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Introduction
Molecular Docking is a computational technique in the field 
of Molecular Biology and the Design, Structural Biology, and 
Biochemical mechanisms and interactions in Biochemistry 
can be uncovered with the processes of Molecular Docking. 
Analyzing protein-protein, protein- ligand, and protein-nucleic 
acid interactions are important case studies especially in the field 
of Molecular Biology because designing effective drugs that bind 
to their targets without causing harmful side effects has always 
been of key importance [1,2].

Successful machine learning approaches, using a wide array of 
techniques (Diffusion Generative Models and Deep Learning 
Models), have been proposed to solve this problem of understanding 
molecular interactions [3-5]. Machine Learning in general, is data 
and compute intensive. Generative AI Models require even more 
data and compute given the data processing, embedding layers, 
and post-processing steps. For example, DiffDock, a Diffusion 
Generative Model tasked with predicting protein-ligand binding 
poses, was compiled on 48GB A6000 GPUs [3]. This type of 
computing power is costly and is often not available.

For this reason, we are interested in analyzing the trade-off between 
compute and accuracy to make advanced and accurate tools like 
Generative AI Diffusion models more accessible in medical and 
lab settings. We investigate this by using free tools like Google 
Colab. Additionally, we run parameter tests on Number of Samples 
per given protein-ligand complex, inference steps, and batch size 
to determine the optimal value of each parameter such that there 
is an even tradeoff between compute and accuracy. Our findings 

suggest that using 30 samples per complex, 15 inference steps, 
and 4 batch steps improves pose prediction accuracy and reduces 
computational resources. The proposed parameters achieve a 14% 
accuracy increase compared to the 40 samples per complex model 
and a 56.25% increase compared to the 10 samples per complex 
model. The optimized inference steps result in a 12.2% accuracy 
increase over the 20-step control using the 40 samples model and 
a 24.3% increase using the 10 samples model. Additionally, using 
4 batch steps leads to a 40.6% increase in DiffDock Confidence 
for the 10-sample control and a 0.4% increase for the 40-sample 
control.

The format of this paper is as follows
•	 Our initial focus is pinpointing the key parameters that 

significantly impact the accuracy of the DiffDock model.
•	 Next, we critically assess these parameters, conducting 

extensive tests on factors such as Inference steps, Number 
of Samples, and Batch size.

•	 Our findings lead us to define the ideal numbers for samples, 
inference steps, and batch sizes. Using 30 samples per 
complex, 15 inference steps, and 4 batch steps improves pose 
prediction accuracy and reduces computational resources.

Background
Molecular Docking
Molecular docking predicts how two molecules orient to form 
a stable complex, using search algorithms to suggest potential 
arrangements and scoring functions to rank them [6,7]. Essential 
for drug discovery, molecules forming stable structures with 
proteins are potentially more effective. Recently, state-of-the-art 
Diffusion Models have been employed to forecast these docking 
structures.
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DiffDock and EquiBind
DiffDock, a groundbreaking paper on diffusion, offers a specialized 
approach to predict protein- ligand docking using diffusion models.

Figure 1: Illustration of the Diffusion Model Adding Perturbations 
to Generate a Ligand Conformation that can Avoid Steric Clashes 
in Merging with the Protein. (This Image was Recreated with 
Inspiration from the Reference [8].

It combines ligand and protein sequences to project their binding 
combinations while prioritizing the avoidance of steric clashes—
overlaps that obstruct binding [3]. To navigate these challenges, 
DiffDock implements a diffusion process that considers the 
ligand’s position, orientation, and torsion angles. Through iterative 
learning from steric clashes, the model successfully guides the 
ligand to an optimal docking position. Notably, DiffDock achieved 
a 38% top-1 success rate on PDBBind, surpassing traditional 
docking at 23% and deep learning methods at 20% [9]. However, 
its performance demands at least 40 samples as a parameter and 
a batch size of 10, consuming significant GPU resources and 
impacting computational speed.

