
J Eng App Sci Technol, 2022 Volume 4(4): 1-6

Review Article Open Access

Comprehensive Analysis of Modern Application Rendering Strategies:
Enhancing Web and Mobile User Experiences

USA

Venkata Naga Sai Kiran Challa

Journal of Engineering and Applied
Sciences Technology

ISSN: 2634 - 8853

*Corresponding author
Venkata Naga Sai Kiran Challa, USA.

Received: November 05, 2022; Accepted: November 08, 2022; Published: November 18, 2022

ABSTRACT
In today's fast-paced world of application development, how we render applications is crucial for delivering outstanding user experiences. This paper
delves into the diverse rendering strategies used in modern web and mobile applications. For web applications, we explore Client-Side Rendering (CSR),
Server-Side Rendering (SSR), Static Site Generation (SSG), Incremental Static Regeneration (ISR), Progressive Hydration, Streaming SSR, and Edge-Side
Rendering (ESR). On the mobile front, we cover Native Rendering, Hybrid Rendering, Cross-Platform Rendering, Progressive Web Apps (PWAs), Server-
Driven UI (SDUI), and Instant Apps. Drawing on real-world examples from Meta Platforms Inc., we showcase the practical benefits and challenges of each
approach. Additionally, we discuss future improvements through AI/ML optimizations, highlighting the potential for personalized and high-performance
applications. This paper aims to provide a clear and comprehensive guide to modern rendering techniques, helping developers create more interactive,
scalable, and efficient applications.

Keywords: Application Rendering, Client-Side Rendering,
Server-Side Rendering, Static Site Generation, Incremental Static
Regeneration, Progressive Hydration, Streaming SSR, Edge-
Side Rendering, Native Rendering, Hybrid Rendering, Cross-
Platform Rendering, Progressive Web Apps, Server-Driven UI,
Instant Apps, AI/ML Optimizations, Web Development, Mobile
Development, User Experience, Meta Platforms Inc

Introduction
The development of mobile applications has gained prominence
in the technological world, ceasing to be a trend and becoming
a reality. Countless apps are launched and it's not uncommon to
read a story about someone who has become a millionaire after
developing a mobile app, usually with simple functionalities. As
with any new technology, these cases have advantages as well
as problems. One of the biggest problems involves supporting a
quality characteristic, called portability by ISO/IEC 9126 (2000),
to meet the diversity of mobile platforms available on the market.

Developing an application that serves the main platforms (Android,
Windows Phone and iOS) can become a headache due to the high
cost of programming hours for all of them, considering the time
needed to get the application up and running without any problems.
According to Nunes (2013), there is a common need for many
companies to create applications or even mobile pages that serve
a large part of the market and that work correctly on the most
diverse existing platforms such as Android, IOS, Windows Phone,
BlackBerry, among others.

The general objective of this work deals with a central issue
regarding the diversity of platforms available for developing

mobile applications on the market. To this end, we sought to
elucidate the question: how can we develop a mobile application
that works on several platforms using the same source code?

The methodological approach adopted in this work is
bibliographical research, since a survey was carried out in books
and scientific academic articles on strategies for developing
applications that work on the main platforms from a single
computer implementation.

As an answer to the central problem-question, there are tools
available on the market, such as the open-source framework1 called
Cordova, provided by Apache Community, which makes it possible
to package an application that uses standard web technologies
(HTML, CSS and Java Script) for Mobile applications, i.e. with
a single source code it is possible to generate an application that
works on the main platforms, being able to access native resources
of each of them without the need to develop any line of native
code. Example: Android platform, native Java code.

Thus, the relevance of this work lies in the importance of
developing mobile applications that serve the main platforms on
the market, Android, iOS and Windows Phone, in a more viable
way. Developing the same application for each desired platform
in its respective programming language, as native apps are built,
generates excessive work and high development costs.

