Journal of Pharmaceutical Research and Reports

Research Article

Open d Access

Innovation and Assessment of Specialized Tablets Leveraging Box Behnken Design

Kratika Khadsondni, Krutika Mandloi, Tushar Sonare, Aman Kumar, Akash Yadav* and Dinesh Kumar Jain

Professor, IPS Academy College of Pharmacy, Indore, India

ABSTRACT

Hypertension, a leading cause of global mortality, affects over one billion individuals and necessitates effective and patient-friendly therapeutic solutions. This study focuses on the development of a mucoadhesive bilayer tablet formulation of propranolol hydrochloride, a beta-blocker widely used to manage hypertension. The proposed tablet design integrates an instant release layer for rapid therapeutic effect and a mucoadhesive extended-release layer for prolonged drug delivery. Both layers were prepared using the direct compression method, a cost-effective and scalable manufacturing process. Comprehensive evaluations of pre- and post-compressional parameters confirmed the tablets met the requisite quality standards. The study also employed the Box-Behnken design, a response surface methodology, to optimize the formulation. The optimized batch, MBT 16, exhibited desirable outcomes, demonstrating effective drug release for immediate and sustained action. This novel dual-layer approach enhances the pharmacokinetic profile of propranolol hydrochloride, potentially improving patient compliance by reducing dosing frequency while maintaining stable blood pressure control throughout the day. The incorporation of natural excipients further highlights the cost-effectiveness and safety of the formulation. This study paves the way for advanced hypertension management through innovative drug delivery systems, combining therapeutic efficiency with improved patient adherence.

*Corresponding author

Akash Yadav, Professor IPS Academy College of Pharmacy, Indore, India.

Received: December 28, 2024; Accepted: February 03, 2025; Published: February 10, 2025

Keywords: Specialized Tablets, Propranolol HCl, Box Behnken Design, Chia Seed Mucilage, Aloevera Extract, Potato Starch

Introduction

Hypertension, also known as high blood pressure, is a significant contributor to cardiovascular disease and mortality globally, impacting over one billion individuals. It stands as the primary cause of death worldwide. Cardiovascular issues resulted in roughly 17.9 million fatalities globally in 2019. In India, premature deaths due to heart disease rose by 59%, measured in years of life lost, escalating from 23.02 million in 1990 to 37 million in 2010. Hypertension is characterized as a chronic condition where blood vessel pressure remains consistently elevated. High blood pressure usually doesn't cause noticeable symptoms, earning it the nickname "the silent killer [1-3]."

A unique method for delivering medications with increased benefits is the use of specialized tablets. Enhancing the bioavailability of the active ingredient via either targeting organ or tissue locations or utilizing innovative drug-delivery methods that initiate certain processes is the fundamental idea behind the tailored tablet. Specialized tablets fall into one of two categories: modifiedrelease tablets, which are characterized by their drug-release pattern, or organ-specific tablets, which are characterized by their drug targeting to an organ. Bilayer tablets are a type of dosage in which one or two different types of medicine are mixed together in different levels of compression. A variety of pharmacological and dosage form deficiencies are addressed by the dose type. A bilayer pill frequently contains both an initial and a maintenance dosage [4-6].

Figure 1: Bilayer Tablet

Propranolol Hydrochloride (Propranolol HCl) is a nonselective beta-blocker often used to treat a number of cardiovascular and other conditions. By reducing the heart's contraction force and pace, it reduces blood pressure. Propranolol is a lipophilic (fatsoluble) drug that can reach the bloodstream by slipping past the lipid bilayer of cell membranes in the gastrointestinal tract. Its bioavailability is impacted by first-pass metabolism, and it is not as effectively absorbed as other water-soluble medications. The liver's significant first-pass digestion reduces its bioavailability to 25-35%. Absorption is affected by stomach pH, lipophilicity of the medication, and food intake. In response to norepinephrine and epinephrine, the heart's beta-1 receptors speed up the heartbeat. Propranolol inhibits these receptors, which lowers heart rate (negative chronotropic effect). It can be found in large quantities in the brain, adipose tissues, kidneys, lungs, and heart [7-9].

This study aimed to provide a novel medication delivery method for effective management of hypertension, a chronic heart disease. A beta-blocker often used to treat hypertension, propranolol hydrochloride, is the subject of this study's bilayer tablet formulation and design. An instant release layer and a mucoadhesive extendedrelease layer comprised two separate layers of the suggested tablet design. We used the direct compression method to build both layers. For the first dose of the drug to have the apeutic benefits, an instant release laver was designed to deliver it quickly. Simultaneous adhesion of the mucoadhesive extended-release layer to the gastrointestinal mucosa allows for longer-lasting medication release. This dual-layer approach aims to optimize the pharmacokinetic profile of propranolol hydrochloride, which may enhance patient compliance by reducing dose frequency while maintaining constant blood pressure control throughout the day. The positive aspects of employing direct compression as the manufacturing process simplicity, affordability, and scalability make large-scale production of these bilayer tablets desirable [10,11].

The Box-Behnken design is an independent quadratic design that does not contain an embedded factorial or fractional factorial design. In this design, the treatment combinations were at the midpoints of the edges of the process space and at the centre. The research study involves the use of Box Behnken Optimization software leveraging natural Disintegrant Potato starch, natural Mucoadhesive polymer Chia seed mucilage. The incorporation of natural ingredients is an eco-friendly and biocompatible alternative to other synthetic agents of the same category, although the agents have their own synergistic effect. The research insight to boost the efficacy and therapeutic effectiveness of the selected active ingredient [12-14].

Materials and Methods Materials

Propranolol Hydrochloride was obtained as a gift sample from Sun Pharma laboratories, HPMC K4M and HMPM K15 were purchased from LOBA Chemie. Other excipients used to prepare the bilayer tablets were of standard quality and all chemical reagents used were of analytical grade.

