
Open Access

Journal of Mathematical &
Computer Applications

ISSN: 2754-6705

J Mathe & Comp Appli, 2024 Volume 3(6): 1-4

Review Article

Containerization on z/OS: Running Applications with z/OS
Container Extensions (zCX)
Chandra Mouli Yalamanchili

*Corresponding author
Chandra Mouli Yalamanchili, Software Development Engineering - Sr Advisor 2, USA.

Received: December 16, 2024; Accepted: December 20, 2024, Published: December 30, 2024

Keywords: IBM Mainframe, z/OS, z/OS Container Extensions
(zCX), IBM Z, Mainframe Modernization, Containerized
Workloads, Hybrid Application Development, Docker on z/OS,
Linux on z/OS

Introduction
In the current age, all businesses see value in moving to the cloud
infrastructure by modernizing their workloads into the cloud-native
and microservices-based architecture. While the cloud infrastructure
has benefits, the key challenge is ensuring these business-critical
applications' security, reliability, and scalability. With the adoption
of containerization technologies on IBM Z, Linux workloads can
now benefit from the enterprise processing advantages of IBM Z
and z/OS, such as speed, security, and reliability [1].

zCX allows z/OS programmers to use Docker-compatible Linux
containers within the z/OS environment, providing unparalleled
opportunities for modernizing legacy workloads while retaining
all the strong benefits of the IBM Z platform [2].

This paper will address the key questions: How does zCX integrate
with z/OS subsystems? What differentiates zCX from zLinux? This
paper tries to point out the potential of zCX for hybrid workload
modernization using practical examples and comparisons.

zCX and Its Benefits
The IBM z/OS Container Extensions (zCX) feature introduced
with z/OS 2.4 enables clients to deploy Linux-based applications
as Docker containers on z/OS as part of a z/OS workload on the
same LPAR. IBM zCX expands and modernizes the z/OS software
ecosystem by allowing applications and workloads built for Linux
on Z to run on z/OS and packaging them as Docker images. Docker
is a framework that packages the application and its dependencies,
resulting in Docker images. Applications are deployed in the target
infrastructure using these Docker images. The zCX environment
supports any Docker image built for IBM Z or s390x [2].
The picture below shows the different components of the zCX
instance running in a z/OS LPAR at a high level.

ABSTRACT
z/OS Container Extensions, or zCX in short, offer a revolutionary way to run container workloads based on Linux natively on IBM Z within the z/OS
environment. This paper takes a deep dive into zCX architecture to understand its components, integration with the workload of z/OS, operational
mechanics for deploying containerized applications, and unique advantages compared to standalone implementations of Linux on IBM Z.

This paper also looks into some examples of how to build and run a "Hello World" Java application and demonstrate tight integration with z/OS subsystems
like CICS and DB2. The paper concludes by evaluating zCX's role in modern application development and its potential to streamline hybrid workloads.

Software Development Engineering - Sr Advisor 2, USA

Figure 1: Overview of a zCX Instance Running in a z/OS LPAR. [3] .

Citation: Chandra Mouli Yalamanchili (2024) Containerization on z/OS: Running Applications with z/OS Container Extensions (zCX). Journal of Mathematical &
Computer Applications. SRC/JMCA-231. DOI: doi.org/10.47363/JMCA/2024(3)197

J Mathe & Comp Appli, 2024 Volume 3(6): 2-4

As part of the zCX solution, IBM provides the tailored Linux
kernel and Docker Engine that supports the Docker CLI and the
containers that run the Docket images. IBM also provides the
virtualization layer that bridges the communication between the
Linux kernel and the z/OS, allowing the applications built for
Linux to run seamlessly [2].

IBM zCX instances run like started tasks within zOS that can be
provisioned and managed through the z/OS Management Facility
(z/OSMF). System administrators can use z/OSMF workflows
to automate the life cycle management of zCX instances. Once
provisioned, the application developers or App Ops can control the
Docker containers running within zCX like the standard Linux-
based Docker implementation using the Secure Shell (SSH) or
Docker command line interface (CLI) [1].

In later releases of z/OS, IBM has released zCX for Red Hat
OpenShift, which supports RedHat OpenShift's enterprise-level
container orchestration and management capabilities to z/OS
through zCX foundation for Red Hat OpenShift [4].