Theoretical Background
Before developing a mobile application, we must first analyze the
target audience and the platforms on which it will operate. When
thinking about developing mobile applications, it's important

Citation: Venkata Naga Sai Kiran Challa (2022) Comprehensive Analysis of Modern Application Rendering Strategies: Enhancing Web and Mobile User Experiences.
Journal of Engineering and Applied Sciences Technology. SRC/JEAST-361. DOI: doi.org/10.47363/JEAST/2022(4)248

 Volume 4(4): 2-6J Eng App Sci Technol, 2022

to think about which platforms they should be made available
on. Android is one of the most widely used platforms in the
smartphone world, especially in Brazil. iOS is widely used and
its main audience is the upper social classes, which includes
users with greater purchasing power. Windows Phone is a good
third option, which is growing rapidly. And there are still other
platforms on the market, such as BlackBerry, Tizen and others.

Most mobile applications aim to serve a large mass of users, so
it is recommended that the application works on at least the three
main platforms on the market: Android, iOS and Windows Phone.

According to Lopes (2015 p. 01), "developing for different platforms
has been a major problem because each platform supports a different
programming language. For example: the Android platform has
many Java features, the iOS platform uses native Objective C code,
and the Windows Phone platform supports the .Net framework,
generally the C# language. Each platform has its own combination
of language and, above all, specific APIs".

Developing a mobile application that caters for the main platforms
on the market can become a headache due to the high cost of
specialized labor (programmers) with technical competence in
each of the programming languages required. Another relevant
aspect is the time needed to get the mobile application up and
running without any problems (bugs).

This brings us straight to the question: how do you develop a
mobile application that works on several platforms using the
same source code?

This is where cross-platform applications come in. The company
Avanti! Tecnologia & Marketing (2015), published and defended
the idea that building a hybrid app is faster and cheaper than
developing native apps. The reduction in time is due to the
possibility of running the hybrid app on different platforms.
Because of this feature, there is no need to develop the application
several times to adapt it to different platforms, thus allowing
for less impact on the budget. In situations that don't require
high application performance, many companies also opt for
hybrid application development or when the target audience is
heterogeneous. In these cases, more generic solutions that can be
used on multiple platforms, despite the high cost of development,
have significant advantages.

The development of a multiplatform application can be done
using certain market frameworks, such as Cordova (open-source),
which makes it possible to package an application developed
using HTML, CSS and Java Script web technologies for mobile
applications.

Cordova is currently one of the most common solutions for
developing multi-platform applications. To build and run
applications, it uses one of the greatest advantages of the web,
having standardized languages and the browser as the execution
environment. According to Lopes (2016 p. 05), "[...] They are
installable Apps that you can publish in stores, and can use
native features of the platform, but are written in HTML, CSS
and JavaScript".

This way, from the same source code, it's possible to generate
a mobile application that works on the main platforms on the

market and can access native features of each one. Without the
need to develop any specific lines of code for the desired platform.
Developing a mobile application using standard web technologies
(HTML, CSS and JavaScript) is made easy by using a framework
such as Cordova, which is responsible for encapsulating and
transforming the source code for mobile application platforms.
In this context, Lopes (2016, p. 5) states that: Just writing HTML,
CSS and JS is not enough to have an app in the end. So, what
Cordova does is provide a native shell for our application that is
responsible for bringing up a browser that will execute our code.
Cordova's role is simply to create this browser window for us, and
to communicate our code calls to native calls when necessary.

But how does this framework work? Is it simple to develop a
mobile application using just one programming language that
serves the main platforms on the market? It's clear that these
questions are on the minds of anyone looking to develop a
multiplatform application. First of all, we need to understand a
little more about hybrid applications. Hybrid apps are apps that
use standard web technologies (HTML, CSS and JavaScript) and
can access the native features of each mobile platform, such as:
camera, GPS, accelerometer, etc. They are considered to be hybrid
applications because, at the same time as they are developed for
the web, they access the native resources of the devices on which
they are running. As described in the IBM 2013 article, hybrid
applications contain two elements: a web component, based on
a web programming language, and a native container or bridge,
which allows access to the native resources of the platform and
device.