Table	1:	Physical	and	Chemical	Parameters	of Propranolol
HCl						

S. No.	Parameter	Predicted value
1.	Molecular formula	C ₁₆ H ₂₁ NO ₂
2.	Molecular structure	
3.	IUPAC name	1-(naphthalen-1-yloxy)-3- [(propan-2 yl)amino]propan-2-ol
4.	Molecular weight	295.85 gm/mol
5.	BCS class	Class I
6.	pH and pKa	5-6 pH and 14.09
7.	Log P	3.03 or 2.58
8.	Crystallinity	white, crystalline solid
9.	Melting point	96°C
10.	Solubility	Highly soluble in water

Extraction of Chia Seed Mucilage

- The extraction of chia seed mucilage was done according to the methodology adapted by Silveira Ramos et.al. (2021).
- The seeds were soaked in the Distilled water at a ratio of 1:30 for about 3 hours.
- After which the mixture was continuously stirred by using magnetic stirred at a temperature of 70-80 °C for approximately 1 hour.
- After extraction the mixture was filtered using a muslin cloth.
- The extracted material was precipitated with the absolute ethanol.
- The precipitated mucilage was the subjected towards the hot air oven for drying at temperature 40 °C for about 24 hours [15,16].

Figure 2: Extraction of Chia Seed Mucilage

Extraction of Potato Starch

- Raw potato was selected, washed and peeled and was cut into small pieces.
- Blending or crushing was done to form slurry using distilled water.
- The slurry was then allowed to stand for about 24 hours for sedimentation.
- Decantation was done to separate the starch and washed with distilled water.
- Finally, the starch was dried at 40 °C for 48 hours and stored in air tight container [17].

Figure 3: Extraction of Potato Starch

Preparation of Aloe Vera Mucilage Powder

- Fresh leaves Aloe vera (Aloe barbadensis) was identified and inner leaves mucilage was collected.
- Excess water was removed and the slake was washed using the acetone.
- After which the resultant material was soaked in ethyl acetate for precipitation.
- Resultant material was spread to allow the evaporation of ethyl acetate.
- Finally dried for about 4 hours and passed to through mesh size 250 $\mu m.$
- Store in air tight container [18].

Figure 4: Extraction of Aloe Vera Mucilage Powder

Table 2. Evaluation 1 at antelets of Extracted Water fai						
S. No.	Evaluation	Result				
		Chia seed mucilage	Aloe vera mucilage powder	Potato starch		
1.	Colour	Light brown	Light beige	White		
2.	Odour	Slightly earthy	Slightly herbaceous	Odourless		
3.	Taste	Neutral taste	Slightly bitter	Tasteless		
4.	Appearance	Fine and clumpy	Fine powdery	Fine powder		
5.	Nature	Hydrophilic	Hydrophilic	Hydrophilic		
6.	Melting point	-	38 °C	-		
7.	pH	6-7	5-7	6-7		
8.	Swelling Index	10ml/g	6.8ml/g	7.5 ml/g		

Table 2: Evaluation Parameters of Extracted Material

Box-Behnken Design (BBD)

In the response surface approach known as box-Behnken design, the three levels of a factor 1 being the upper level, 0 being the intermediate level, and -1 being the lower level should be examined. Using design expert software, BBD was utilized to create a polynomial model by arranging three independent and three dependent variables. The three independent variables X1, X2, X3 that the concentration disintegrant (potato starch), effect of mucoadhesive polymer (chia seed mucilage) and effect of sustain release polymer as shown in table.

able 3: The Table Showing the Independent	dent Variable and the Levels that are Selected
---	--

S. No.	Independent variable	levels	
		-1(lower level)	+1(higher level)
1	Concentration of disintegrant (potato starch)	12	20
2	effect of mucoadhesive polymer (chia seed mucilage)	18	25
3	effect of sustain release polymer	16	20

The impact of these three independent variables' changes on the three dependent variables (Y1, Y2, and Y3) are disintegration time, mucoadhesive strength and in-vitro drug release can be studies in the above table.

Table 4: Selected Dependent Variables

S. No.	Dependent variables	units
1	Disintegration time	Seconds
2	Mucoadhesive strength	Grams
3	In-vitro drug release	mg/ml

On the basis of the selected independent variables and their responses the design expert software suggests 15 formulation batches shown in the table no. 5 by using the suggested data from the software we can formulate the tablets by using suitable compression method.

Table 5: Formulation Runs as Per Box Behnken Design						
Runs	Concentration of Disintegrant (potato starch)	Effect of mucoadhesive polymer (chia seed mucilage)	Effect of sustained release polymer			
1	20	21.5	16			
2	16	21.5	18			
3	16	25	16			
4	12	18	18			
5	16	21.5	18			
6	12	25	18			
7	20	21.5	20			
8	16	18	16			
9	12	21.5	16			
10	20	25	18			
11	12	21.5	20			
12	16	25	20			
13	16	21.5	18			
14	20	18	18			
15	16	18	20			

Preparation of Tablets

The Mucoadhesive bilayer tablets were prepared by using direct compression technique in which the powder blend after lubrication directly compressed using desired compression force and Diameter of die. To prepare a mucoadhesive bilayer tablet, the extended mucoadhesive layer was compressed followed by the compression of burst release layer using Karnavati Tablet punching machine.

Formulation of Immediate Release Layer

The formulation composition of immediate release layer described in the table no. 6 In these the Potato starch is used as a natural super disintegrating agent to enhance the biocompatibility and biodegradability. Lactose is added as a filler to form a desired dosage unit. All the ingredients were weighed accurately and thoroughly mixed using glass mortar and pestle after that lubricated using magnesium stearate mixed for another 10 minutes. The powder blend was compressed using 11 mm die.

Table 0: Formulation batches for immediate Kelease Layer							
Formulation	Propranolol Hcl (mg)	Potato starch (mg)	Lactose (mg)	Magnesium Stearate (mg)			
MBT 1	30	20	145	5			
MBT 2	30	16	149	5			
MBT 3	30	16	149	5			
MBT 4	30	12	153	5			
MBT 5	30	16	149	5			
MBT 6	30	12	153	5			
MBT 7	30	20	145	5			
MBT 8	30	16	149	5			
MBT 9	30	12	153	5			
MBT 10	30	20	145	5			
MBT 11	30	12	153	5			
MBT 12	30	16	149	5			
MBT 13	30	16	149	5			
MBT 14	30	20	145	5			
MBT 15	30	16	149	5			

Table 6: Formulation Batches for Immediate Release Layer

Formulation of Mucoadhesive Layer

The formulation composition of mucoadhesive extended-release layer described in the table no. 7 Chia seed mucilage is used as a mucoadhesive polymer and aloevera mucilage is used as a binding agent. While the HPMC K4 M and HPMC K15 is used as a Matrix former to sustain the drug release. Microcrystalline cellulose is used as diluent. All the ingredients were properly mixed thoroughly and lubricated with Talc. Mucoadhesive layer was compressed in 11 mm die followed by compression of immediate release layer [19-23].

