
J Arti Inte & Cloud Comp, 2024 Volume 3(1): 1-6

Review Article Open Access

Best Coding Practices to Improve Performance and Readability of Go
Applications
Pallavi Priya Patharlagadda

Journal of Artificial Intelligence &
Cloud Computing

*Corresponding author
Pallavi Priya Patharlagadda, United States of America.

Received: February 01, 2024; Accepted: February 12, 2024; Published: February 16, 2024

ISSN: 2754-6659

ABSTRACT
The Go programming language, often referred to as Golang, is a popular open-source programming language developed by Google. Go has gained
significant popularity in recent years for its simplicity, efficiency, and strong support for concurrent programming. Go is a statically typed, compiled
language intended for writing code that is clear and easy to maintain. Go blends the ease of use of dynamically typed languages with the performance
and security advantages of statically typed languages. Go is a popular choice for developing command-line tools, data processing pipelines, and scalable
and high-performance web servers because of its features. Following best practices is crucial to guaranteeing code quality, readability, and project success
as Golang programs scale in size and complexity. In this article, we shall explore the significance of Golang best practices, their crucial role in software
development, and the plethora of benefits they bring to both developers and projects.

Introduction
Go is a statically typed, concurrent, and garbage-collected open-
source programming language created at Google in 2009. It is
designed to be simple, efficient, and easy to learn, making it
a popular choice for building scalable network services, web
applications, and command-line tools. The semantics of these
open-source programming languages are similar to those of C
and Java. Go language promises code efficiency that translates
into faster software and apps for businesses. Many Companies
recognized the need for lean and efficient code and adopted Golang
as their programming language.

Problem Statement
Writing effective code is crucial for developers to create
programs that perform well. Go provides developers with a
unique opportunity to create effective applications because of
its simplicity and performance-focused design. It takes effort
and knowledge to write safe and clean code for any project. To
safeguard applications against security risks and vulnerabilities,
secure coding standards are crucial. It is critical to follow best
practices to guarantee code quality, readability, and project success
as Golang applications grow in size and complexity. Best practices
are tried-and-true methods, procedures, and coding standards that
have been upheld over time by experienced programmers because
of both their learnings and mistakes. They have proven techniques
that make it easier to write code that is straightforward, scalable,
highly performant, efficient, resilient, and maintainable. Using
these techniques would make it easy to read code and reduce the
likelihood of bugs. In this article, we will discuss some essential
tips for writing clean code in Go that would help in creating high-
quality, maintainable code.

Advantages of go language
•	 Fast: Golang is a compiled language. The code written in

Golang compiles into bytecode that runs directly on the
machine. This is faster than executing the code in interpreted
languages. Faster execution times result in high-performance
applications that process large volumes of data. The execution
speed of Golang meets expectations even at high loads. Go
quickly performs complex calculations, which is especially
important for products based on AI, in particular, Machine
Learning.

•	 Easy to Learn: The fact that Golang is easy to learn is just
another reason to utilize it. Software engineers can easily use
Go, especially if they already have a strong foundation in C
or Java. Programmers would quickly become accustomed
to Go's procedural approach, even though the syntax and
keywords may differ slightly.

•	 Concurrency: One of the biggest advantages of Go is its high
concurrency. The Goroutines are lightweight functions that
can be independent and run together. Since Goroutines are
non-blocking, they can handle numerous concurrent methods
with a memory footprint of just two kB. In theory, users can
execute millions of Goroutines without seeing any system
crashes or issues. These Goroutines are managed by Go
runtime. For messaging between Goroutines, channels are
used. This preserves the order of processing requests and
prevents blocking. To block the execution of certain functions
until the group of goroutines is completed, wait groups are
used. WaitGroups provides the synchronization.