The Apache Cordova Open Source project is the most widely
used container and consists of a set of support tools that allow the
web application to access the native resources of the device. The
hybrid application has its main code developed in HTML5 and
is wrapped in a container, packaged as a native app and therefore
residing in an app store (IBM, 2013).

The Cordova framework must be used by the developer to build
a web application (WebApp). The WebApp can be accessed from
a browser provided by the framework, called WebView, which
allows access to the native resources of a Mobile device from a set
of Plugins provided by Cordova. Both the WebView application
and the set of plug-ins have cross-platform characteristics.

According to Silva (2016), hybrid mobile apps are built with
a combination of web technologies such as HTML, CSS and
JavaScript. The main difference, using Cordova, is that hybrid apps
are accessed by the WebView app, which in turn has access to the
native resources of a mobile platform. This approach allows access
to device resources such as the accelerometer, camera, contacts
and much more. These resources are generally restricted from
access by mobile browsers. In addition, the Cordova framework
allows other native interface elements (plugins) to be included
when necessary (ANDRADE, 2016).

The WebView is the way in which a web application is viewed
as an app on mobile devices, representing a relevant layer of
the hybrid application. As we can see in figure 1, Cordova uses
WebView to access both the source code (Web App) and the
device's native resources (Cordova plugins) via specific APIs, thus
achieving communication with the desired platform.

Citation: Venkata Naga Sai Kiran Challa (2022) Comprehensive Analysis of Modern Application Rendering Strategies: Enhancing Web and Mobile User Experiences.
Journal of Engineering and Applied Sciences Technology. SRC/JEAST-361. DOI: doi.org/10.47363/JEAST/2022(4)248

 Volume 4(4): 3-6J Eng App Sci Technol, 2022

Figure 1: Architecture of the Hybrid Application Using Cordova
Source: Cordova [1]

You can also see that all access to the resources of the different
platforms on the market is supported by the set of APIs that
the Cordova Framework makes available to developers. There
are several native code plug-ins, each of which has a function
for accessing resources from different platforms. It should
be remembered that the use of these APIs always follows the
same implementation pattern, i.e. there is no need to change the
implementation of the APIs to access the device's native resources,
regardless of the platform used to run the developed application.

Lopes (2016) reports that, when using Cordova, the web source
code is packaged to become a normal application. These apps are
closer to native apps than web apps. In this sense, Lopes (2016,
p.7) indicates that:

[...] They have the same advantages and shortcomings of normal
Apps: they need to be generated for each platform, they need to be
made available in each manufacturer's store, and they are subject
to the rules of each platform. They're not browsable, they're not
on the internet, and they don't have URLs. However, they are fully
integrated into the device. They can be installed and used offline.
They can use platform APIs and use advanced hardware resources.
They can be advertised in stores and sold easily to users.

Lopes makes it clear that although the applications are developed
in a web programming language, they can be run normally without
the need for an internet connection. This means that a hybrid
application developed using the Cordova framework is much
closer to a native application than to a web application. The above
quote also describes that in order for the hybrid application to be
compatible with the desired platforms, even though they are the
same source code, it is necessary to package it, with the help of
Cordova, for each of them.

Building a hybrid application is easier than it looks. This is due
to the use of a well-known application development format, web
development, which uses standard web technologies (HTML,
CSS and JavaScript). Even to access the device's native resources.

Apache Cordova makes its framework available to various
development tools. This makes it even easier to use and increases
the production speed of the application. One of the most widely
used tools is Visual Studio from version 2013 onwards. An
example of a development tool using Cordova is Visual Studio
2013. The Cordova tools are released as a preview version. They
will be embedded as part of Visual Studio 2015. Microsoft (2016)
recommends and makes available for download Visual Studio
2015 RTM for developing applications using the Visual Studio
Tools for Apache Cordova plug-in. Now that we know some of
the characteristics associated with the functioning and difficulties
of developing a multiplatform application, we can analyze some
of the main advantages and disadvantages of building hybrid and
native applications.