Table 7: Formulation Batches for Mucoadhesive Layer							
Formulation	Propranolol Hcl (mg)	Chia seed mucilage (mg)	HPMC K4M (mg)	HPMC K15 (mg)	MCC (mg)	Aloe-vera (mg)	Talc (mg)
MBT 1	50	21.5	16	10	137.5	10	5
MBT 2	50	21.5	18	10	135.5	10	5
MBT 3	50	25	16	10	134	10	5
MBT 4	50	18	18	10	139	10	5
MBT 5	50	21.5	18	10	135.5	10	5
MBT 6	50	25	18	10	132	10	5
MBT 7	50	21.5	20	10	133.5	10	5
MBT 8	50	18	16	10	141	10	5
MBT 9	50	21.5	16	10	137.5	10	5
MBT 10	50	25	18	10	132	10	5
MBT 11	50	21.5	20	10	133.5	10	5
MBT 12	50	25	20	10	130	10	5
MBT 13	50	21.5	18	10	135.5	10	5
MBT 14	50	18	18	10	139	10	5
MBT 15	50	18	20	10	137	10	5

Pre-Compressional Parameter

Pre compressional parameters involve the bulk characterization, powder flow property, solubility, melting point etc [24-26].

Angle of Repose

It is the angle at which the granular pile can rest on the horizontal surface without fall. The technique measures the resistance between the material particles and critical parameter to measure the flowability and granular packing. Pile forming method was used to identify angle of repose in which a funnel was positioned to hold and release the material slowly onto a smooth flat surface. The height and radius of pile formed by material was notes and the θ was measured using the given equation.

Formula: - Tan
$$\theta = \frac{h}{r}$$

Table 8: Angle of Repose

S. No.	Flow Property	Angle of Repose
1.	Excellent	25-30
2.	Good	31-35
3.	Fair	36-40
4.	Passable	41-45
5.	Poor	46-55
6.	Very poor	56-65
7.	Very, very poor	>66

Bulk Density

Bulk density is an important physical parameter of powder flow property. It is the density of powder in its natural state and can be calculated by the mass to volume ratio expressed in gm/ml or gm/cm3. It was measured using cylindrical container method in which measuring cylinder was poured with pre-weighed powder material and the volume was directly observed, finally the bulk density was calculated using the formula.

Formula: Bulk density = Mass of substance / Volume of substance

Tapped Density

It is the density of powder after the particular number of mechanically tapping the powder material and calculated by dividing the mass of powder mass by its final volume after tapping. It helps to measure the powder compressibility and flowability expressed in gm/cm³. Formula: Tapped density = Mass of substance / Final volume after tapping

Compressibility Index

Carr's index measures the powder compressibility which defines the tablet strength and stability. If it is less than 15 indicates the good flowability and if it is more than 25 indicates the poor flowability.

Formula: Carr's Index = Tapped Density – Bulk Density / Tapped Density × 100

S. No.	Carr's Index	Flowability
1.	5-15	Excellent
2.	12-16	Good
3.	18-21	Fair possible
4.	23-35	Poor
5.	33-38	Very poor
6.	>40	Very, very poor

Table 9: Flow Properties as Per Carr's Index

Hausner's Ratio

It is a critical parameter of powder flow property and measures the flowability or granular material. Low Hausner's ratio indicates the less interaction between the granular particles and material is more easily flowable.

Formula: Hausner's ratio = Tapped density / Bulk density

Table 10: Flow Properties as Per Hausner's Ratio

S. No.	Hausner' ratio	Flowability
1.	1.05 - 1.18	Excellent
2.	1.14 - 1.20	Good
3.	1.22 - 1.26	Fair possible
4.	1.30 - 1.54	Poor
5.	1.50 - 1.61	Very poor
6.	>1.67	Very, very poor

Particle Size Analysis

Particle size determination of powders is a critical parameter which directly affect the quality, flowability, stability and performance of the substances. Smaller particle size shows higher surface area and have greater absorbance. Sieve method was used to define the particle size of the mixture.

Table	11:	Methods	for	Determining	Particle	Size of	f Solids
Table	11.	menous	101	Detter minning	1 al title	SILC U	Solida

S. No.	Techniques	Particle Size (mm)
1.	Microscopic	1-100
2.	Sieve	>5
3.	Sedimentation	>1
4.	Elutriation	1-50
5.	Centrifugal	<50
6.	Permeability	>1
7.	Light Scattering	0.5-50

Solubility Studies

The amount of material that dissolves in a solution to form a saturated solution at a certain temperature and pressure is known as solubility. The greatest volume or mass of the solute that dissolves in a certain volume or mass of a solvent is how solubility is stated. The shake-flask method was used to determine the solubility

- After formation of supersaturated solution, filtration was done followed by slow cooling and shaking.
- Sample was then analysed (diluted if needed) to determine the solute content using appropriate method.

	Sie 120 enu			
Descriptive Term	Parts of Solvent Required for 1 part of Solute	g/L in water	M=400 mol/L in water	M=40000 mol/L in water
Very soluble	≤ 1	≥1000	≥2,5	≥0,025
Freely soluble	1 to 10	1000 to 100	2,5 to 0,25	0,025 to 0,0025
Soluble	10 to 30	100 to 33	0,25 to 0,08	0,0025 to 0,0008
Sparingly soluble	30 to 100	33 to 10	0,08 to 0,025	0,0008 to 0,00025
Slightly soluble	100 to 1000	10 to 1	0,025 to 0,0025	0,00025 to 0,0000025
Very slightly soluble	1000 to 10,000	1 to 0,1	0,0025 to 0,00025	0,000025 to 0,0000025
Practically insoluble, or Insoluble	≥10,000	≤0,1	≤0,00025	≤0,0000025

Table 12: Characterization of Solubility

Melting Point Determination

It is the temperature at which the substance starts to melt or changes its state from solid to liquid. It was determined by using electrically heated melting point apparatus

LOD is the resultant weight of the compound expressed in percentage (w/w) to determine the moisture content in the sample compound. Following steps were used to determine the LOD: -

- Sample was accurately weighed
- Sample was heated till it gets completely dry
- Dried sample was again weighed and difference was calculated.