Additionally, EquiBind is introduced as an alternative that employs 
equivariant diffusion models for molecular binding prediction. 
Unlike DiffDock, EquiBind uses equivariant techniques to ensure 
consistent 3D predictions, unaffected by changes in the protein 
and ligand’s spatial dynamics. This model ensures accurate 
3D structures by maintaining ligand bonds and rotations. After 
its diffusion processes, EquiBind generates a new molecule, 
showcasing potential in drug discovery.

Diffusion Models
Diffusion models take a starting visualization and slowly add 
Gaussian Noise with every iteration. Each time, the model is 
trained to learn what features were lost until the image is finally 
nothing but noise. Then, a denoising function slowly adds back 
features until the final visualization is complete [10]. Diffusion 
models demonstrate efficiency through their forward diffusion 
process, where they systematically introduce noise in a gradual 
and uniform manner. This entails the incorporation of a random 
distribution of Gaussian noise for each individual pixel within the 
image. This poses a major benefit because every pixel is being 
corrupted with noise and the model gathers information about 
which features were lost. The result is a realistic representation 
of the original features of the image. The goal of diffusion models 
is to generate a visualization that is different from the original but 
retains the qualitative features that compose the visualization. 
There are two commonly known types of diffusion models 
which work upon this framework: DDPM (Denoising Diffusion 
Probabilistic Models) and Score-based diffusion models [11].

DDPMs (Denoising Diffusion Probabilistic Models) serve as 
the cornerstone for many of today’s diffusion models, utilizing 
both forward and backward functions. Initially, an image, taken 

from a particular data distribution, undergoes changes in the 
forward diffusion process. Here, gaussian noise is progressively 
added to images, thereby transitioning them from their original 
complex distributions to simpler ones [12,13]. By the culmination 
of this forward process, the image has morphed into pure noise, 
positioning it aptly for training. During the reverse phase, the 
model undertakes the task of “denoising” the image. Having 
learned from the forward process, it reconstructs a new image that, 
while different, retains qualities and distribution characteristics of 
the original image. Parallel to this, score-based models address 
generative learning by leveraging techniques like score matching 
and Langevin dynamics [14].

Score-based models and DDPMs share similarities in their use 
of forward and reverse noise functions. However, they differ 
in data selection and distribution. Specifically, Score-based 
models use a score function to rank data distributions and 
employ Langevin dynamics to pick datapoints from these more 
confined distributions, leading to more precisely generated images 
[15]. On the other hand, DDPMs utilize a broader distribution. 
Recognizing the parallels in their image generation methodologies, 
bridged DDPMs and Score-based models in their notable paper, 
introducing an innovative approach that perturbs data through 
continuously evolving distributions. This method is dictated by 
fixed Stochastic Differential Equations (SDE), diverging from 
traditional finite noise distributions [16]. When this process is 
inverted, it produces new sample images. A key strength of these 
models is their capacity to uniformly introduce noise, which is 
adaptable to both 2D and 3D visualizations. For instance, in a 3D 
environment, each atom is corrupted with noise, akin to pixels in 
2D images. This flexible framework has potential applications in 
fields such as molecular docking and simulation.

Problems with Current Diffusion Model and Molecular 
Docking Approaches
While these diffusion models present a novel generative AI 
method to solving pressing problems in biochemistry as a larger 
field, existing models use large amounts of computing resources 
from GPUs to simulators capable of running multiple protein 
complexes. For example, the DiffDock model was trained on a 
variety of ligand and protein poses from the protein data bank [3]. 
These models were then processed to make presentation-ready 
data. Given that this Protein Data Bank dataset uses 3d models that 
need to be simulated in 3d and then processed upon, large amounts 
of RAM and Disk space are used. This poses an inconvenience 
for the average hospital or lab which need resources like these 
for drug design [17].

