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Introduction
Well know that the problem of so-called nonlocal boundary 
conditions are the included and developed by A.A. Samarsky and 
A.V. Bitsadze and plays important role of the theory differential 
equations and equations of mathematical physics, yet [1].

Presently, one of the important problem is the study of problems 
with various types of nonlocal boundary conditions, because 
multipoint boundary value problems for ordinary differential 
equation have many applications in the modeling and analysis of 
problems arising in electric power grids, electric railway systems, 
telecommunication lines, as well as in chemistry and analysis of 
kinetic reaction problems. They have been intensively studied 
in Refs. [2-8].

However, there are only a few works devoted to non-stationary 
problems along with multipoint boundary conditions, for example, 
[9-13]. The work deals with three-point boundary conditions 
subject to the nonlinear parabolic Cauchy problem [8].

Another side same problem also studied in Refs. [14-17]. In 
work [14] studied a semi linear parabolic equation in 1D along 
with nonlocal boundary conditions studied. The value at each 
boundary point is associated with the value at an interior point of 
the domain, which is known as a four-point boundary condition. 
First, the solvability of a steady-state problem is addressed and a 
constructive algorithm for finding a solution is proposed. 

A method for regularizing boundary value problems for a parabolic 
equation was developed in [15]. A singularly perturbed boundary 

value problem on semiaxis is considered in the case of a simple 
rational turning point. To prove the asymptotic convergence of 
the series, the maximum principle is used.

Must be noted that in [16] is devoted to the fundamental problem 
of studying investigating the solvability of initial boundary value 
problems for a quasi-linear pseudo-parabolic equation of fractional 
order with a sufficiently smooth boundary. The difference between 
the studied problems is that the boundary conditions are set in 
the form of a nonlinear boundary condition with a fractional 
differentiation operator. The main result of this work is establishing 
the local or global solvability of stated problems, depending on 
the parameters of the equation. The Galerkin method is used to 
prove the existence of a quasi-linear pseudo-parabolic equation’s 
weak solution in a bounded domain. Using Sobolev embedding 
theorems, a priori estimates of the solution are obtained. A priori 
estimates and the Rellich–Kondrashov theorem are used to prove 
the existence of the desired solutions to the considered boundary 
value problems. 

In Ref. [17] considered an inverse problem of time fractional 
parabolic partial differential equations with the nonlocal boundary 
condition. Where Dirichlet-measured output data are used to 
distinguish the unknown coefficient. A finite difference scheme 
is constructed and a numerical approximation is made. Examples 
and numerical experiments, such as man-made noise, are provided 
to show the stability and efficiency of this numerical method.

 The paper deals with a mixed problem for a heat-conductivity 
equation with time shift in nonlocal and not self-adjoint boundary 
conditions [18]. Unique solvability is proved under minimum 
conditions on the initial data and an explicit representation for 
solving the problem is obtained.
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The papers [19,20] consider mixed problems for a parabolic 
type equation with constant coefficients under homogeneous 
and inhomogeneous boundary conditions with time shift in 
some of them. And also, under certain conditions on the data, 
by combining the residue and contour integral method [21,22] 
the unique solvability is proved and integral representations for 
solving the stated problems are obtained.

Unlike numerous known works devoted to problems for partial 
equations including parabolic ones, whereon the time deviatin is 
in the equation or instead of boundary ones there are functional 
conditions ([23]-[28] etc.), we consider the problem where the 
time shift of the desired function occurs in boundary conditions

Taking these points into account, it can be argued that the study of a 
mixed problem associated with a second-order parabolic equation 
characterized by temporary mixing and variable coefficients 
subject to non-local and non-self-adjoint boundary conditions 
is one  the important problems. and an important problem in 
mathematical physics.

Problem statement: 
Let 

where                           are the known coefficients and are real 

functions,                               are real constants,

In the half-plane                                    we consider the following 
mixed problem

                                                                            (1)

                                                                            (2)

                                                                            (3)

                                                                            (4) 

The solution of problem (1)-(4) is the function            , satisfying 
the following conditions:

4)           satisfies the equalities (1)-(4) in the usual sense.

The uniqueness of the solution: The problem

                                                                     (5)

                                                                     (6) 

is a said to be the first spectral problem with a complex parameter 
μ. Here

It is known [21] that fundamental systems of particular solutions 
of equation (5) have the asymptotic of representation the form

                                                                                               (7) 

where

w(x) is a diagonal matrix of the following form

It is known [29,30] that if                                            , 

then for all complex values μ, where   

                                                                                             (8)

there exists the green function                    зof problem (5), (6), 
that is analytic for           . By S we denote the set of eigenvalues
      , i.e.

Enumerating the points        (v =1,2...) form S in ascending order 
of their modules taking into account their multiplicity, we have
                               . We denote the multiplicity of the eigenvalue

       by       . It is clear that                              , there exist such

                    , that

                                                                                              (9)

From the Green function                   the following estimation 
holds
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                                                                                           (11)

Let f(x) be from the domain of definition of the operator of the 
first spectral problem i.e.

Then we have the equality

                                                                                          (12) 

Let C > 0, r > 0  be some numbers, z  be a complex variable. Denote 
by                               a hyperbola with the branches

                                          , by                        a circle, 

                  is an area of the circle       enclosed

between the rays                                        , j= 1, 2).

Note that the arcs                                      and

                                        connecting the branches and the sides 

of the hyperbola     in our denotations will be

respectively, where                              . 

We introduce the contours

We denote a part of contours                    enclosed inside the 
circle        by                        respectively. Al last, by Error! 