The picture below shows how the zCX for Docker and zCX
foundation for Red Hat OpenShift differ concerning the building
blocks of the zCX instance.

Figure 2: Visualizing the Differences in zCX Instances for Docker
and Red Har OpenShift [5].

Benefits of zCX
IBM zCX allows us to bring the containerized Linux applications
as close as possible to the existing enterprise z/OS applications
and resources without modifying them. Below are some of the
benefits available to the applications deployed to Zcx [2,4].

•	 Provides a tailored version of the Linux kernel that supports
Docker CLI, and users can't perform most of the root
operations at the Linux kernel level; this ensures the stability,
security, and integrity of the Linux provided as part of zCX.

•	 Docker users, application developers, and App Ops can operate
within zCX instances like any Linux-based environment, with
minimal IBM Z or z/OS knowledge.

•	 Running under z/OS provides zCX access to key z/OS
features like security, pervasive encryption, highly optimized
parallel I/O, AT-TLS, Optimized DB2 communication, and
many more.

•	 Co-existing within z/OS close to other address spaces like
CICS, MQ, IMS, and others provides the advantage of z/OS's
high-speed SAMEHOST cross-memory networking that is
only available to processes running on the same LPAR.

•	 The same infrastructure supporting the core IBM z/OS-based
workloads and the Linux-based distributed workload (running
under z/OS) provides ease of operation by reducing cross-
platform operational challenges.

•	 Applications running under zCX benefit from the z/OS
Qualities of Service (QoS), giving control over workload
management based on throughput and latency.

•	 Workloads in zCX benefit from high availability and Disaster
Recovery (DR) planning through features such as IBM
HyperSwap, storage replication, and IBM Geographically
Dispersed Parallel Sysplex (GDPS).

•	 Applications within zCX can also benefit from z/OS workload
management capabilities for capacity planning and tuning.

•	 zCX supports various languages and tools, which is ideal for
hybrid cloud-native applications and modernization efforts.

zCX vs. x86 Docker Containers
IBM has evaluated zCX and x86 using a monolithic application
and a micro-services version of the same application, and zCX
proved beneficial both from a processing and cost perspective.

Below are the findings from IBM testing related to throughput or
TPS between zCX and x86:
•	 Java monolithic banking application simulation using z/OS

data on a z15 T01 in an IBM zCX environment could deliver
on average, 44% more transactions per second per core versus
a compared x86 Docker container SSL environment using
z/OS data [1].

•	 Java microservices banking application simulation using z/
OS data on a z15 T01 in an IBM zCX environment could
deliver on average, 54% more transactions per second per core
versus a compared x86 Docker container SSL environment
using z/OS data [1].

Figure 3: Average Throughput Comparison of Microservices
Application Deployed in zCX Versus Docker Containers on x86
[1].

Along with high throughput, using zCX also brings huge cost
savings for organizations due to the zIIP offload of workloads
on zCX.
IBM also examined the acquisition and operating costs for the
zCX and x86 setups discussed above, and IBM found that zCX
delivers a 43% cost reduction for microservices applications
and a 69% reduction in total ownership cost for the monolithic
applications. Below is the picture depicting the cost comparisons
for both setups [1].

Citation: Chandra Mouli Yalamanchili (2024) Containerization on z/OS: Running Applications with z/OS Container Extensions (zCX). Journal of Mathematical &
Computer Applications. SRC/JMCA-231. DOI: doi.org/10.47363/JMCA/2024(3)197

J Mathe & Comp Appli, 2024 Volume 3(6): 3-4

Figure 4: Three Year Total Cost Comparison Between zCX
and x86 Infrastructure for Monolithic and Microservices-Based
Banking Applications [1].

zCX vs. zLinux
There are other IBM Z offerings like zLinux, LinuxONE, z/VM,
and others that organizations can use to host Docker containers and
benefit from the high processing capabilities of IBM Z systems.
Below are some differences between zCX and zLinux in different
areas:
•	 Integration with other z/OS Subsystems: zCX provides

close integration with other subsystems due to the
'SAMEHOST' networking feature of z/OS without the need
to traverse through network adaptors or wires. In contrast,
zLinux would have to integrate with any z/OS subsystems
through the network layer.