Figure 2: Native vs. Hybrid Applications
Source: Ádames [1]

As highlighted in figure 2, the hybrid application requires less
technical knowledge from the programmer for its development,
since it always uses web programming regardless of the platform
in question.

According to Total Cross (2016), the great advantage is that it
only requires knowledge of web development and therefore costs
less to develop. It also stands out in terms of production time, as
it is built much faster and only once, unlike native apps. It offers
greater flexibility, in the sense that it can serve the main market
platforms, and this is certainly its greatest attraction. Another great
advantage of the hybrid application is the ease with which future
updates can be made available. The hybrid app is more suitable
because part of its code can be online and updated by the web
system within the app, without having to update the entire app or
send new versions to the stores (GOUVÊIA, 2015).

When it comes to a test app, the use of a hybrid mobile app also
comes first, because, as it is a test, it becomes more feasible to
invest less, both in time and costs, to analyze the public's reaction
and, depending on it, invest more in the app. In this context,
Gouveia (2015) states that "don't spend all your coins on an app
to see what happens". This statement defends the idea that it's
not worth developing a test app in native language when you
don't know the level of user acceptance for a new app. The best
option in this case is to develop it as a hybrid application, and
if it receives market acceptance, it can even be built as a native
application (when the focus is also on performance).

This set of advantages presents an interesting attraction associated
with developing a hybrid application in today's competitive
market: low development costs. This is undoubtedly the greatest
advantage of this type of application, since what companies are

Citation: Venkata Naga Sai Kiran Challa (2022) Comprehensive Analysis of Modern Application Rendering Strategies: Enhancing Web and Mobile User Experiences.
Journal of Engineering and Applied Sciences Technology. SRC/JEAST-361. DOI: doi.org/10.47363/JEAST/2022(4)248

 Volume 4(4): 4-6J Eng App Sci Technol, 2022

looking for most today is to reduce costs.

Compared to other types of application, native applications have
a much higher development cost, since they require developers
with specific knowledge for each platform.

Even with all these advantages, the world of hybrid applications
is perfect. As shown in figure 2, one of the biggest disadvantages
of hybrid apps is their performance. When an app requires a lot of
a mobile device's processing power, native apps come out ahead.

Due to the use of APIs to access the device's native resources, it
becomes slower. But this difference is only noticeable to the user
when a high processing rate is used.

Another disadvantage is that it doesn't have access to all the
device's native resources. These include background execution,
operating system notifications, additional information from the
accelerometer (in addition to detecting the coordinate axes in the
vertical and horizontal directions) and complex gestures. This
also applies to visual components, i.e. the screen components
responsible for the layout (graphical part) of the app. Because
of this, hybrid apps do not follow the standard screens known
to users of native apps, i.e. there is a variation in terms of user
experience and usability.

Figure 3: Hybrid vs Native Apps Comparison Table
Hybrid Native(android/

iOS)
Best

Graphics HTML,
Canvas, SVG

Native APIs Native

Performance Slow Fast Native

Natural
appearance

Emulator Real Appearance Native

Equipment
features

Others Total Native

Publication in
stores

Almost
Normal

Normal Native

Code reuse Total None Hybrid
Development
cost

Medium High Hybrid

Development
time

Low High Hybrid

Ease of
updating

Easy Medium Hybrid

Required
knowledge

HTML5, CSS
and Javascript

Java, ObjectiveC
and Swift

Learning curve Half Slow Hybrid

After presenting the concepts of multiplatform application
development and their main advantages and disadvantages, it
is interesting to analyze and compare a hybrid application with
a native application, so that you can choose the best option
depending on your needs.