•	 Efficient Memory Management: Efficient memory
management is important for large-scale applications that
deal with large volumes of data. Go runtime provides a
default and optimized Garbage collection mechanism. Go`s

United States of America

Citation: Pallavi Priya Patharlagadda (2024) Best Coding Practices to Improve Performance and Readability of Go Applications. Journal of Artificial Intelligence &
Cloud Computing. SRC/JAICC-E113.DOI: doi.org/10.47363/JAICC/2024(3)E113

J Arti Inte & Cloud Comp, 2024 Volume 3(1): 2-6

automated garbage collector manages memory allocation
and deallocation. Like other languages, Garbage Collector
doesn't stop the execution of the application while performing
Garbage collection. It runs alongside applications like other
goroutines. Hence, Developers can focus on the coding and
need not think about memory leakage.

Best Practices for Writing Effective go Application
Proper Indentation
Proper Indentation helps in making the code readable. Use spaces
or tabs consistently (preferably tabs) and follow the Go standard
convention for indentation.

package main

import "fmt"

func main() {
 for i := 0; i < 1; i++ {
 fmt.Println("Hello, Gophers !")
 }
}

Go provides a tool called Gofmt which formats the Go code. The
gofmt command reads the go program, and it will give you the
correctly arranged output after indentation and vertical alignment,
and it can even reformat the comments.

gofmt <filename> - prints the formatted code.
gofmt -w <filename>- formats the code and updates the file.
gofmt </path/to/ package> - This will format the whole package.

Error Handling
Errors in Go are values. Return errors from the function and avoid
silent error handling (e.g., using '_' for unused variables). Ignoring
errors can cause unexpected behavior and increase the difficulty of
debugging your code. Utilize Go's built-in error-handling system
for handling errors.

Below is an example of bad practice.
f, err := os.Open("filename.txt")
if err == nil {
 // work on f
}

We are just checking for the success case and not specifying what
should happen/return in case of failure. This is a bad practice.
Instead, we should handle this way.

Func
f, err := os.Open("filename.txt")
if err != nil {
 return err
}
defer f.Close()
// work on f

We are catching the error and returning the error to the caller.
The calling function can then decide how to proceed in the error
scenario. Also, when addressing an error, think about providing
more details to the caller. If required, choose to add a structure
with errors and other details that the caller would be interested
in. This would provide valuable information for debugging and
troubleshooting even if the problem occurs in production.

Caution: Please make sure not to return or log any Personal
Identifiable Information.
Error handling provides the below benefits.

Safety: Error handling makes sure that unforeseen problems don't
trigger a panic or sudden program crash.
CLARITY: It helps you find potential issues in the code and
make it easier to comprehend by using explicit error handling.

Few more best practices during error handling
•	 Errors can be wrapped using the %w verb or inserted into

a structured error (such as fs.PathError) that implements
Unwrap() error. Error chains are created by wrapped errors,
where a new entry is added to the front of the chain with each
new layer of wrapping. The Unwrap () error method can be
used to navigate the error chain.

•	 Refrain from duplication. It's usually preferable to let the
caller handle any errors you return rather than logging them
yourself. The caller has the option to log the mistake or
possibly use rate-limit logging giving up on the program
entirely or trying to recover. Regardless, allowing the caller
to take control prevents log spam.

•	 Use a log. Error carefully. ERROR level logging causes a
flush and is more expensive than lower logging levels. Your
code's performance may be greatly affected by this. So, It is
always a best practice to have notifications at the error level
that should be actionable rather than "more serious" than a
warning.

•	 Errors arising from program initialization, like configuration
and bad flags, ought to be transmitted to the main, which ought
to make a call to log. Exit with an error message outlining
the solution. In these circumstances, log. fatal should not
be utilized since an actionable message written by humans
is likely to be more valuable than a stack trace that points
at the check.

•	 Avoid the temptation to recover panics to prevent crashes, as
this may spread a tainted state. Code review and tests should
discover bugs such as accessing an element of a slice that
is out of bounds. The more you go from the panic, the less
information you have about the program's current status which
can include holding locks or other resources. Subsequently,
the application can create more unforeseen failure modes
that could exacerbate the difficulty in diagnosing the issue.
Instead, use monitoring tools to identify unexpected failures
and prioritize fixing associated issues rather than attempting
to address unforeseen panics in code.

