/2024(3)149

J Mathe & Comp Appli, 2024 Volume 3(1): 10-13

If everything is successful, you can see the pipeline successful
below.

 Pipeline Successful

You can click on the details link, and it takes you to the Cloud
Formation page. You can see the events.

Cloud Formation

You can see the repository created below.

ECR Created

Let’s push the Docker Image

Let’s run these commands to push the docker image to the ECR we
just created. We will automate this step as well in future articles.

You can see the image pushed to the ECR.

ECR Image

Setup CI/CD Pipeline with AWS Code Pipeline for AWS Apprunner
Access the CodePipeline dashboard below and click on the button
Create pipeline.

Create Pipeline

You can name the pipeline anything and you can select the service
role created above or you can choose to create a new service role
and the above policies to the role.

Citation: Aauti (2024) Automating The Deployment of MERN Stack on AWS App Runner Using AWS Code Pipeline. Journal of Mathematical & Computer
Applications. SRC/JMCA-181. DOI: doi.org/10.47363/JMCA/2024(3)149

J Mathe & Comp Appli, 2024 Volume 3(1): 11-13

Code Pipeline

You can click on the next button and choose the source where you
read the code. I have selected AWS CodeCommit.

Selecting Source

Select the right repository and the branch you want to deploy.

Source Stage

Since we are running the AWS Code Formation to create the
AppRunner, we can skip the build stage. We can build the Docker
image here and I will update that in future articles.

Skip Build Stage

You can’t skip the deployment stage. I have chosen AWS
CloudFormation as a Deployment provider. Make sure you select
the right template from the repository.

Deploy Stage

Once you confirm everything and create a pipeline, you can see
the pipeline created successfully and in progress status.

Pipeline in Progress

If everything is successful, you can see the pipeline successful
below.

Citation: Aauti (2024) Automating The Deployment of MERN Stack on AWS App Runner Using AWS Code Pipeline. Journal of Mathematical & Computer
Applications. SRC/JMCA-181. DOI: doi.org/10.47363/JMCA/2024(3)149

J Mathe & Comp Appli, 2024 Volume 3(1): 12-13

Pipeline Successful

You can click on the details link and it takes you to the
CloudFormation page. You can see the events.

Cloud Formation Events

Testing the Webapp
We have created App Runner and ECR by running AWS
CodePipeline in the above sections. You can click on the Resources
section of CloudFormation [1-5].

 Resources Created

You can see the AppRunner Created and run successfully.

App Runner

App Runner Running Successfully

You can test the webapp with the following URL.
https://jchmy3vut9.us-east-1.awsapprunner.com/

App Runner Running Successfully

Summary
•	 If you want to deploy your application on the managed

platform by selecting the runtime, AWS App Runner is the
right choice.

•	 You can run the whole API with Docker runtime without any
worry about the configuration from your side.

•	 You can dockerize the WebApp and deploy that in the Docker
runtime. The Docker images can be pulled from ECR, etc.

•	 Amazon Elastic Container Registry (ECR) is a fully-managed
Docker container registry that makes it easy for developers to
store, manage, and deploy Docker container images.

•	 AWS App Runner is an AWS service that provides a fast,
simple, and cost-effective way to deploy straight from source
code or a container image directly to a scalable and secure
web application in the AWS Cloud.

•	 AWS CodeCommit is a secure, highly scalable, managed
source control service that hosts private Git repositories.

Conclusion
In conclusion, AWS App Runner emerges as an exemplary
choice for developers seeking to effortlessly deploy applications
on a managed platform, emphasizing simplicity and minimal
configuration requirements. By leveraging Docker runtime, it
facilitates the smooth operation of APIs and the deployment of
web applications directly from Docker images sourced from
Amazon Elastic Container Registry (ECR). ECR enhances this
ecosystem by offering a robust, managed Docker container
registry, streamlining the storage, management, and deployment
of container images. Furthermore, AWS App Runner's integration
with AWS CodeCommit underscores its commitment to providing
a secure, scalable, and efficient deployment pipeline. This synergy
between AWS services simplifies the deployment process, from
source code or container images to a fully scalable and secure web
application, underscoring AWS's role in offering cost-effective,

Citation: Aauti (2024) Automating The Deployment of MERN Stack on AWS App Runner Using AWS Code Pipeline. Journal of Mathematical & Computer
Applications. SRC/JMCA-181. DOI: doi.org/10.47363/JMCA/2024(3)149

J Mathe & Comp Appli, 2024 Volume 3(1): 13-13

Copyright: ©2024 Aauti. This is an open-access article distributed under the
terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author
and source are credited.

rapid deployment solutions in the cloud.

References
1.	 Official AWS Documentation https://docs.aws.amazon.com/.
2.	 AWS AppRunner Documentation https://docs.aws.amazon.

com/apprunner/.
3.	 Bhargav Bachina (2022) How to develop and build MERN

Stack https://medium.com/bb-tutorials-and-thoughts/how-to-
develop-and-build-mern-stack-9a7a1099624.

4.	 Bhargav Bachina (2022) How to Build MERN Stack for
Production https://medium.com/bb-tutorials-and-thoughts/
how-to-build-mern-stack-for-production-1462e70a35cb.

5.	 Cloud Formation Documentation https://docs.aws.amazon.
com/cloudformation/.