Figure 3 shows a comparison of the main items taken into
consideration when developing a mobile application. Looking at
the items above, if a hybrid application meets your needs, then
it's a great option for your development, but if it's something very
specific and it doesn't meet your needs, then the option would be
to develop a native application.

Web Applications
Different rendering strategies play a critical role in shaping user
experiences. One such strategy is Client-Side Rendering (CSR),
where the server sends a minimal HTML file to the client. The client
then loads JavaScript to dynamically render the rest of the page.
CSR relies heavily on JavaScript for fetching data and building
the DOM dynamically. This approach is particularly effective for
Single Page Applications (SPAs), which allow users to interact
with the app without experiencing full-page reloads. CSR is ideal
when the initial load time is less critical than overall interactivity,
especially when client devices are sufficiently powerful and have
reliable internet connections. It efficiently manages client-state
and enhances interactivity. Popular frameworks for CSR include
React, Vue.js, and Angular. At Meta, for instance, the desktop
version of Facebook (facebook.com) is built using React. I was
involved in migrating the settings pages from basic HTML, CSS,
and JavaScript to React, enhancing the styling and utilizing Hack
(a typesafe version of PHP) for the backend and GraphQL for
API calls. To manage the immense traffic, which can amount to
millions of requests per second, we employed Relay, a GraphQL
client that scales effectively with the number of requests. This
implementation employs CSR for rendering.

Another important strategy is Server-Side Rendering (SSR), which
involves rendering web pages on the server before sending them
to the client. This approach delivers fully generated HTML,
improving initial load time and enhancing SEO. SSR is particularly
suitable for content-heavy websites and pages with infrequent
content changes. Popular frameworks for SSR include Next.js for
React, Nuxt.js for Vue.js, and Angular Universal. At Meta, while
most of Facebook's desktop app uses CSR, some pages, such as
certain Help Center articles, use SSR for the content portions that
do not change frequently. This allows these pages to benefit from
better SEO and faster initial loads.

Static Site Generation (SSG) is another strategy that generates
HTML at build time rather than on each request. The generated
static files can be cached and served by a CDN, making this
method highly scalable and ideal for blogs, documentation sites,
and similar content. Popular frameworks for SSG include Next.js
and Gatsby. At Meta, many internal documentation sites use SSG
for improved performance, with React as the base framework.

Incremental Static Regeneration (ISR) is a hybrid approach that
allows static pages to be regenerated incrementally after the site is
built. This combines the benefits of SSG with the ability to update
static content without a full site rebuild. ISR is particularly useful
for large sites where frequent content updates are needed. Next.
js is a popular framework that supports ISR.

Progressive Hydration is another strategy, where server-rendered
HTML is sent to the client, and JavaScript progressively enhances
parts of the page with interactivity. This method is useful when
quick initial load times are needed, but interactivity is added
gradually. Frameworks like React (with React.lazy and Suspense)
and Vue.js (with async components) support Progressive
Hydration.

Streaming SSR is an approach where parts of the HTML are
sent to the client as soon as they are ready, allowing the browser
to start rendering parts of the page while other parts are still
being generated. This is beneficial for complex applications
where minimizing initial load time is critical. React Suspense
for Data Fetching and Node.js streams are popular technologies

Citation: Venkata Naga Sai Kiran Challa (2022) Comprehensive Analysis of Modern Application Rendering Strategies: Enhancing Web and Mobile User Experiences.
Journal of Engineering and Applied Sciences Technology. SRC/JEAST-361. DOI: doi.org/10.47363/JEAST/2022(4)248

 Volume 4(4): 5-6J Eng App Sci Technol, 2022

for implementing Streaming SSR. For example, I worked on
the Facebook like button, a widely used component on the
Facebook website. The page is rendered as an SPA using CSR,
and components like the like button and comments use React
Suspense to display a loading state until the server responds with
user-specific data.