Avoid Repetition when Possible
If you want to use structures in multiple places like controllers
and models. Create one common file, and there you can create
the structures. Below is one example

type Example struct {
 Name string
 Signature string
 Err error
}

This structure can be used across the packages instead of defining
every time.

Citation: Pallavi Priya Patharlagadda (2024) Best Coding Practices to Improve Performance and Readability of Go Applications. Journal of Artificial Intelligence &
Cloud Computing. SRC/JAICC-E113.DOI: doi.org/10.47363/JAICC/2024(3)E113

J Arti Inte & Cloud Comp, 2024 Volume 3(1): 3-6

Follow Naming Convention
Variable names must be brief and unambiguous, stating the value
of the variable. Steer clear of names that are very generic or made
up of only one letter. Using descriptive yet short variable names
is a good general rule of thumb. Below is an example:

// bad
var x int

// good
var numStudents int

The names of functions and methods should be precise, and
descriptive, and explain what the function or method accomplishes.
Use verbs to describe the action the function or method performs.
For example:

// bad
func x() {
}

// good
func calculateAverage(nums []float64) float64 {
}

Follow Single Responsibility Principle
Every method or function should have a single responsibility. A
function or method becomes more difficult to read and comprehend
if it performs several tasks. It also makes testing and maintenance
more challenging. For Example:

// bad
func calculateAverageAndSum(nums []float64) (float64, float64)
{}

// good
func calculateAverage(nums []float64) float64 {}
func calculateSum(nums []float64) float64 {}

Avoid using Global Variables
Reduce the number of global variables you utilize. These can
result in unanticipated behavior making debugging difficult, and
code reuse can be hampered. Additionally, they may add needless
dependencies between various program components and can
cause potential race conditions in concurrent programs. Use local
variables instead, send data via function arguments, and return
values. For example,

// bad
var count int

func incrementCount() {
 count++
}// good
func incrementCount(count int) int {
 return count + 1
}

Use Interfaces for Abstraction
To write flexible and maintainable Go code, one must have
a solid understanding of Go interfaces. Unlike in many other

languages, interfaces in Go are types that provide sets of methods,
nonetheless, they are implemented implicitly. This indicates that
a type can implement an interface without making any explicit
declarations by only implementing its methods. This feature
encourages "composition over inheritance," a design philosophy
that results in code that is more modular and decoupled. Instead of
being in the same package as the implementing struct, interfaces
should be specified in the package in which they are utilized. Only
the package that uses the interface knows the required methods.
Take note that you accept interfaces and return structs.

In Go, simplicity and relevance are key factors to consider while
creating reusable and clean interfaces. Interfaces should be small
and focused, usually specifying one or two methods. Interfaces
promote code reusability and enhance the readability of your
codebase by creating interfaces that are precisely specified and
strongly aligned with certain actions.

Overgeneralizing an interface or designing an interface with an
excessive number of methods are two examples of interface abuse.
Interfaces that are too generic may result in types having poorly
defined responsibilities, which makes the code more difficult
to read and update. An interface with an excessive number of
methods may result in bloated applications, where types are
forced to implement unnecessary methods, which goes against the
minimalist interface design idea. Below is an example interface.

// Define the Shape interface
type Shape interface {
 Area() float64
}

// Square struct
type Square struct {
 Side float64
}

// Circle struct
type Circle struct {
 Radius float64
}

// Implement the Area method for Square
func (s Square) Area() float64 {
 return s.Side *s,Side
}

// Implement the Area method for Circle
func (c Circle) Area() float64 {
 return math.Pi * c.Radius * c.Radius
}

Use Defer for Resource Cleanup
By using defer, you may postpone a function's execution until
the surrounding function has finished. Program panics will result
in the execution of defers. It is frequently used for operations
such as file closure, mutex unlocking, and resource release. This
guarantees that cleaning activities are carried out even when in
error situations. Below is an example.
// Open the file "sample.txt"
 file, err := os.Open("sample.txt")
 if err != nil {