Data and Methodology
We propose an experimental study for achieving the high accuracy 
of DiffDock while using fewer computing resources like RAM 
and Disk space. To achieve this, we performed benchmark tests to 
evaluate what features can be reduced while not harshly impacting 
the model’s accuracy. The DiffDock-Colab model provides 16 
parameters to modify, including protein_ligand_csv, complex_
name, protein_path, protein_sequence, ligand_description, 
out_dir, save_visualization, samples_per_complex, model_dir, 
ckpt, confidence_model_dir, confidence_ckpt, batch_size, no_
final_step_noise, inference_steps, and actual_steps. Many of the 
aforementioned parameters are related to file specificity and may 
not directly affect the protein-ligand pose prediction. Additionally, 
parameters such as no_final_step_noise and ckpt are internally 
used in DiffDock to feed information into the Diffusion process 
during Training. Comparatively, modifying number of samples, 



Citation: Aditya Lakshminarasimhan (2024) Determining the Optimal Tradeoff between Compute and Accuracy for Diffusion Models in Molecular Docking. Journal 
of Biotechnology & Bioinformatics Research. SRC/JBBR-224. DOI:  doi.org/10.47363/JBBR/2024(6)187

J Biotechnol Bioinforma Res, 2024            Volume 6(5): 3-9

inference steps, and batch size are the default parameters suggested 
to be modified by DiffDock-Colab, and directly impact the volume 
of poses and accuracy of pose prediction. DiffDock has been 
trained using 20 inference steps and has two models for Number 
of Samples. One model uses 10 samples per pose to achieve a 
35% top-1 accuracy <2 Angstroms and the other, uses 40 samples 
per pose to achieve a 38.2% top-1 accuracy <2 Angstroms. While 
using a 10 samples-per-pose model may seem to be optimal due 
to only a 3.2% increase in accuracy, these marginal differences 
can cause the binding affinity to drastically vary [3].

For the context of improving computational runtime while 
maintaining a favorable accuracy, the focus of this work was on 
the Interface side of DiffDock rather than modifying the trained 
model. As such, the pretrained DiffDock model that achieved state-
of-the-art accuracy was used, and the interface in Google-Colab 
was modified through Inference Steps, Number of Samples per 
complex, and Batch Steps. This framework also allows users from 
labs to clinics to use this framework for computationally efficient 
and accurate runtimes. These parameters are the most related 
to the generated pose between the protein-ligand because, the 
number of samples per complex adds more processing to generate 
a higher top 1 RMSD rank value. The number of inference steps 
represent the number of forward diffusion steps across a given 
time distribution t. Inference steps are an important parameter to 
preserve for DiffDock because, when the model is given more 
forward diffusion steps, it is able to add more random movements 
(i.e. Steps, Twists, and Turns) which can help the Ligand reach 
the Protein’s active site without encountering Steric Clashes with 
the protein. The batch steps also are an important metric to gauge 
for model performance because, as opposed to inference steps 
which are primarily used in training, they constitute the number 
of samples that are processed before the model is updated.

To test the main use-case of DiffDock, single complex docking, we 
offer single-complex studies. A single complex involves 1 protein 
and 1 ligand. We hypothesize that using a single complex would 
offer low compute time and high accuracy. The rationale is that 
with single-complex docking, the constant number of inference 
steps in one trial across each sample per complex will allow the 
ligand to traverse a smaller 3D space of a single protein. For 
single-complex inference, we tested 6agt and the ligand ‘COc(cc1)
ccc1C#N’.

We also performed five trials for each of the parameters – inference 
steps, number of samples per complex, and batch steps – such 
that we could ensure variability in confidence is due to number of 
samples and not by chance. Two of the metrics that we recorded 
with each trial are DiffDock Confidence prediction and binding 
affinity. Given that DiffDock uses a unique scoring function 
‘DiffDock Confidence’ it is different from past approaches that 
measure binding affinity. This is namely because of the approach 
that DiffDock uses. Instead of finding a pocket where binding 
affinity is the strongest (most negative), it uses a minimized 
RMSD approach, which seems to be a more efficient and accurate 
approach compared to previous studies. The Google Colab-
DiffDock interface does offer a Binding Affinity prediction through 
GNINA Minimized scoring function so that each DiffDock pose 
can be scored. Additionally, DiffDock confidence and correlation 
with binding affinity has yet to be analyzed based on modifying 
parameters, so the GNINA minimized binding affinity values 
were scored for each trial and notated as well. It should be noted, 
however, that the DiffDock confidence value is scored based 
on comparison to the true ligand-binding pocket. In the case of 

scoring predictions, a higher DiffDock confidence value shows 
a tendency to be more accurate, if the true protein-ligand were 
experimentally docked.