Edge-Side Rendering (ESR) involves rendering parts of the web
page at the edge, closer to the user, using edge computing resources.
This approach reduces latency and improves performance for
dynamic and personalized content. Technologies such as AWS
Lambda and Vercel Edge Functions are commonly used for
ESR. In modern web applications, many components can now
be implemented serverless, including databases, backend servers,
frontends, and caching, enhancing scalability and performance.

Mobile Applications
In the context of mobile applications, different rendering strategies
cater to various development needs and user experiences. Native
Rendering utilizes platform-specific libraries and frameworks,
offering the full benefits and earliest access to new features. This
approach is exemplified by technologies like Swift for iOS and
Kotlin/Java for Android. Hybrid Rendering takes a different
approach by allowing developers to write code once and run it on
multiple platforms. This method employs web technologies such as
HTML, CSS, and JavaScript, which are then wrapped in a native
container. Hybrid Rendering is particularly useful for simple UIs
and for situations where there is a time crunch or a large codebase
that can be shared across platforms. Popular frameworks for this
strategy include the Ionic Framework and Apache Cordova. Cross-
Platform Rendering offers another versatile solution, compiling
a single codebase into native code for multiple platforms. This
approach achieves near-native performance while enabling code
sharing across different platforms. Prominent frameworks in this
category are React Native, Flutter, and Xamarin. During my tenure
at Facebook, I contributed to redesigning parts of the mobile app,
particularly modifying legacy React Native code to make privacy
settings more accessible to users. Progressive Web Apps (PWAs)
represent a fusion of web and mobile technologies, delivering
native-like experiences on mobile devices. Built using standard
web technologies, PWAs offer features like offline support,
push notifications, and access to device hardware. This strategy
is beneficial for applications that need to work across various
devices with minimal development overhead and where reducing
installation friction is important. Technologies supporting PWAs
include the Web App Manifest, Angular, React, and Vue.js. Server-
Driven UI (SDUI) provides a dynamic and flexible approach by
allowing the server to control the structure and content of the UI. In
this model, the client renders the UI based on data and instructions
received from the server. SDUI is particularly advantageous for
applications that require frequent UI updates without redeploying
the client, and for scenarios where the server needs tight control
over presentation logic.

Comparison with Facebook
Although Facebook created and open-sourced React Native,
much of the code and features I implemented on the mobile side
are part of a new, confidential framework that leverages Server-
Driven UI (SDUI). The Facebook application now incorporates
a core rendering engine, capable of utilizing other engines such
as Safari from Apple and Chromium from Google. This core
engine's primary function is to interpret instructions received from
the server. When the app loads, it initializes this basic rendering
engine, which then fetches data and renders information on the

device according to the server's instructions. This approach
facilitates cross-platform development and enables rapid release
of new features, as the instructions for rendering are sent to the
pre-existing engine.

Instant Apps represent another innovation, allowing users to access
specific functionalities of an app without installing it entirely. This
is particularly useful for users who want to try out an app before
committing to installation or need quick access to a particular
feature. App Bundles are commonly used for this purpose.

Significant improvements can be made through AI and ML
optimizations, tailoring different views for different users on the
same page. By running various AI/ML models based on user data,
we can offer personalized versions of a website or application,
similar to how Netflix recommendations vary for each user. At
Facebook, we utilize data from multiple Facebook apps, such as
Facebook and Facebook Lite, to tailor the settings page to users'
preferences, highlighting the options they are most likely to adjust.

In the context of SDUI, the rendering engine is shipped as part
of the app, with rendering instructions provided by the server.
As mobile and desktop devices become more powerful, custom
models can be shipped alongside these rendering engines within
application bundles. These models can run locally on the device for
tasks that require privacy or less computational power, while more
demanding problems can be handled in the cloud. Model weights
can be updated by releasing newer versions of the application.