Citation: Pallavi Priya Patharlagadda (2024) Best Coding Practices to Improve Performance and Readability of Go Applications. Journal of Artificial Intelligence &
Cloud Computing. SRC/JAICC-E113.DOI: doi.org/10.47363/JAICC/2024(3)E113

J Arti Inte & Cloud Comp, 2024 Volume 3(1): 4-6

 return err // Exit the program on error
 }
 defer file.Close() // Ensure the file is closed when the function exits

 // Perform some actions on the file

Use go Routines for Concurrency
One of Go's most unique characteristics is its concurrency
architecture, which is based on goroutines and channels.
Goroutines are lightweight, concurrent threads managed by the
Go runtime, and channels are the routes through which goroutines
interact, synchronizing execution and sharing data. Compared to
conventional thread-based concurrency models, this paradigm
enables programmers to build concurrent code that is simpler to
comprehend and maintain. Use goroutines to improve performance
when handling activities that may be completed simultaneously.

The efficient usage of goroutines and channels is a key component
in the implementation of typical concurrency patterns in Go. The
'producer-consumer' pattern is a prevalent one, wherein one or
more goroutines generate data, while others utilize it. The data
flow across go routines is facilitated via channels.
It is essential in concurrent programming to stay away from
race situations and deadlocks. Unpredictable outcomes might
arise from race situations, which occur when several goroutines
access shared resources without proper synchronization. Go's race
detector is a great resource for spotting these kinds of problems.
To prevent race conditions, provide appropriate synchronization
using mutexes and channels. Conversely, deadlocks happen when
processes are waiting on one another, which results in a halt. To
prevent these problems, goroutine interactions and channel use
must be carefully designed. Ensuring that all channels are properly
closed helps in avoiding go leaks. Additionally, it is regarded as
a good practice to stay away from unbuffered channels when not
required. Here is a sample Go program that uses Goroutines and
a wait group.

func Samplefunction (i int, wg *sync.WaitGroup) {
	 // Do some processing
	 wg.Done()
}

func main() {
	 no := 3
	 var wg sync.WaitGroup
	 for i := 0; i < no; i++ {
		 wg.Add(1)
		 go Samplefunction(i, &wg)
	 }
	 wg.Wait()
	 fmt.Println("All go routines finished executing")
}

Use Pointers only if Required
GoLang's improved memory allocation makes data passing by
value efficient. When dealing with bigger data structures or when
in-place adjustments are unavoidable, utilize pointers sparingly
to minimize needless copying.

type Person struct {
 name string
 age int
}

func main() {
 // instance of the struct Person
 person1 := Person{"Alice", 25}

 // create a struct pointer
 var ptr *Person
 ptr = &person1

 // print struct instance
 SaveToDB(person1)
}

Handle Panics with Recover
To cautiously manage panics and avoid application crashes, use the
recover function. Panics in Go are a type of unexpected runtime
error that might cause your application to crash. However, Go
has a capability called recovery to subtly manage panics. Here
is an example.

func possiblePanic() {
 defer func() {
 if r := recover(); r != nil {
 // Recover from the panic and handle it gracefully
 fmt.Println("Recovered from panic:", r)
 }
 }()

 // Simulate a panic condition
 panic("Oops! Something went wrong.")
}

func main() {

 // Call the risky operation within a function that recovers from
panics
 possiblePanic()
}

Add Comments to the Code
To clarify a function's intent, arguments, and return values, add
comments to the function. Additionally, describe the package's
purpose as comments at the start of your Go files. Single-line
comments can be provided using `//` and multi-line comments
can be provided using `/* */`. Follow the `godoc` format for
commenting. Below is an example.

package main

import "fmt"

// This is the main package of our Go program.
// It contains the entry point (main) function.
func main() {
	 userName := "Bob"
 greeting := greetUser(userName)
}

/* greetUser greets a user by name.