•	 Environment: In the case of zCX, IBM provides a basic
tailored version of Linux Kernels that supports the Docker
engine and other commands needed to support Docker CLI
where, as zLinux offers a full Linux distribution that functions
similarly to non-Z Linux environments.

•	 Management/Performance/Security: z/OS tools help
manage zCX and benefit from z/OS WLM and I/O efficiencies.
In contrast, Linux-native tools manage zLinux, and zLinux
uses the high performance of Z architecture and Linux-native
security.

•	 Processors: zCX uses zIIPs and CPs for processing, whereas
zLinux uses IFLs for processing.

•	 Use cases: zCX is best suited for Hybrid z/OS-Linux
workloads where the Linux application needs to interact
with other z/OS subsystems for transaction processing or
data access. zLinux is best suited for hosting standalone
Linux applications that benefit from high-performance IBM
Z architecture.

zCX Setup Considerations
This section explores the different steps in setting up zCX for
Docker and zCX for OpenShift.[2] [6].
•	 Requirements: Organizations can experiment with zCX

Docker and zCX for OpenShift products for 90 days and 60,
respectively. Once the trial period is complete, organizations
must enable the respective products to continue using the
zCX environment [1-2].

•	 zCX Management: The z/OS Management Facility (Z/
OSMF) interface is used to provision, de-provision, and
maintain zCX instances. System administrators must
document All zCX-related input variables in the z/OSMF
zCX workflow variables file to use z/OSMF to manage zCX
instances [2].

•	 Resource Considerations
•	 CPU: System administrators must allocate the virtual CPUs

needed for each zCX instance. Each virtual CPU is a z/OS
dispatchable task within the zCX address space. zCX virtual
processors can be dispatched on zIIPs or CPs based on WLM
policies and CPU availability, allowing z/OS to use either zIIP
or CP CPU. IBM recommends that the combined virtual CPUs
across all zCX instances should not be greater than the number
of zIIPs or CPs available to the particular z/OS system[2].

•	 Memory: Coming up with the optimal real and swap memory
needed for zCX is critical to ensure we get the optimal I/O
benefits from Linux and z/OS by avoiding memory swaps done
by Linux. The zCX environment needs 1 GB of memory to
work, so the total memory allocated should be at least 1 GB
higher than the total virtual memory required for all containers
running concurrently within zCX. IBM recommends that for
the zCX instances with less than 8GB of real memory, use a 1:1
ratio of real to swap memory, and for zCX instances greater than
or equal to 8 GB, use a 2:1 ratio of real to swap memory [2].

•	 Storage (DASD): Each zCX instance uses multiple VSAM
linear data sets (LDS) that the z/OSMF workflow allocates
during provisioning for its exclusive use. System administrators
must provide high-level qualifiers and storage class details in
the z/OSMF workflow variables [2]

•	 Networking: z/OS Communications Server provides network
communications and network-related services like AT-TLS for
the zCX workloads. z/OS communication server identifies each
zCX instance through a unique application instance DVIPA
called a zCX DVIPA. The system administrators must add
zCX DVIPAs to TCP/IP using VIPARange with the zCX
parameter. This DVIPA zCX definition enables the EZAZCX
interface within the TCP/IP stack, allowing zCX containers to
communicate with other subsystems running under the same
z/OS system through cross-memory instead of taking network
path [2].

•	 Number of Containers: zCX can host up to 1000 active docket
containers, including zCX Docker CLI SSH containers that
are always active [2].

•	 The rest of the standard z/OS features, like capacity
management or resource capping through WLM, security or
user management, z/OS started task support functions, and
workload distribution through Sysplex Distributor, are all
available to be configured and used to support the requirements
of zCX container workloads [2].

Example Docker Image Setup on zCX
Below is a simple example that explores different steps to deploy
a simple Java application Docker image onto zCX.
1.	 Getting Started with zCX
•	 zCX runs as a z/OS address space, providing a secure

environment to execute containerized workloads. To access
the instance of zCX:

a.	 Enable resources for zCX via the z/OSMF workflows.
b.	 Start the instance of zCX as a standard z/OS subsystem.
c.	 Connect to the zCX appliance using SSH, where the user can

execute Docker commands.
2.	 Running a Docker Container in zCX
•	 For example, deploying a simple "Hello World" Java

application:
a.	 Application Preparation: In this example, create a simple

Java application and build and push a Docker Image to the
registry that is reachable from zCX.