Furthermore, AI and app rendering models have vast potential
applications beyond mobile and desktop devices. In the automotive
industry, where technological growth has lagged despite its
long-established presence, OEMs can ship their own AI models,
leveraging the power of modern cars to run these models effectively.
SDUI can be used to deliver new features rapidly, providing users
with a consistent experience of regular updates. This approach can
also be extended to AR/VR applications, IoT devices, wearable
technology, and more, demonstrating the versatility and potential
of advanced rendering strategies in various domains.

Final Considerations
This work aimed to conceptualize the strategies for developing
multi platform applications and identify the main advantages and
disadvantages of this type of development. A literature search
and analysis of scientific articles on the subject was carried out
in order to gain a better understanding of the aspects involved in
developing mobile applications that work on different platforms
without the need for additional coding.

The results of the research in this article show that Cordova is one
of the main frameworks used as a basic tool for developing multi
platform mobile applications. Using this framework allows mobile
applications to work on the main platforms, such as Android, iOS
and Windows Phone.

The main advantages of using hybrid applications can be
summarized as follows: it requires less technical knowledge, so
less time is needed to learn the programming language used in
development (web development); it is flexible; it serves the main
platforms on the market using the same source code; it is easy to
provide future updates and it is ideal for building test applications
(prototypes). These advantages result in low development costs.

Citation: Venkata Naga Sai Kiran Challa (2022) Comprehensive Analysis of Modern Application Rendering Strategies: Enhancing Web and Mobile User Experiences.
Journal of Engineering and Applied Sciences Technology. SRC/JEAST-361. DOI: doi.org/10.47363/JEAST/2022(4)248

 Volume 4(4): 6-6J Eng App Sci Technol, 2022

Copyright: ©2022 Venkata Naga Sai Kiran Challa. This is an open-access
article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

The main disadvantages are: low performance, requiring greater
computational effort; not having access to all the device's native
resources, such as running in the background and operating system
notifications. One aspect that is also desirable is access to a greater
number of native components for building screens, since the
resources provided by the Cordova framework do not follow a
pattern of screens familiar to users of native applications, which
ends up compromising usability to some extent.

Despite this, it is possible to say that the development of
multiplatform applications has a great ally, Cordova, which has
facilitated the development of Mobile applications for various
platforms. In this way, it is possible to provide mobile applications
for a much larger number of users, since this approach allows the
use of multiple platforms.

Finally, it can be concluded that an analysis of all the needs
associated with the application must first be carried out before
deciding on the best option for development: a hybrid application
or a native application [2-6].

References
1. Covington P, Adams JK, Sargin E (2016) Deep Neural

Networks for YouTube Recommendations. Proc. 10th ACM
Conf. Recommender Systems 191-198.

2. Portugal I, Alencar P, Cowan D (2018) The use of machine
learning algorithms in recommender systems: A systematic
review. Expert Syst. Appl 97: 205-227.

3. De Paula DFO, Menezes BHXM, Araujo CC (2014) Building a
Quality Mobile Application: A User-Centered Study Focusing
on Design Thinking, User Experience and Usability. Design,
User Experience, and Usability. User Experience Design for
Diverse Interaction Platforms and Environments 8518.

4. Carvalhido A, Novo R, Faria PM, Curralo A (2018) A
User Experience Design Process in Mobile Applications
Prototypes: A Case Study. SpringerLink https://www.
springerprofessional.de/En/a-user-experience-design-
process-in-mobile-applications-prototyp/19782304.

5. Li X, Heng Q (2021) Design of mobile learning resources
based on new blended learning: a case study of superstar
learning app. Proc. 2021 IEEE 3rd International Conference
on Computer Science and Educational Informatization (CSEI)
333-338.

6. Gong J, Tarasewich P (2004) Guidelines for handheld mobile
device interface design. Proc. Annual Meeting. Northeastern
University, Boston https://personal.cis.strath.ac.uk/sotirios.
terzis/classes/52.504/2010/GuidelinesGongTarase.pdf.