 Parameters:
 name (string): The name of the user to greet.
 Returns:
 string: The greeting message.
 */

Citation: Pallavi Priya Patharlagadda (2024) Best Coding Practices to Improve Performance and Readability of Go Applications. Journal of Artificial Intelligence &
Cloud Computing. SRC/JAICC-E113.DOI: doi.org/10.47363/JAICC/2024(3)E113

J Arti Inte & Cloud Comp, 2024 Volume 3(1): 5-6

func greetUser(name string) string {
 return "Hello, " + name + "!"
}

Give Composite Literal Precedence over Constructor
Functions
Instead of using constructor functions, generate structure instances
using composite literals. Composite literals have several benefits
like Readability, Concision, and Flexibility over constructor
functions. Here is an example.

type Person struct {
 FirstName string // First name of the person
 LastName string // Last name of the person
 Age int // Age of the person
}

func main() {
 // Using a composite literal to create a Person instance
 person := Person{
 FirstName: "Alice", // Initialize the FirstName field
 LastName: "Bob", // Initialize the LastName field
 Age: 35, // Initialize the Age field
 }

 // Printing the person's information
 fmt.Println("Person Details:")
 fmt.Println("First Name:", person.FirstName)
 fmt.Println("Last Name:", person.LastName)
 fmt.Println("Age:", person.Age)
}

Use Explicit Return Values Instead of Named Return Values
for Readability
Although named return values are frequently used in Go, they
may confuse code, particularly in bigger codebases. Hence it is
recommended to use Explicit return values. Here is an example.

// namedReturn demonstrates named return values.
func namedReturn(x, y int) (result int) {
 result = x + y
 return
}

// explicitReturn demonstrates explicit return values.
func explicitReturn(x, y int) int {
 return x + y
}

Utilize go Testing Framework
Creating dependable and maintainable code in Go begins with
writing efficient tests. Writing and running tests are made simple
by the substantial support for testing provided by the Go standard
library. Go's testing philosophy recommends creating tests in test
go files in addition to your code. This approach promotes test-
driven development (TDD) and makes it simple to maintain tests
as the codebase evolves.

Go code benchmarking is a useful technique, particularly for
applications that depend on speed. Writing benchmark tests,
which quantify the execution time of your code, is supported
by Go's integrated testing infrastructure. These benchmarks are
very helpful in pinpointing areas of performance congestion and
confirming the effects of improvements. They are defined similarly

to unit tests but use the Benchmark function prefix and are run
using the go test -bench command.

Go testing frameworks and tools go beyond the built-in library.
Mocking and asserting may be done with tools like GoMock or
Testify, which offer more advanced features for testing intricate
scenarios. Furthermore, coverage tools included in the Go toolchain,
such as go test-cover, assist in locating codebase sections that are
not sufficiently tested and guarantee comprehensive test coverage
across your project. Go developers may make sure that their code
works well in a variety of contexts and is both functionally correct
and efficient by utilizing these tools and techniques.

Performance Optimization using CPU and Memory Profiling
Profiling is calculating how much memory, CPU time, and other
resources your application uses to find bottlenecks. Several built-
in profiling tools, such as the pprof package, are available in Go
and may be used to collect comprehensive performance statistics.
Knowing how your application performs in a production-like
setting and where improvements will have the most impact is
made possible by this data.

Finding the processes that consume most of the CPU time is
made easier with the aid of CPU profiling. Conversely, memory
profiling assists in identifying regions of inefficient memory
utilization. Following the identification of bottlenecks, attention is
directed to improving these areas, which may entail modifications
to algorithms, the creation of more effective data structures, or
concurrency improvements.

Numerous blogs and forums within the Go community offer real-
world experiences of how performance problems were found and
fixed. These case studies can provide a wealth of information on
useful performance adjustments in Go.

