
Open Access

Journal of Marketing & Supply
Chain Management

ISSN: 2754-6683

J Market & Supply Chain Managem, 2022 Volume 1(2): 1-3

Review Article

Canary Deployment in PEGA Platform: Enhancing Software Release
Management
Aindrila Ghorai

*Corresponding author
Aindrila Ghorai, Lead Architect, USA.

Received: June 06, 2022; Accepted: June 13, 2022; Published: June 20, 2022

Keywords: PEGA, Canary Development, Release Management,
Business Process Management, Customer Relationship
Management

Introduction
The Pega Platform is widely recognized for its capabilities in
automating business processes and delivering scalable applications.
As organizations increasingly rely on Pega for mission-critical
operations, the need for reliable and efficient deployment strategies
becomes paramount. Canary deployment offers a controlled
and systematic approach to releasing new features and updates,
allowing teams to monitor and mitigate potential issues before a
full-scale rollout.

Canary Deployment
Canary deployment is a strategy where new software versions are
released to a small, representative subset of users before a wider
rollout. This approach allows teams to observe the behavior of the
new release in a real-world environment and address any issues
that arise, reducing the risk of widespread disruption [1,2].

PEGA Platform
The Pega Platform is a comprehensive suite for BPM and CRM,
offering tools for application development, business process
automation, and customer engagement. It supports continuous
integration and continuous deployment (CI/CD) practices, making
it an ideal candidate for advanced deployment strategies like
canary deployment.

Research Scope/Objective
This paper aims to:
• Analyze the principles and benefits of canary deployment.
• Investigate the feasibility and implementation strategies of

canary deployment within the Pega Platform.
• Provide best practices and recommendations for organizations

considering canary deployment in their Pega environments.

Technical Implementation
Business Objective
The business aims to implement iterative changes in the production
environment as part of scheduled releases. To mitigate potential
operational impacts, specific changes within the overall deployment
package should initially be made available to a limited subset of
users. This pilot approach will allow the business to assess the
performance and stability of these changes. Upon successful
validation by the pilot user group, these changes will be gradually
rolled out to the broader user base.

Problem Statement
Canary deployment is a prevalent strategy in contemporary
software technology stacks. Modern applications typically run
code in containers, which fetch code from repositories that are
version-controlled. This setup facilitates the implementation of
canary deployments, allowing different repository versions to be
targeted and gradually releasing changes from a small subset of

Lead Architect, USA

ABSTRACT
Canary deployment is a progressive strategy for software releases, minimizing risks by gradually rolling out changes to a small subset of users before wider
deployment. This paper investigates the implementation of canary deployment within the Pega Platform, a robust technology for Business Process Management
(BPM) and Customer Relationship Management (CRM). It explores the benefits, challenges, and methodologies of canary deployment, presenting empirical
evidence and best practices for its successful adoption in Pega environments. The research aims to provide comprehensive insights for practitioners and
organizations seeking to enhance their release management processes and achieve smoother, less disruptive software updates.

Citation: Aindrila Ghorai (2022) Canary Deployment in PEGA Platform: Enhancing Software Release Management. Journal of Marketing & Supply Chain Management.
SRC/JMSCM-183. DOI: doi.org/10.47363/JMSCM/2022(1)157

J Market & Supply Chain Managem, 2022 Volume 1(2): 2-3

users to the entire user population.

However, with Pega, the scenario is different as the source
code resides in the database. The code is served from the rules
schema within the Pega database, presenting unique challenges
for implementing canary deployments.

Solution Strategies
For the purpose of this paper, we will examine two features, feature
1 and Feature 2. The business objective is to deploy Feature 1
universally to all users, including pilot users. Conversely, feature
2 will initially be released exclusively to the pilot user group.
Following successful validation and approval from the pilot users,
feature 2 will then be incrementally deployed to the entire user
base.

There can be a few methods to achieve this objective. We will
analyze these options using the aforementioned deployment
scenario involving two distinct feature sets.

Strategy #1: Leveraging Ruleset Version/Application
Management feature
• Feature 1 is developed in application version 01.01.01.
• Feature 2 is developed in application version 01.01.02,

ensuring it includes the rules from Feature
• A dedicated access group is created for pilot users that will

point to version 01.01.02.
• Upon successful validation, the access group for the remaining

users is updated to point to version 01.01.02.