% of Loss on drying = $\frac{\text{weight loss}}{\text{weight of sample}} \times 100$

Standard Calibration Curve

A calibration curve is used to compute the limit of detection, the limit of quantitation, and the concentration of an unknown material. Using a series of standard samples at various concentrations, the instrumental response is used to build the curve. Unknown concentrations can then be predicted by fitting the data with a function.

- Stock solution of known (1000 µg/ml) concentration was prepared by dissolving 100mg into 100ml of 0.1 N hydrochloric acid.
- Second stock solution (100 µg/ml) prepared by pipetting 10 ml of above solution and diluted up to 100ml with the same solvent.
- Dilutions of different strength was prepared and analysed using UV spectrophotometer.

Post Compressional Parameters Organoleptic Characters

The organoleptic parameters were studied by visually evaluating

tablets properties like colour and odour.

Thickness

To assess the tablet's homogeneity in size and shape, its thickness was examined.

Methods: A Vernier calliper was used to measure the tablet's thickness.

Hardness

A Monsanto hardness tester was used to measure the tablets' hardness. On the testing platform, each tablet was positioned separately, and pressure was applied until the tablets broke. The hardness value was determined by measuring the force needed to break each tablet. This technique made it possible to assess the tablets' resistance to mechanical stress precisely.

Friability

The Roche Friabilator was used to assess the produced formulations' friability. After a pre-weighed sample of tablets was put in the friability testing and rotated for 100 revolutions, the tablets were cleaned and weighed again. The following formula was used to determine the tablets' friability:

% Friability = Initial Weight – Final weight $\times 100$

Initial weight

Weight Variation

Twenty tablets were weighed separately, the average weight was determined, and the weight of each tablet was compared to the average weight to perform the weight variation test.

Table 13: Uniformity of Weight and Percentage Deviation

S. No.	USP	Max % difference allowed	IP/BP
1.	130mg > or less	±10%	80mg > or less
2.	130mg > 324 mg	±7.5%	80mg-250mg
3.	324 mg < or more	±5%	250mg < or more

Content Uniformity Test

A content/potency assay was used in content uniformity testing to ascertain the amount of active substance present in several samples taken during the batch. The UV was used to measure the amount of drug and the consistency of the material. Ten tablets were selected randomly and assay was performed to check individual content of active ingredient in each tablet. The potency of nine out of ten pills must be within 1% to 15% of the drug's stated content. There can only be one tablet within a quarter.

Swelling Index Study

The swelling index of a tablet measures how much its volume increases over a specific amount of time as a result of absorbing a liquid, often a dissolving medium. The swelling state of the polymer is a key factor affecting the tablet's bio adhesion. Until the glue hits a threshold where too much hydration causes the adhesive quality to suddenly drop owing to unwinding at the polymer/tissue interface, the degree of hydration will strengthen the binding.

Mucoadhesive Strength and Time

The force that holds a mucoadhesive substance like a gel or

polymer to the mucosal surface like the mucosa of the mouth, nose, or stomach is known as mucoadhesive strength. The mucoadhesive strength was determined by using ex vivo test. Goat intestine was cut cut to obtain a small piece and pasted on a petri dish using adhesive. The intestine membrane was moistened with 2-3 drops of 0.01 N HCl and the tablet was tied with a thread with physical balance on one side. The total weight required to detach the tablet from the intestine membrane was noted as mucoadhesive strength.

Disintegration Test of Tablets

The disintegration test shows how quickly and effectively a tablet disintegrates into smaller pieces in a liquid. The disintegration test is performed to confirm that the body is absorbing the medicine as intended. the process for figuring out how long pills take to dissolve. Initially, the disintegration apparatus was filled with distilled water and kept at $37^{\circ}C\pm 2^{\circ}C$. The six tablets from each formulation are then chosen at random and put one at a time in each of the six cylinders of a disintegration test device. After that, the device was activated, which caused the basket to move up and down. The time it takes for each pill to completely dissolve is then recorded. The average amount of time it took for the pills to dissolve.

In vitro Dissolution Test

The medication release profile is ascertained using the in-vitro dissolution test. This is how the mucoadhesive bilayer tablets are tested for in-vitro dissolution. The USP type II paddle-type equipment was used to conduct the in-vitro dissolving test for the bilayer tablets. The paddle's speed was set at 50 rpm, and the water bath's temperature was kept at $37^{\circ}C$ +/- $0.5^{\circ}C$. The tank that serves as a dissolving media was filled with 900 millilitres of 0.1 N HCL. A tablet chosen at random is put in the dissolving test apparatus's vessel. The sink state was maintained while a 10-milliliter sample was taken out of the vessel at various prearranged intervals. After the samples were filtered, they were analysed at λ max 290nm using a UV-visible spectrophotometer. The absorbance was recorded, and the percentage of drug release and cumulative drug release was computed.

Stability Studies

Stability studies are a crucial assessment metric that aids in figuring out a product's shelf life or how external factors may impact the final product's quality over time. ICH quick study criteria were used to examine the stability of all salbutamol sulphate tablet formulations for a period of one month. Each sample was securely wrapped in aluminium foil and placed in airtight glass containers. These tablets were exposed to three different temperature settings. Tablets were removed from storage at 10-, 20-, and 30-day intervals for examination, with a focus on physical attributes, drug concentration, and segregation patterns [27-30].

Result and Discussion Organoleptic Oroperties of Propranolol HCl Table 14: Organoleptic Properties of Propranolol HCl

S. No.	Organoleptic Characteristics	Result
1.	Colour	White
2.	Odour	Odourless
3.	Taste	Slightly bitter
4.	Nature	Lipophilic
5.	Crystallinity	Crystalline solid

Melting Points

While studied done on the Propranolol hcl, the melting point was determined using melting point apparatus was found to be 148.2°C.