A single protein-ligand complex was used for evaluation because in 
the context of simple protein- ligand docking, a protein-ligand pair 
is benchmarked against various iterations of the same complex. 
That is, the aim of DiffDock is to predict the positioning of the 
ligand within the Protein. By electing one protein-ligand complex, 
modifying parameters, and comparing that complex to itself, a 
framework can be achieved for improving DiffDock prediction 
for other complexes. Given that this work aims to identify a 
trade-off between the number of samples that can be used for a 
given protein while maintaining reasonable compute resources, 
this framework offers an optimal number of samples per complex, 
such that a combination can be met for other protein-ligands as 
well. Naturally, one unique protein-ligand complex will vary from 
another in terms of confidence (scored by the scoring function). 
As such, the confidence prediction for number of samples in one 
complex is incremented and compared to the same complex. While 
the confidence values will vary, drastically in some scenarios, 
between thousands of protein-ligand complexes, the trend in 
confidence will remain similar because the accuracy and compute 
time of one single protein-ligand complex is being compared to 
the same protein-ligand complex under different parameter values 
to gauge this tradeoff.

Similarly, with regards to inference steps, the protein-ligand 
complex for 10 inference steps is compared to the protein-ligand 
complex for 20 inference steps. The comparisons established in 
this study are against the same protein-ligand complex under 
different parameter values.

Control groups were defined as the parameters used by DiffDock: 
10 samples per complex, 40 samples per complex, 20 inference 
steps, and 6 batch steps. When modifying the number of samples, 
the other two parameters were set as control groups, 20 inference 
steps and 6 batch steps were used. When modifying the number of 
inference steps, batch steps were set to 6 steps for two scenarios: 
10 samples per complex and 40 samples per complex – the control 
groups were established based on DiffDock’s two major models. 
When modifying the batch steps, the number of inference steps was 
set to 20 (default) for two scenarios: 10 samples and 40 samples.

Results
Effect of Modifying Number of Samples on DiffDock-
Confidence

Figure 2: Side-by-Side Panels of Modifying Number of Samples 
and Effects on DiffDock-Predicted Confidence. Panel A) represents 
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the effects of changing the Number of Samples on DiffDock-
Predicted Confidence for Five Trials. The horizontal axis represents 
the Number of Samples, and the vertical axis represents DiffDock-
Confidence. DiffDock Confidence is an index for the relative 
accuracy of a DiffDock Prediction and isn’t measured in units. 
Error Bars, representing Standard Error of the Mean, are shown 
for each Trial. Panel B) represents the effects of changing the 
Number of Samples on the Mean DiffDock Confidence across all 
Five Trials. Standard Error of the Mean Bars are shown for each 
Mean Trial Datapoint. Panel C) is a data table with the DiffDock-
predicted Confidence metrics for each Trial and Mean. Standard 
Deviation and Standard Error of the Mean values are provided. 
Each trial was conducted using the 6agt protein and “COc(cc1)
ccc1C#N” ligand.

To test the effect of changing the Number of Samples on DiffDock 
predicted Confidence, Google- Colab was used, and both GPU 
and CPU times were tested. In Panel 2A) 5 trials were conducted, 
with each trial containing 7 simulations. Each simulation is an 
increment in 5 samples. In Panel 2A) the general trend for Trials 
1, 2, 4, and 5 is an increase in DiffDock-Predicted Confidence, 
with the exception for Trial 3. While there is a general upward 
trend in each of the Trials mentioned, there seems to be a clear 
spike at 30 samples per complex. When tested on CPU, the run-
time for 30 samples per complex was 10 minutes and used 55% 
of the RAM offered by Google-Colab. When tested on the T4 
Google-Colab GPU, the run-time for 30 samples per complex 
was 4 minutes. Despite DiffDock Results suggesting its highest 
accuracy for the 40
 
Samples-per-complex method compared to 10-samples-per-
complex, this Panel may suggest that using 30 samples per 
complex can increase DiffDock Confidence to the true ligand 
position within the protein. Panel 2A) and Panel 2B) do suggest, 
however, that using 40 samples per complex uses more computing 
resources and lowers the accuracy of the DiffDock-Predicted 
Poses.