Consideration of Strategy #1 - Each subsequent change of this
type must be developed in two separate application versions. In
the event of Hazel cast synchronization issues between different
machines, it may be necessary to downgrade an access group or
point it to a higher application version. However, these changes
might not take effect without a server restart to reset Hazel cast
synchronization.

Strategy 2: Leveraging Toggle Management feature
This represents the most proximal mechanism providing canary
deployment functionality out-of-the-box (OOTB) while requires
minimal modifications post the initial setup. Subsequent sections
in this paper will delve into the technical execution steps of this
strategy.

Execution of Strategy #2
• The Toggle Management feature is accessible from the Dev

Studio interface by navigating through Configure > System
> Release > Toggles.

• To create a new toggle, users should click on the “Create new
toggle” button. Subsequently, they need to input the toggle’s
name and designate the appropriate access group or user for
whom the feature activation is intended.

• Upon clicking the “Submit” button, the Toggle feature
element is generated.

• Aforementioned When rule is utilized within the code relevant
to Feature Set 2, which requires validation by pilot users.

• Following the validation process, the feature can be globally
enabled for all users.

• When the Toggle feature undergoes an update, allowing the
selection between options such as “Enable toggle for all,”
“Only my access group,” or “Only myself,” a data instance is
generated in the pr_data_toggle table within the data schema.
During runtime, the associated When rule queries this entry
within the data schema to verify if the setting is enabled. If
enabled, the When rule evaluates to true, thereby exposing
Feature Set 2 to the respective pilot user group. This method of
runtime verification against a data instance directly minimizes
the likelihood of encountering hazel cast synchronization
issues.

• In scenarios where a feature set is executed in a background
context, it is imperative to create a toggle feature for the access
group utilized to execute the specific feature set.

Benefits of Canary Deployment
A/B Testing: Canary deployments facilitate A/B testing by
allowing two versions of the application to be presented to users.
This enables the collection of empirical data on user interactions
and preferences, determining which version performs better.

Capacity Testing: Direct capacity testing in a large-scale
production environment is often impractical. Canary deployments
incrementally shift users to the new version, thereby uncovering
performance issues progressively and providing insights into
system capacity under real-world conditions.

Citation: Aindrila Ghorai (2022) Canary Deployment in PEGA Platform: Enhancing Software Release Management. Journal of Marketing & Supply Chain Management.
SRC/JMSCM-183. DOI: doi.org/10.47363/JMSCM/2022(1)157

J Market & Supply Chain Managem, 2022 Volume 1(2): 3-3

Copyright: ©2022 Aindrila Ghorai. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

User Feedback: Developers gain critical insights through
feedback from actual users interacting with the canary release,
allowing for informed improvements and adjustments based on
real-world usage patterns.

Minimal Downtime: Unlike blue-green deployments, canary
deployments ensure minimal downtime. In the event of an issue,
the deployment can be swiftly rolled back to the previous stable
version, maintaining continuous system availability [2].

Best Practices
Start Small: Begin with a very small percentage of users and
gradually increase the traffic based on system stability and
performance.

Rollback Strategy: Implement a proper rollback mechanism to
swiftly revert to the previous stable version if issues are detected.

Continuous Monitoring: Use comprehensive monitoring tools
to track performance metrics and user feedback continuously.

Stakeholder Communication: Keep all stakeholders informed
about the deployment process and potential impacts.

Conclusion
Canary deployment within the Pega Platform offers a strategic
advantage for organizations seeking to enhance their software
release processes. By reducing risks, improving user satisfaction,
and enabling data-driven decisions, canary deployment can
significantly contribute to more reliable and efficient software
updates. This research provides a foundational understanding and
practical guidelines for implementing canary deployment in Pega
environments, paving the way for smoother and more controlled
software releases.

References
1. Sato D (2022) https://martinfowler.com/bliki/CanaryRelease.

html, https://martinfowler.com/bliki/CanaryRelease.html.
2. Rastogi A (2022) Canary Deployment Strategy: Benefits,

Constraints And How It Can Be Used For Application Traffic
Management https://www.appviewx.com/blogs/canary-
deployment-strategy-benefits-constraints-and-how-it-can-
be-used-for-application-traffic-management/.