Citation: Chandra Mouli Yalamanchili (2024) Containerization on z/OS: Running Applications with z/OS Container Extensions (zCX). Journal of Mathematical &
Computer Applications. SRC/JMCA-231. DOI: doi.org/10.47363/JMCA/2024(3)197

J Mathe & Comp Appli, 2024 Volume 3(6): 4-4

Copyright: ©2024 Chandra Mouli Yalamanchili. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

b. Deploy the Application:
•	 SSH into the zCX instance.
•	 Pull the Docker image from the registry.
•	 Run the container:

 docker pull <registry>/helloworld-java
 docker run --name helloworld-container <registry>/helloworld
 - java

c.Verify Output: Monitor the logs to see the application output.

 docker logs helloworld-container

Integrating zCX with other z/OS subsystems/Files
•	 Subsystem Access: z/OS Container Extensions enable

seamless interaction with traditional subsystems such as CICS,
MQ, and DB2 by allowing modern containerized applications
to leverage these capabilities through standard APIs and
protocols. Applications running in zCX, for example, can
connect to CICS using APIs or RESTful services exposed by
CICS. This accessibility allows easy integration of modern
microservices with legacy transactional systems. Similarly,
zCX applications could also communicate with IBM MQ
for messaging services, enabling asynchronous interactions
across distributed systems. In terms of DB2, the application
on zCX can use standard options to connect to the database,
such as JDBC or ODBC, to query and update data while
maintaining high performance and security within the z/OS
environment [2].

•	 File Access: The zCX-based applications do not have direct
access to the traditional z/OS files, such as VSAM datasets
or sequential files. Applications running in zCX, on the other
hand, can invoke APIs exposed by other z/OS subsystems,
such as CICS or Java applications running in z/OS address
spaces, which handle the actual file I/O operations. This
approach allows zCX workloads to leverage legacy file
systems while maintaining security, scalability, and proper
resource management [2].

Conclusion
zCX provides a powerful platform for modernizing applications
on z/OS using containerized workloads, integrating well with
mainframe resources. By simplifying the adoption of modern
development practices and leveraging the strengths of the IBM Z
platform, zCX empowers developers to deliver innovative solutions
without compromising performance or security. Examples such
as the "Hello World" application and CICS integration provide
programmers with an insight into what zCX is capable of in hybrid
workload modernization.

References
1.	 IBM Corporation (2021) Ready for the Cloud with IBM z/OS

Container Extensions. IBM https://www.ibm.com/downloads/
documents/us-en/10a99803f62fd90d.

2.	 IBM Corporation (2024) About the z/OS Container Extensions
content solution. IBM https://www.ibm.com/docs/en/
zos/3.1.0?topic=collections-zos-container-extensions.

3.	 IBM Corporation (2023) Containers for z/OS System
Programmers - PART II : Interview of z/OS System
Programmers: “Traditional” and “Containers” tasks.
IBM https://community.ibm.com/community/user/ibmz-
and-linuxone/blogs/sebastien-llaurency/2023/07/12/
containers-for-zos-system-programmers-par t - i -
intro?communityKey=2d6a0d68-f239-4ad4-ae69-
207c63ff4b61.

4.	 IBM Corporation (2022) Red Hat OpenShift Container
Platform for IBM zCX”. IBM https://www.redbooks.ibm.
com/redbooks/pdfs/sg248528.pdf.

5.	 IBM Corporation (2020) When & Why one would deploy
Red Hat OpenShift Cluster on systems and/or on IBM zCX
Foundation for OpenShift. IBM https://www.ibm.com/
support/pages/system/files/inline-files/When%20and%20
Why%20one%20would%20deploy%20Red%20Hat%20
OpenShift%20Cluster%20on%20zSystems%20or%20on%20
IBM%20zCX%20Foundation%20for%20OpenShift-fin.pdf.

6.	 IBM Corporation (2024) zCX Foundation for Red Hat
OpenShift 1.1.0. IBM https://www.ibm.com/docs/en/
zcxrhos/1.1.0.

public class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hello, World from zCX!");
 }
}