To first test whether the differences in DiffDock confidences in 
each Trial were statistically significant, a one-way ANOVA Test 
was conducted. The mean of each Trial was collected and the 
overall mean of all data in all trials was conducted.

Equation (1): Sum of Squares Between Groups 

*Equation was regenerated, with inspiration from [18].

SSB = Sum of Squares
•	 Σ represents the summation (adding up) over all groups
•	 ni is the number of observations in group i.
•	 X̄i is the mean of group i
•	 X̄ is the overall mean of all observations.

Overall Mean of the Data:
 
0.164 + 0.15 +0.168 + 0.184 + 0.25 + 0.21 + 0.218    =0.191
                                        7

SSB =5[(0.164 − 0.191)2 + (0.15 − 0.191)2 + (0.168 − 0.191)2 + 
(0.184 − 0.191)2 + (0.25 −0.191)2 + (0.21 − 0.191)2 + (0.218 − 
0.191)2]

SSB=5[0.000729 + 0.001681 + 0.000529 + 0.000049 + 0.003481 
+ 0.000361 + 0.000729] =0.0378

Equation (2): Sum of Squares Within Group

SSW = Sum of Squares Within a Group
• Xi,j = observation of j within group i

SSW Sum = 0.00052 + 0.0014 + 0.00308 + 0.00532 + 0.003 + 
0.002 + 0.00848 = 0.0238
SST (Total) = SSB + SSW = 0.0378 + 0.0238 = 0.0616

Mean Square Between Groups (MSB) = SSB = 0.0378 = 0.0063
                                                                  k−1       6−1

Mean Square Within Groups (MSW) =  SSW  = 0.0238 = 0.00085
	                                                  N−k      35−7  

F Test Statistic = MSB/MSW = 7.41 P-Value = 0.4008

Considering that the P-Value of 0.4008 > α=0.05, 0.01 or any 
statistically reasonable significance level, it can be said that 
there is no statistically significant difference between each of the 
DiffDock Confidence values generated in Trials 1 through 5, and 
any difference in the trials is due to chance.

In Panel 2B) the Standard Error bars for each number of samples/
DiffDock confidence are shown. Using 30 samples per complex 
is Statistically Significant compared to using 10, 15, 20, 25, and 
35 Samples per complex. The error bars do overlap with using 
40 Samples per complex, indicating that the results were not 
statistically significant. It can still be noted, however, that the 
majority of trials indicate that using 30 samples per complex is 
more accurate and uses less compute than using 40 samples per 
complex. As such, using 30 samples per complex would not only 
yield a better ligand-protein pose, on average, but also use less 
compute resources.

Effect of Modifying Number of Samples on Binding Affinity

Figure 3: Effect of Modifying Number of Samples on GNINA 
Binding Affinity. As the Number of Samples were Modified, the 
Respective GNINA Binding Affinity was Calculated per Top-1 
Sample. Each Trial was Conducted using the 6agt Protein and 
“COc(cc1)ccc1C#N” ligand
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As seen in Figure 3, the GNINA Binding Affinity varies with no specific trend. Despite Figure 2A) and 2B) suggesting that using 
30 samples per complex causes a statistically significant improvement to DiffDock Confidence, the binding Affinity doesn’t change. 
This is because, the Binding Affinity is calculated based on Free Energy and positioning of the ligand in respect to its intermolecular 
attractions to surrounding residues. Additionally, even when the number of samples was modified, the ligand was still docked in the 
same docking site. This marginal movement within the binding pocket can provide a reasonable consistency of Binding affinity but 
differences within DiffDock confidence. Considering that the DiffDock predicted poses are designed to dock a protein to a ligand and 
compare those ligand poses to how the experimental structure would have looked, DiffDock confidence includes more specificity 
than GNINA Binding Affinity and varies by a larger extent. These results do suggest that there is a discrepancy to how an increasing 
trend in DiffDock confidence may not correlate to an increase in Binding Affinity, as previously hypothesized.