NITCH

....

Calibration Curve

Table 15: Calibration Curve of Propranoiol nel in 0.1 N HCL at Amax 290nm						
S. No.	Concentration (µg/ml)	Absorbance (λmax 290 nm)				
1.	0	0				
2.	2	0.218				
3.	4	0.339				
4.	6	0.472				
5.	8	0.591				
6.	10	0.711				

Figure 5: Calibration Curve of Propranolol HCL in 0.1 N HCL

Pre-Compressional Evaluation

The prepared powder blend for mucoadhesive bilayer tablets were characterized for Angle of repose, Bulk density, tapped density, Carr's index and Hausner's ratio for both immediate and mucoadhesive layer which are shown in table. Angle of repose of all batches was within 30°-36°, Carr's index of all batches was within 7.40-13.20 and Hausner's ratio of all batches was found within 1.08-1.15 which indicate good flow property of granules.

Table 16: Pre-Compressional Data of the Formulation Batches of Powder Blend

Formulation batch	Angle of Repose(θ)	BulkDensity (gmcm3)	Tapped Density (gm/ cm3)	Hausner's Ratio (HR)	Carr's Index (CI)
MBT 1	34.56	0.49	0.56	1.14	12.5
MBT 2	33.19	0.50	0.54	1.08	7.40
MBT 3	31.62	0.48	0.53	1.10	9.43
MBT 4	34.17	0.49	0.56	1.14	12.5
MBT 5	32.87	0.46	0.53	1.15	12.5
MBT 6	33.51	0.46	0.53	1.15	13.20
MBT 7	31.38	0.51	0.57	1.11	10.52
MBT 8	36.43	0.47	0.54	1.14	12.9
MBT 9	36.15	0.46	0.53	1.15	13.20
MBT 10	30.71	0.51	0.57	1.11	10.52
MBT 11	34.56	0.49	0.54	1.10	9.25
MBT 12	30.96	0.47	0.53	1.12	11.32
MBT 13	35.81	0.50	0.57	1.14	12.28
MBT 14	32.87	0.46	0.52	1.13	11.53
MBT 15	30.10	0.51	0.56	1.09	8.92

Post-Compressional Evaluation

Shape and Size

On the evaluation of the Propranolol hel formulated bilayer tablets have the circular in shape and the size of the tablets was found to be 0.65 ± 0.05 cm.

Table 17. 1 0st-Compressional Data of the 1 of indiation Datenes										
Formulation batch	Weight Variation (mg)	Thickness (mm)	Hardness (kg/ cm2)	Swelling Index (ml/g)	Mucoadhesive Strength (gm)	Disintegration time (sec)	Friability (%)			
MBT 1	451.1	4.50	6.21	8.9	29	14.7	0.13			
MBT 2	447.6	4.51	5.78	8.3	31	12.9	0.17			
MBT 3	460.4	4.54	5.23	9.1	24	12.7	0.19			
MBT 4	445.9	4.11	5.21	7.8	27	17	0.11			
MBT 5	454.3	4.21	5.10	9.1	33	12.2	0.14			
MBT 6	443.8	4.24	6.55	8.8	29	19.6	0.19			
MBT 7	447.7	4.55	5.32	8.6	24	15	0.12			
MBT 8	446.3	4.53	4.85	8.9	30	12.9	0.12			
MBT 9	461.1	4.10	6.11	8.7	26	17.2	0.11			
MBT 10	454.7	4.41	5.61	9.2	24	19	0.14			
MBT 11	447.5	4.48	5.91	8.3	23	15.6	0.15			
MBT 12	462.9	4.46	6.12	8.5	28	13.7	0.13			
MBT 13	447.4	4.32	4.55	9.1	35	13.2	0.12			
MBT 14	460.7	4.27	4.91	9.1	27	14	0.11			
MBT 15	447.9	4.27	5.74	8.6	30.5	12.6	0.21			

Table 17: Post-Compressional Data of the Formulation Batches
--

All the prepared tablet batches (MBT 1-MBT 15) were evaluated for post compression parameters and results obtained in the range are sufficient for mucoadhesive bilayer tablets shown in the table no. 17. Hardness ranged between 4.5-6.5kg/cm2, thickness of all tablet batches results from 4.27-4.55mm, friability was found to be in range of 0.11-0.19% which is less than 1% showed good mechanical strength, weight variation test results in between 445.9-462.9mg, swelling index found in 8.3-9.1 ml/gm, mucoadhesive strength results from 14-18.2gm, mucoadhesive time, disintegration time for immediate release layer ranged between 12.2-19.6 seconds. The content uniformity test results ranged between 1.9-2.5% for all the prepared batches.

In-Vitro Dissolution Studies

The amount drug release was analysed at a pre-determined time intervals using a USP type II dissolution test apparatus. The obtained results for cumulative amount of drug release are shown in the table no. 18.

Formulation batch	5 min	10 min	20 min	30 min	40 min	60 min	120 min	180 min	240 min	480 min	720 min
MBT 1	4.458	9.364	18.273	25.582	34.546	41.164	46.564	51.220	56.342	73.348	91.924
MBT 2	5.478	8.345	17.992	25.188	37.984	40.376	45.498	50.047	55.057	71.574	96.756
MBT 3	4.795	8.487	17.774	24.886	35.488	43.761	49.318	54.249	58.674	76.276	89.245
MBT 4	5.134	6.697	16.581	23.213	37.162	44.826	48.697	53.863	59.761	77.689	96.524
MBT 5	3.420	7.985	18.068	25.295	37.702	40.588	45.651	51.216	57.754	75.802	96.752
MBT 6	5.324	8.681	18.193	25.472	36.664	41.944	47.841	52.625	57.932	76.215	95.156
MBT 7	4.951	9.645	19.437	27.211	38.874	44.488	49.366	54.302	60.871	79.135	91.102
MBT 8	6.358	8.125	16.345	22.953	32.687	45.906	50.921	56.013	61.897	80.465	90.561
MBT 9	5.753	9.126	17.679	26.756	37.314	43.512	48.357	53.192	59.754	77.684	89.442
MBT 10	5.951	8.644	19.549	27.268	39.786	43.525	49.987	54.985	60.175	78.442	97.779
MBT 11	4.158	9.146	16.993	24.792	35.907	44.284	48.684	53.549	59.121	76.781	94.304
MBT 12	6.147	8.464	18.715	26.201	37.431	42.435	49.952	55.942	61.248	80.121	94.353
MBT 13	3.963	6.846	17.395	24.353	34.617	40.705	43.68	51.048	57.874	75.156	95.979
MBT 4	4.846	9.866	19.372	27.128	38.546	42.256	46.314	50.944	55.357	71.653	92.104
MBT 15	4.782	7.891	16.227	22.717	37.524	45.435	50.462	54.508	59.849	77.837	92.856