Objects cannot be created from editing field codes. for

                  we denote closed contours

                                                                    (13)  
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We prove the following theorem: 
Theorem 1: Let                                      ,                     ,               ,

(j = 2,3), the functions                           be continuous in the 

interval         ,                       and               ,                . Then

problem (1)-(4) can have at most one solution.

Proof: We introduce the operators

                                                                                (15)  
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                         , (j= 2,3) It is seen from (14) that if

and                  , (j=2,3) then
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(2), (4) and, its derivatives            for each                are 

continuous with respect to            . Therefore, applying 
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The multiplicity of the pole μ_ν of the Green’s function G(x,ξ,μ) 
will be denoted by χν. Then it is clear that
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where we have:

i.е.
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Where
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the problem (20) and (21) has a unique solution and is represented 
by the formula
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                                                                                       (23)

Keeping in mind the expression (13) of the contours          and

          we know that

Now, estimating the function           on the arcs

                                               (j=0,1), we have

Thus
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                                                                                       (30)

Let us consider the function

     .+(q-                                             )                                            . (31)
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                                                                              (35)

       
We now fix the number                                    and prove the following main theorems.

( ) ( ) ( )( )2 21
2

0 1 0 1 0p z e A e Bλ ω λ ωλ δ δ γ λ γ λ
−

 = = − − 

( ) ( ) ( )( )2 21
2

1 1 0 .q z e e B Aλ ω λ ωλ δ δ λ λ
−

 = = − − 

( )
( )

( )
( ) ( )

( )
( ) ( )

( )
( ) ( )

( )
( )

1 1 11

0 0 0 0
, , , exp ( exp ( ] [ exp ( exp (

2 2 2 2
xb x b x b x b

Q x p q dx dx p dx q d
a x a x a x aa x a x a x a

ξλ λ λ λλ ξ
ξξ

−
          

          = − + − − − + − −
                    

∫ ∫ ∫ ∫

( )
( )
( )

1

0
 (exp (

2
b x

p dx
a xa x

λ 
 +
 
 
∫ ( )

( )
( )0

 exp (
2

x b
d

aa

ξλ ξ
ξξ

  
  − −
     

∫

( ), , ,Q x p qλ
( )

1
1

0

1 ,dx i O
a x

νλ νπ
ν

−
    = +      
∫ ν →∞

νλ ( ), , ,Q x p qλ ( )2, , , , 0 dL Q x p q
dx

λ λ  = 
 

( ) ( )0, , , , 1, , , .Q p q p Q p q qλ λ= =

( ) ( ) ( )2, , 0, 0, , 1, 0dL z x z p z
dx

λ λ λ λ  = = = 
 

( )2 , , G x ξ λ

( )

1
1

0

 dx i
a x

νλ νπ

−
 
 = +
  
∫

1O
ν
 
 
 

ν →∞

( )2 , , G x ξ λ 0δ >

( ) 12 , , 
, 0, 0,1 , 2, 

k
k

k

G x
C C k

x
ξ λ

λ −∂
≤ > =

∂


[ ], 0,1 ;x ξ ∈

νλ λ≠ 0, 1, ν = ± …

( ) ( ) ( )2
2, , , ,dL G x d x

dx
λ ξ λ ϕ ξ ξ ϕ  = − 

 

( ) ( )2 20, , 1, , 0. G Gξ λ ξ λ= =

( ) ( ) ( ) ( )
1

2
0

, , , , , , , z x G x d Q x p qλ ξ λ ϕ ξ ξ λ= − +∫

0
1

1

m 0, lnc ax δ
δ

 
>   

 

.



Citation: Yu А Маmmadov, H I Ahmadov (2024) Existence and Uniqueness of the Solution of a Mixed Problem for a Parabolic Equation Under Nonconventional 
Boundary Conditions . Journal of Physical Mathematics & its Applications. SRC/JPMA-133. DOI: doi.org/10.47363/JPMA/2024(2)116

J Phy Math & its Appli, 2024              Volume 2(4): 7-10

Theorem 2: Let                                             ,                         ,                   (j= 2,3),                 ,          [0,1],
 
                                                                          , and                           Then the problem (1)-(4) has a solution and is represented by 

the following formula

                                                                                                                                              (36)

Proof: It is seen from formula (36) that the solution consist of three integrals and each of them is studied in the same way.

                                                                                                                                                                  (37)
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(39)

On the distant parts of the contour           i.e. Re λ>C1

                                                                                                                                    (40)                

And by means of the estimation (33) it is clear that
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And this enables us that the operators                                                           can be taken under the integral sign (37).
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for t >0. By means of (40) the integrals on the arcs                                                        tend to zero as r→∞.

The function                    is analytic in the domain Re λ>0, and using the estimation (33) we find

and for t>0 by (33), (40) and equalities (34) we have

We now study the second integrals u2 (x,t). It is seen from formula (31) that the function                                    in the 
domain Re λ>c1 is analytic and the following estimations are valid for it

                                                                                                                                                                                        (45)

on the distant parts (Re λ>c1) of the contour         and on the arcs                                                and the estimation
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                                                                                                                                                               (46)

for all x∈[0,1].
If follows from (40) and (46) that

and in (38) for t>0 the operations                                                can be taken under integral sign.

Then allowing for (32), we obtain

As can be seen from (45), for x, belonging to any segment of                                  the integral (38) converges uniformly with 

respect to t > 0. Then                                                 and for

where the function                                     is analytic inside the closed contour

Also, u3 (x,t) is studied in the same way. Combining theorems 1, 2, we arrive at the following final statement

Theorem 3: Let                                                                                 and                                    Then problem (1)-(4) has a 

unique solution represented by formula (36).
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