Figure 4: Side-by-Side Panels of Modifying Number of Inference Steps on DiffDock-Predicted Confidence. Panel

A) represents the effects of changing the Number of Inference 
Steps on DiffDock-Predicted Confidence for Five Trials using 10 
samples per complex. Panel B) represents the effects of changing 
the Number of Inference Steps on the Mean DiffDock Confidence 
across all Five Trials using 10 samples per complex. Panel C) 
represents the effects of changing the Number of Inference Steps 
on DiffDock-Predicted Confidence for Five Trials using 40 
samples per complex. Panel D) represents the effects of changing 
the Number of Inference Steps on the Mean DiffDock Confidence 
across all Five Trials using 40 samples per complex. Error Bars, 
representing Standard Error of the Mean, are shown for each 
Trial. The Horizontal Axis represents Number of Inference Steps, 
and the Vertical Axis represents DiffDock-Confidence. DiffDock 
Confidence is an index for the relative accuracy of a DiffDock 
Prediction and isn’t measured in units. Each trial was conducted 
using the 6agt protein and “COc(cc1)ccc1C#N” ligand.

We tested the effect of changing the number of Inference Steps on 
the DiffDock Confidence Values. The metrics calculated in Panels 
4A), 4B), 4C) and 4D) were gauged on two scenarios: 10 samples 
per complex and 40 samples per complex. In DiffDock, the two sets 
of samples per complex were used to baseline DiffDock predictions 
to previous efforts. As such, both groups were used to maintain 
consistency from the DiffDock paper. Five trials were conducted 
for both scenarios to ensure consistency in the experimental units. 
A batch size of 6 steps was used, as used in the DiffDock training 
process and scoring process for testing. Increments of 5 inference 
steps were used from 10 inference steps to 30 inference steps.

Similar to the number of Samples per complex, another ANOVA 
test was conducted for Panel

A) and Panel C) to see if the difference in trials was statistically 
significant.

Using Equation (1) and Equation (2) to perform the ANOVA test 
for 10 samples per complex, the F Test Statistic was 0.16301 and 
the P-Value was 0.95463. Considering that the P-Value of 0.95463 
> α=0.05, 0.01 or any statistically reasonable significance level, 
it can be said that there is no statistically significant difference 
between each of the DiffDock Confidence values generated in 
Trials 1 through 5, and any difference is due to chance. A similar 
ANOVA test was conducted for 40 samples per complex. The 
F Test Statistic was 0.065134, and the P-Value was 0.99158. 
Considering that the P-Value of 0.99158 > α=0.05, 0.01 or any 
statistically reasonable significance level, it can be said that 
there is no statistically significant difference between each of the 
DiffDock Confidence values generated in Trials 1 through 5, and 
any difference is due to chance.

In Panel 4A), the trials varied, but generally followed a trend 
of increasing in DiffDock Confidence from 10 to 15 inference 
steps and then plateauing or showing no statistically significant 
difference from then on. In Panel 4B) the mean DiffDock 
Confidence reveals that using 15 inference steps is statistically 
significant and performs higher on average than the other choices 
of inference steps. Despite the effect of the DiffDock confidence 
with 15 inference steps in Trial 4 being statistically significant 
in pulling the mean of the DiffDock confidence for 15 inference 
steps across all trials, the error bars indicate that, on average, 
the DiffDock confidence from 15 inference steps yields a higher 
accuracy and uses less compute. In Panel 4C) the trials exhibited 
far less variability. This is because more samples per complex are 
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used, feeding the reverse diffusion process with more samples before arriving at a Top-1 score. As such, the ligand and its degrees 
of freedom can be modified and measured with more certainty under the 40- sample model than the 10-sample model. Still, using 15 
inference steps was statistically significant and more accurate under each trial. In Panel 4D) this trend is more apparent. With smaller 
distribution across the trials for a given DiffDock score, 15 inference steps remains to provide more accuracy and compile faster.