Table 18: In Vitro Dissolution Test Data of the Propranolol Hcl Mucoadhesive Bilayer Tablets

Figure 6: Percent Drug Release for All the Batches MBT 1-MBT 15

Preparation of Propranolol hcl Mucoadhesive bilayer tablets with responses

Table 19: The BBD Composition of Propranolol Hcl Muco	oadhesive Bilayer Tablets Formulations and their Measu	red Responses
---	--	---------------

Formulation batch	Independent Variables			Dependent Variables			
	Concentration of disintegrant	Effect of mucoadhesive polymer	Effect of sustain release polymer	Disintegration time (Seconds)	Mucoadhesive strength (grams)	In-vitro dissolution time (%)	
MBT 1	20	21.5	16	14.7	18.2	91.924	
MBT 2	16	21.5	18	12.9	17.9	96.756	
MBT 3	16	25	16	12.7	14	89.245	
MBT 4	12	18	18	17	12.7	96.524	
MBT 5	16	21.5	18	12.2	18.3	96.752	
MBT 6	12	25	18	19.6	15.1	95.156	
MBT 7	20	21.5	20	15	18.2	91.102	
MBT 8	16	18	16	12.9	11.9	90.561	
MBT 9	12	21.5	16	17.2	18.6	89.442	
MBT 10	20	25	18	19	11.9	97.792	
MBT 11	12	21.5	20	15.6	16.6	94.304	
MBT 12	16	25	20	13.7	14.1	94.353	
MBT 13	16	21.5	18	13.2	17.4	95.979	
MBT 14	20	18	18	14	12.9	92.104	
MBT 15	16	18	20	12.6	16.3	92.856	

Response 1: Disintegration Time for Immediate Release Layer

3D and 2D contour plot images show that an increase in the concentration of Disintegrant leads to decrease disintegration time but only at optimum value. Increase in the mucoadhesive polymer also increases the disintegration time for the tablet which is a significant factor but ideally it should not have any kind of interaction. It could be because of any noise. Sustain release polymer doesn't have any significant effect on the disintegration time.

Figure 7: The 2D Contour Plot and 3D Surface Graph Show that How Disintegration Time for Immediate Release Layer is Affected by Factors X₁ (Effect of Disintegrant), X₂, (Effect of Mucoadhesive Polymer), X₃ (Effect of Sustained Release Polymer)

ANOVA for Quadratic Model Response 1: Disintegration Time for Immediate Release Layer

The obtained model for ANOVA is significant and lack of fit is non-significant which represent good model alignment. The ANOVA for Disintegration time is shown in the table no. There is only a 3.05% chance that an F-value this large could occur due to noise. In this case B, A² are significant model terms. Values greater than 0.1000 indicate the model terms are not significant.

Tuble 20. Al (O TATOT Disintegration Time for Annealate Release Dayer (Response 1)								
Source	Sum of Squares	df	Mean Square	F-value	p-value			
Model	72.93	9	8.10	6.08	0.0305	significant		
A-Effect of Disintegrant	5.61	1	5.61	4.21	0.0955			
B-Effect of Mucoadhesive polymer	9.03	1	9.03	6.77	0.0481			
C-Effect of Sustain release polymer	0.0450	1	0.0450	0.0337	0.8615			
AB	1.44	1	1.44	1.08	0.3464			
AC	0.9025	1	0.9025	0.6766	0.4482			
BC	0.4225	1	0.4225	0.3168	0.5979			
A ²	48.97	1	48.97	36.71	0.0018			
B ²	3.63	1	3.63	2.72	0.1599			
C ²	2.27	1	2.27	1.70	0.2493			
Residual	6.67	5	1.33					
Lack of Fit	6.14	3	2.05	7.78	0.1161	not significant		
Pure Error	0.5267	2	0.2633					
Cor Total	79.60	14						

LL M. ANOVA C. D	· · · · · · · · · · · · · · · · · · ·	I	I /D	1)
anie /ur a Nuiva tor Di	isintegration time for	Immediate Release	Laverikesnonse	
	SINCE AUVIE FINCE IVE	Innuulate retrase		

Response 2: Mucoadhesive Strength

т

The 3D and 2D Surface plot studies shows how the mucoadhesive polymer, disintegrant and sustain release polymer affect the mucoadhesive strength of tablet. Higher mucoadhesive polymer represent higher strength, while disintegrant has minimum effect. Red and orange colour shows higher mucoadhesive strength.

Figure 8: The 2D Contour Plot and 3D Surface Graph Shows That How Mucoadhesive Strength Is Affected by Factors X₁, X₂, X₃

ANOVA for Quadratic Model Response 2: Mucoadhesive Strength

The model appears significant with F-value 6.56 and there is only 2.60% chance that F value this large occur due to noise. In this case B^2 is a significant model term. Means increasing the mucoadhesive polymer leads to increase in mucoadhesive strength while the increasing the mucoadhesive polymer leads to increase in disintegration time. Sustain release polymer have negligible effect on mucoadhesive strength.