Avoid Shadowing of Variables
When a new variable with the same name is declared within a
smaller scope, it's known as shadowing of variables and might
result in unexpected behavior. Within that scope, it renders the
outside variable of the same name invisible. To avoid confusion, do
not shadow variables within nested scopes. Below is the example

x:= 10
 fmt.Println("Outer x:", x)

 // Enter an inner scope with a new variable 'x' shadowing the
outer 'x'.
 if true {
 x := 5 // Shadowing occurs here
 fmt.Println("Inner x:", x)
 }

 // The outer 'x' remains unchanged and is still accessible.
 fmt.Println("Outer x after inner scope:", x) // Print the outer
'x', which is 10.

CONCLUSION
 A thorough grasp of GoLang's design principles and best practices
is necessary to write effective code. By sticking to idiomatic
code patterns and applying benchmarks and profiling tools,
developers may ensure that their systems operate effectively and
give optimal performance. It is important to maintain a balance
between readability and efficiency, as too intricate optimizations
may result in less maintainable code. These best practices are

Citation: Pallavi Priya Patharlagadda (2024) Best Coding Practices to Improve Performance and Readability of Go Applications. Journal of Artificial Intelligence &
Cloud Computing. SRC/JAICC-E113.DOI: doi.org/10.47363/JAICC/2024(3)E113

J Arti Inte & Cloud Comp, 2024 Volume 3(1): 6-6

intended to help you write more reliable, manageable, and effective
Go code. They range from effective usage of goroutines and
appropriate error handling to performance optimization. Keeping
code legible, simple, and manageable is the fundamental goal.
Go places a strong emphasis on writing readable code that is
straightforward and succinct rather than complex. Keeping this
in mind can help you make choices that are consistent with Go's
design principles [1-30].

References
1.	 https://go.dev/doc/effective_go
2.	 https://go.dev/doc/code
3.	 https://google.github.io/styleguide/go/best-practices.html
4.	 https://medium.com/@golangda/golang-quick-reference-top-

20-best-coding-practices-c0cea6a43f20
5.	 https://medium.com/thirdfort/go-best-practices-how-to-code-

comfortably-60118a27def8
6.	 https://go.dev/talks/2013/bestpractices.slide#1
7.	 https://github.com/pthethanh/effective-go
8.	 https://codefinity.com/blog/Golang-10-Best-Practices
9.	 https://www.cloudbees.com/blog/best-practices-for-a-new-

go-developer#andrew-gerrand
10.	 https://aptori.dev/blog/go-secure-coding-best-practices
11.	 https://dave.cheney.net/practical-go/presentations/qcon-

china.html
12.	 https://blog.stackademic.com/best-practices-in-go-golang-

writing-clean-efficient-and-maintainable-code-dccf61542b57
13.	 https://mobidev.biz/blog/golang-app-development-best-

practices-case-studies

14.	 https://hyperskill.org/learn/step/24920
15.	 https://www.codingexplorations.com/blog/writing-efficient-

go-code-best-practices-for-performant-and-idiomatic-
programs

16.	 https://peter.bourgon.org/go-best-practices-2016/
17.	 https://golang.withcodeexample.com/blog/introduction-to-

golang-best-practices/
18.	 https://gochronicles.com/writing-go-code-like-a-pro/
19.	 https://www.xenonstack.com/insights/best-practices-of-

golang
20.	 https://dev.to/apssouza22/golang-best-practices-4fnk
21.	 https://thegodev.com/best-practices-and-conventions/
22.	 https://golangdocs.com/golang-best-practices
23.	 https://levelup.gitconnected.com/10-essential-tips-for-

writing-clean-code-in-golang-2d78245a6f40
24.	 https://clouddevs.com/go/deploying-applications/
25.	 https://tutorialedge.net/golang/go-project-structure-best-

practices/
26.	 https://www.mytectra.com/tutorials/golang/best-practices-

and-tips
27.	 https://www.uptech.team/blog/why-use-golang-for-your-

project
28.	 https://shaharia.com/blog/writing-clean-and-efficient-code-

in-go/
29.	 https://www.linkedin.com/pulse/how-write-high-

performance-code-golang-using-go-routines-kevin-zhou/
30.	 https://careerkarma.com/blog/golang-best-practices/

Copyright: ©2024 Pallavi Priya Patharlagadda. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