Effect of Modifying Inference Steps on GNINA Binding Affinity

Figure 5: Side-by-Side Panels of Modifying Number of Inference Steps on GNINA Binding Affinity. Panel A) Represents the Effects 
of Changing the Number of Inference Steps on Binding Affinity (kcal/mol) for Five Trials using 10 Samples per Complex. Panel B) 
Represents the Effects of Changing the Number of Inference Steps on Binding Affinity (kcal/mol) for Five Trials using 40 samples 
per complex. Error Bars, representing Standard Error of the Mean, are shown for each Trial. The Horizontal Axis represents Number 
of Inference Steps, and the Vertical Axis represents Binding Affinity. Each trial was conducted using the 6agt protein and “COc(cc1)
ccc1C#N” ligand.

We measured the GNINA Binding Affinity per Top-1 Pose while modifying inference steps for the 10-sample-per-complex model 
and the 40-sample-per-complex model. While the DiffDock confidence changed with a noticeable trend for both models, the binding 
affinity did not change with a particular trend, as shown in Figure 5. This finding further suggests that increasing the number of 
inference steps which changes the gaussian noise per ligand does not statistically affect the binding affinity. Regardless, it seems 
that DiffDock confidence is a more specific metric due to its ‘confidence’ to the true protein-ligand pose. Whereas, using Binding 
affinity to score the poses suggests allows for accurate measurement of binding affinity within a binding pocket in a given protein.

Effect of Modifying Batch Steps on DiffDock Confidence
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Figure 6: Side-by-side Panels of Modifying Number of Batch Steps on DiffDock Confidence. Panel A) represents the effects of 
changing the Number of Batch Steps on DiffDock Confidence for Five Trials using 10 samples per complex. Panel B) represents 
the effects of changing the Number of Batch Steps on the Mean DiffDock Confidence across all Five Trials using 10 samples per 
complex. Error Bars, representing Standard Error of the Mean, are shown for each Trial. The Horizontal Axis represents Number of 
Batch Steps, and the Vertical Axis represents DiffDock Confidence. Each trial was conducted using the 6agt protein and “COc(cc1)
ccc1C#N” ligand. Panel C) is a table containing all of the data for the 5 trials and includes the runtimes for each inference.

We tested the effect of changing the number of Batch steps on the DiffDock Confidence and GNINA Binding Affinity. In Panel 6A) 5 
trials were conducted with 20 Inference Steps and 10 Samples per complex as a control. In each trial, Batch steps were incremented 
from 1 through 8 steps. Once a batch size of 9 is used, the Google Colab CUDA Out of memory is triggered and the model does not 
compile. This is because Batch Steps refers to the number of samples that are processed in each ‘batch’. Using a larger batch size 
can allow the model to compile fast, at the cost of memory. In addition, the Google Colab usage limits are dependent on the rate of 
usage or memory usage. As such, the limits run out much quicker and allow for less simulations overall, compared to using a smaller 
batch size and compiling. As seen in Panel 6A) and Panel 6B) there is no specific trend or pattern when changing the number of 
Batch Steps on DiffDock Confidence. Additionally, as shown in Panel 6C) the general trend decreases in Runtime as batch size is 
increases. Ultimately, using a batch size of 4 in Panel 6A) is more consistent across the trials and uses 24% of the Memory when 
compiling. While using a batch size of 7 is more accurate on average, its improved accuracy is not statistically significant and uses 
65% of memory. In this case, using a smaller batch step size is more favorable, as it uses less computational resources. As seen in 
the previous experiments, the batch size did not significantly alter the Binding Affinity predicted by GNINA for the top-1 samples. 
The range was from -5.391 kcal/mol to -6.082 kcal/mol. The 1st quartile, median, and third quartile were -5.513 kcal/mol, - 5.681 
kcal/mol, and –5.757 kcal/mol, respectively.