Source	Sum of Squares	df	Mean Square	F-value	p-value	
Model	84.74	9	9.42	6.56	0.0260	significant
A-Effect of Disintegrant	0.4050	1	0.4050	0.2823	0.6180	
B-Effect of Mucoadhesive polymer	0.0113	1	0.0113	0.0078	0.9329	
sC-Effect of Sustain release polymer	0.2813	1	0.2813	0.1960	0.6765	
AB	2.89	1	2.89	2.01	0.2151	
AC	1.0000	1	1.0000	0.6969	0.4419	
BC	7.02	1	7.02	4.89	0.0779	
A ²	0.3801	1	0.3801	0.2649	0.6287	
B ²	71.35	1	71.35	49.73	0.0009	
C ²	0.4631	1	0.4631	0.3228	0.5945	
Residual	7.17	5	1.43			
Lack of Fit	6.77	3	2.26	11.09	0.0838	not significant
Pure Error	0.4067	2	0.2033			
Cor Total	91.92	14				

Table 21: ANOVA for Mucoadhesive Strength (Response 2)

Response 3: In vitro Drug Release

The sustain release polymer greatly affect the in vitro drug release rate, higher sustained release polymer promote slow release of drug from dosage unit but decreases the in vitro drug release for desired period while the mucoadhesive polymer also affect the drug release but at the optimum. Orange region indicates the balanced level of both sustained release polymer as well as mucoadhesive polymer. Sustained release polymer help to improve strength and extend the release but can negatively impact disintegration of tablet.

Figure 9: The 2D contour plot and 3D surface graph shows that how In vitro drug release is affected by factors X₁, X₂, X₃

ANOVA for Quadratic Model Response 3: In Vitro Drug Release

P-values less than 0.0500 indicate model terms are significant. In this case C, AB, AC, C² are significant model terms. There is non-significant lack of fit which represent model is aligned. And is there is only a 0.43% chance that an F-value this large could occur due to noise.

Source	Sum of Squares	df	Mean Square	F-value	p-value	
Model	108.25	9	12.03	14.71	0.0043	significant
A-Effect of Disintegrant	0.7919	1	0.7919	0.9688	0.3702	
B-Effect of Mucoadhesive polymer	2.52	1	2.52	3.08	0.1396	
C-Effect of Sustain release polymer	16.37	1	16.37	20.02	0.0066	
AB	12.40	1	12.40	15.17	0.0115	
AC	8.08	1	8.08	9.88	0.0256	
BC	1.98	1	1.98	2.42	0.1805	
A ²	1.25	1	1.25	1.53	0.2704	
B ²	1.01	1	1.01	1.23	0.3177	
C ²	65.75	1	65.75	80.43	0.0003	
Residual	4.09	5	0.8174			
Lack of Fit	3.69	3	1.23	6.14	0.1433	not significant
Pure Error	0.4004	2	0.2002			
Cor Total	112.34	14				

Table 22: ANOVA for in Vitro Drug Release (Response 3)

As we studied the box behnken design we put the responses that we analysed from the evaluation studies as shown in the table no. 19. then the box behnken design optimized the responses and give the optimized batch of formulation and the optimized batch responses and the formulation are shown in table.

Table 23: Formulation of Optimized Batch from BBD (MBT16)

S. No.	Ingredient	Quantities (in mg)				
Immediate release layer (200mg)						
1.	Propranolol HCl	30				
2.	Potato starch	12.35				
3.	Lactose	152.65				
4.	Magnesium stearate	5				
Mucoadhesive extended	i0mg)					
1.	Propranolol HCl	50				
2.	Chia seed	21.03				
3.	HPMC K4 M	16.34				
4.	HPMC K15	10				
5.	Aloe vera	10				
6.	Microcrystalline cellulose	137.63				
7.	Talc	5				

Table 24: Pre-Compressional Data of Optimized Batch (MBT16)

S. No.	Pre-compressional evaluation parameter	Results
1	Bulk density	0.45
2	Tapped density	0.49
3	Hausner's ratio	1.08
4	Carss index	8.163
5	Angle of repose	32

Table 25: Post Compressional Data of Optimized Batch (MBT16)

S. No.	Post-compression evaluation parameter	Results
1	Weight variation	445.9
2	Thickness	4.32 mm
3	Hardness	3.357 kg/cm2
4	Swelling Index	8.4 ml/gm
5	Mucoadhesive strength	18.2 gm
6	Disintegration time	15.8 seconds
7	Friability	0.11 %
8	% Drug release	95.981 %

Table 26: In Vitro Drug Release for Optimized Batch (MBT 16)

Formulation batch	5 min	10 min	20 min	30 min	40 min	60 min	120 min	180 min	240 min	480 min	720 min
MBT 1	5.458	9.304	19.273	23.672	37.586	44.194	49.964	59.220	66.342	76.348	95.981

Figure 10: Percent drug Release of Batch MBT 16 (Optimised Batch)

The obtained Percent drug release of batch MBT 16 (optimised batch) has 95.981 % of drug release in12 hrs (720 minutes), and the optimized batch was evaluated for all the pre and post compressional parameters required for quality control of dosage form and the obtained results was found between satisfied range.

Conclusion

The presented works demonstrate that the tablets containing the propranolol hydrochloride can be desirably prepared as a mucoadhesive bilayer tablets for the management of hypertension. The tablets were evaluated for all the pre and post compressional parameters. The prepared tablets meet all the basic requirements and necessary standards of quality dosage form. Specialised tablets can be further studied for better patient compliance and scale up processes. The study also determines the incorporation of natural ingredients for cost effective and safe studies. The study explores the need of immediate release of drug in the systemic circulation while the supportive maintenance dose for extended period of time for better management of disease. The study aimed to find the optimized batch using the suitable response surface methodology, Box Behnken design. There was selection of three independent factors for their respective responses. The obtained optimised batch MBT 16 showed the desired outcome.

Acknowledgement: I would like to show my sincere gratitude towards IPS Academy College of Pharmacy for providing the necessary requirements and facilities throughout the study. Lastly, I would like to express my appreciation to all my colleagues and peers for their helpful discussions and moral support, which contributed to the success of this work.

Conflict of interest: The authors declare no conflict of interest.