Using Equation (1) and Equation (2) to perform the ANOVA test for 10 samples per complex, the F Test Statistic was 0.469 and 
the P-Value was 0.758. Considering that the P-Value of 0.758
> α=0.05, 0.01 or any statistically reasonable significance level, it can be said that there is no statistically significant difference between 
each of the DiffDock Confidence values generated in Trials 1 through 5, and any difference is due to chance.
To test for whether this pattern existed in the 10 samples per complex set, we also tested this using 40 samples per complex.

Figure 7: Side-by-side Panels of Modifying Number of Batch Steps on DiffDock Confidence. Panel A) represents the effects of 
changing the Number of Batch Steps on DiffDock Confidence for Five Trials using 40 samples per complex. Panel B) represents 
the effects of changing the Number of Batch Steps on the Mean DiffDock Confidence across all Five Trials using 40 samples per 
complex. Error Bars, representing Standard Error of the Mean, are shown for each Trial. The Horizontal Axis represents Number of 
Batch Steps, and the Vertical Axis represents DiffDock Confidence. Each trial was conducted using the 6agt protein and “COc(cc1)
ccc1C#N” ligand.
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As seen in Panel 7A) and Panel 7B), using 40 samples per complex 
did not cause a significant difference from using 10 samples per 
complex. Especially in Panel 7B), on average, the number of 
batch steps is not statistically different from one size to another. 
Still, using 4 batch steps has a smaller margin of error and is more 
consistent. As seen in the previous experiments, the batch size did 
not significantly alter the Binding Affinity predicted by GNINA 
for the top-1 samples.

The range was from -5.223 kcal/mol to -5.871 kcal/mol. The 1st 
quartile, median, and third quartile were -5.434 kcal/mol, -5. kcal/
mol, and –5.716 kcal/mol, respectively.

A similar ANOVA test was conducted for 40 samples per 
complex. The F Test Statistic was 0.265, and the P-Value was 
0.898. Considering that the P-Value of 0.898 > 𝜶=0.05, 0.01 or 
any statistically reasonable significance level, it can be said that 
there is no statistically significant difference between each of the 
DiffDock Confidence values generated in Trials 1 through 5, and 
any difference is due to chance.

Overall, the differences observed in modifying batch steps has an 
effect on the accuracy as noted earlier, however, the more impactful 
differences would be measured when retraining the DiffDock 
model to use 4 batch steps instead of 6 batch steps [19-21].

Conclusion
As recent applications in Protein design and Protein interactions 
continue to be fueled by technological progress, implementing a 
cautious balance such that the computational cost is still feasible for 
small labs and clinics. Despite recent attention and advancements 
in Diffusion Models like DiffDock, a study on the parameters and 
the relative accuracy that each metric provides is yet to be studied. 
In this study, we tested the number of samples, inference steps, 
and batch steps to arrive at an optimal number of each parameter. 
We conclude that using 30 samples per complex, 15 inference 
steps, and 4 batch steps not only improves the accuracy of the 
pose predictions, but also incurs fewer computational resources. 
On average, the proposed number of samples had a 14% increase 
in accuracy compared to the 40 sample per complex model and 
56.25% increase in accuracy compared to the 10 sample per 
complex model; The proposed inference steps had a 12.2% 
increase in accuracy compared to the 20-step control using the 
40 sample per complex model and 24.3% increase in accuracy 
compared to the 20-step control using the 10 sample per complex 
model; Finally, on average, using 4 batch steps lead to a 40.6% 
increase in DiffDock Confidence for the 10-sample control and a 
0.4% increase in DiffDock Confidence for the 40- sample control. 
For Batch steps, future studies should be conducted on retraining 
the model with such parameters and testing the accuracy.

With this study’s ability to determine an optimal value for 
each of the three parameters, it poses useful in the setting of 
limited compute power. This study, however, can be extended to 
a specific field in drug discovery: incorporating RNA receptor 
flexibility. Many viruses from Covid-19 to RSV have RNA viral 
signatures. When these signatures bind to cellular receptors, 
the viral DNA is transmitted. Extending diffusion models to 
predicting conformations between RNA Viral spike proteins and 
cellular receptors with high receptor flexibility could allow better 
molecular targets to be designed to inhibit spike proteins more 
efficiently.
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