References

- 1. Karam S, Cohen DL, Abou Jaoude P, Dionne J, Ding FL, et al. (2023) Approach to Diagnosis and Management of Hypertension: A Comprehensive and Combined Paediatric and Adult Perspective. InSeminars in nephrology 151-153.
- Akhtar M, Jamshaid M, Zaman M, Mirza AZ (2020) Bilayer tablets: A developing novel drug delivery system. Journal of Drug Delivery Science and Technology 60: 102-179.
- 3. Subramanian M, Sankar C, Rajaram G, Ravi V (2022) Layered Tablets: A Novel Oral Solid Dosage Form. InDosage Forms-Innovation and Future Perspectives: 1-4.
- 4. Khadsondni K, Mandloi K, Sonare T, Kumar A, Yadav A, et al. (2024) Exploring the new horizons in hypertension involving the use of specialized tablets. Revista Electrónica de Veterinaria 24: 2976-2980.
- 5. Advankar A, Maheshwari R, Tambe V, Todke P, Raval N, et al. (2019) Specialized tablets: Ancient history to modern developments. InDrug delivery systems: 615-664.
- 6. Rathore N, Sahu NK (2020) Design, Development and Evaluation of Bilayer Tablet for Antihypertension Activity: 11-16.
- Mourya H, Garud N, Joshi R, Akram W, Singh N (2023) Formulation and Optimization of Propranolol Bilayer Tablets: A Potential Approach for Effective Management of Hypertension. Indian Journal of Pharmaceutical Sciences 85: 1-6.
- Kurćubić I, Vajić UJ, Cvijić S, Crevar Sakač M, Bogavac Stanojević N, et al. (2021) Mucoadhesive buccal tablets with propranolol hydrochloride: Formulation development and in vivo performances in experimental essential hypertension. International Journal of Pharmaceutics 610: 121-166.
- 9. Lunkad SH, Sarode S (2019) Formulation and Evaluation of Mucoadhesive Tablet of Valsartan. Asian Journal of Pharmaceutical Research 9: 229-237.
- 10. Mortazavi SM, Mortazavi SA (2020) Propranolol hydrochloride buccoadhesive tablet: development and invitro evaluation. Iranian Journal of Pharmaceutical Research

20: 22-28.

- Abdullah D, Saeed R, Ali M, Sohail M, Naeem S, et al. (2024) Formulation and evaluation of mucoadhesive gastroretentive tablets of domperidone. Journal of Contemporary Pharmacy 8: 87-95.
- 12. Tak JW, Gupta B, Thapa RK, Woo KB, Kim SY, et al. (2017) Preparation and optimization of immediate release/sustained release bilayered tablets of loxoprofen using Box–Behnken design. AAPS PharmSciTech 18: 1125-1134.
- Won DH, Park H, Ha ES, Kim HH, Jang SW, et al. (2021) Optimization of bilayer tablet manufacturing process for fixed dose combination of sustained release high-dose drug and immediate release low-dose drug based on quality by design (QbD). International Journal of Pharmaceutics 605: 12-20.
- 14. Saha T, Ahmed N, Hasan I, Reza MS (2020) Preparation, characterization and optimization of mucoadhesive domperidone tablets by box Behnken design. Dhaka University Journal of Pharmaceutical Sciences 19: 65-76.
- 15. Da Silveira Ramos IF, Magalhães LM, do O Pessoa C, Ferreira PM, dos Santos Rizzo M, et al. (2021) New properties of chia seed mucilage (Salvia hispanica L.) and potential application in cosmetic and pharmaceutical products. Industrial Crops and Products 171: 113-181.
- 16. Nerkar PP, Mahajan H, Ige P, Solanki R (2016) Development and evaluation of chia seed mucilage-based buccal mucoadhesive, sustained release tablet of venlafaxine. International Journal of Pharmaceutical Sciences and Nanotechnology (IJPSN) 9: 3536-3543.
- 17. Ahmed S, Rehman H, Ahmed N (2024) Potato starch extraction: Techniques, challenges, and future opportunities. Journal of Pharmacognosy and Phytochemistry 13: 512-524.
- Jadhav AS, Shewale AK, Bhutkar MA (2020) Evaluation of Aloe vera and Hibiscus rosa-sinensis mucilage as a binder in different Tablet Formulations. Asian Journal of Pharmacy and Technology 10: 29-37.
- 19. Lalwani PM, Barhate SD, Bari MM (2018) Formulation and evaluation of mucoadhesive tablet of ondansetron HCl. Asian Journal of Pharmacy and Technology 8: 132-138.
- Gupta D, Pandey M, Maiti A, Pujari NM (2023) Bilayer Tablet Technology: A Concept of Immediate and Controlled Drug Delivery. Journal of Pharmaceutical Negative Results: 503-512.
- 21. Lunkad SH, Sarode S (2019) Formulation and Evaluation of Mucoadhesive Tablet of Valsartan. Asian Journal of Pharmaceutical Research 9: 229-237.
- 22. Maddiboyina B, Hanumanaik M, Nakkala RK, Jhawat V, Rawat P, et al. (2020) Formulation and evaluation of gastro-retentive floating bilayer tablet for the treatment of hypertension. Heliyon 6: 15-20.
- 23. Ye F, Wang X, Wu S, Ma S, Zhang Y, et al. (2022) Sustainedrelease ivabradine hemisulfate in patients with systolic heart failure. Journal of the American College of Cardiology 80: 584-594.
- 24. Chaurasia G (2016) A review on pharmaceutical preformulation studies in formulation and development of new drug molecules. International Journal of Pharmaceutical Science and Research 7: 2313-2320.
- 25. Narang AS, Mantri RV, Raghavan KS (2017) Excipient compatibility and functionality. InDeveloping solid oral dosage forms 1: 151-179.
- Patel P (2019) Preformulation studies: an integral part of formulation design. Pharmaceutical Formulation Design-Recent Practices: 9-20.
- 27. Pachori A, Joshi A, Kumar K, Ikram I, Rajput V (2023) A

comprehensive review on sustained release tablets. Journal of Integral Sciences: 8-12.

- 28. Dogra S, Shah I, Upadhyay U (2023) The most popular pharmaceutical dosage form: Tablet: 7-10.
- 29. Kiran B, Rao PS, Babu GR, Kumari MV (2015) Bilayer tablets-a review. International Journal of Pharmaceutical, Chemical & Biological Sciences 5: 5-15.
- 30. Kumar G, Verma V (2024) A review on sustained release bilayer tablet. African Journal of Biological Sciences 6: 1-4.

Copyright: ©2025 Akash Yadav et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.