
J Eng App Sci Technol, 2023 Volume 5(4): 1-5

Review Article Open Access

Integration of SonarQube, The Quality Inspector for GO & Docker
Compose

United States of America

Pallavi Priya Patharlagadda

Journal of Engineering and Applied
Sciences Technology

ISSN: 2634 - 8853

*Corresponding author
Pallavi Priya Patharlagadda, United States of America.

Received: August 05, 2023; Accepted: August 12, 2023; Published: August 19, 2023

ABSTRACT
Project success at any company is mostly dependent on code quality and security. Continuous evaluation of code quality is necessary to attain peak efficiency
and minimize the likelihood of mistakes. Nevertheless, without the use of a static code analysis tool, achieving complete code visibility might be difficult. The
SonarQube platform will be of interest to your company if your software development team is looking to enhance code quality. Nonetheless, developers must
make sure that coding standards are followed at all times if their teams employ a CI/CD pipeline to update the code base. This article will define SonarQube,
highlight some of its best features, and discuss why companies should use it for code analysis, and integrate it with a GO project and Docker Compose.

Problem Statement
Let's begin with a fundamental question why is source code
analysis necessary at all? In other words, badly written codebases
are always more expensive to maintain during the project. The
cost of fixing bugs at production is tenfold expensive than fixing
the bugs at the Development stage. So, Detecting the bugs or
problems at the early stages of development is very important to
assure quality, dependability, and maintainability. SonarQube is the
answer to these questions. In the following sections, we will do a
deep dive into GO, and Docker Compose and integrate them with
SonarQube to ensure the code is written with the highest quality.

Introduction
Go is a procedural programming language. Rob Pike, Ken
Thompson, and Robert Griesemer created it at Google in 2007,
but it wasn't released as an open-source programming language
until 2009. Packages are used in program assembly to effectively
handle dependencies. Like dynamic languages, this language
allows environment adoption patterns as well. For instance, type
inference (y:= 0 is a legitimate declaration of a float variable
y). Because of its straightforward, effective, and low learning
curve, it is a well-liked option for developing online applications,
command-line tools, and scalable network services.

The ability to perform several tasks at once is known as
concurrency, and Go is well-known for supporting this feature.
Go allows for concurrency through the use of channels and
goroutines, which let you design code that can execute several
tasks concurrently. Go is therefore the best option for developing
scalable, high-performance network services and for resolving
challenging computing issues.

Garbage collection, which takes care of memory management
automatically for you, is another key component of Go. As a

result, there is no longer a requirement for manual memory
management, which lowers the possibility of memory leaks and
other issues. Go is effective and supports contemporary hardware
architectures. Building highly performant apps and massively
distributed systems is a common use case for Go.

Go Vet
Go comes pre-installed with the utility vet, which analyzes Go
code statically. Run go vet source/directory/*.go to utilize the
vet program. The vet will identify all infractions and carry out
several tests, such as nil function comparison, shadowed variable
detection, and many more (see go doc cmd/vet for a complete list).
The vet is fantastic since it quickly completes a lot of fundamental
examinations.

Go Linters
However, Go Vet is insufficient if we wish to find typographical
errors, redundant code, or even security issues. Linters such
as GolangCI-Lint and Go Meta Linter can do all these tests.
These are traditional linters that analyze Go code statically and
conventionally provide their findings. Editors like as GoLand,
Vim, and VisualStudio Code can incorporate these linters. Thus,
these linters may identify a wide range of infractions by thoroughly
analyzing Go code. In your build process, linting might take a
long time depending on the linter setup.

Calculating important metrics for your source code, such as lines
of code or cyclomatic complexity, is another benefit of static code
analysis. When combined with code coverage or the number of
unit tests, these important metrics may give a clear picture of how
well your source code is doing. They may be visible to everyone
on an atlasboard-style dashboard in your project. However, where
can we find these important metrics? Linters such as Go Meta
Linter are capable of computing the most important metrics,

Citation: Pallavi Priya Patharlagadda (2023) Integration of SonarQube, The Quality Inspector for GO & Docker Compose . Journal of Engineering and Applied Sciences
Technology. SRC/JEAST-E111. DOI: doi.org/10.47363/JEAST/2023(5)E111

 Volume 5(4): 2-5J Eng App Sci Technol, 2023

including cyclometric complexity. Tests yield other important
data, such as code coverage and unit test count. In this manner,
throughout the continuous integration process, we may compute
the important metrics.

SonarQube
Are Linters insufficient? What makes SonarQube special? Yes.
What if we were interested in learning how our source code's
important metrics changed over time? Since the latest release,
have we been able to increase code coverage? Every sprint, how
many lines of code do we add? Which are the largest components
in our projects?

This is where SonarQube is useful. SonarQube is an open-source
tool that is used to continuously inspect code quality. Organizations
and development teams use it to track, evaluate, and control
the quality of their source code. In addition to supporting many
programming languages, SonarQube offers insightful information
on the state of software projects. Code coverage, unit tests, and
static code analysis are the methods that SonarQube uses to
examine source code over time. SonarQube can then respond to
each of the aforementioned queries. You can see that version 2.1.0
has 3.842 lines of code, compared to version 1.0.0's 1.562 lines
of code and 85% coverage. Upon closer inspection, the packet
with the most growth is auth. You can examine in SonarQube how
your source code and important metrics have changed over time
and between different versions, as seen below.

SonarQube offers an additional advantage for projects or
companies that build services in many programming languages
when it comes to important source code metrics. For a wide range
of programming languages, including Go, Java, C#, JavaScript,
and many more, SonarQube can compute these crucial metrics.
In this manner, you may compute aggregated critical metrics
for projects or organizations that employ many programming
languages. For instance, the total number of lines of code in your
project is 12.346, and its overall code coverage is 76%. With 3.704
lines of code, the JavaScript frontend makes up almost one-third
of the Java backend. Let’s look at the key features of SonarQube.

Key Features of SonarQube
1.	 Code Quality Analysis: To find errors, security flaws, and

code smells (badly written code), SonarQube does static
code analysis. It verifies compliance with best practices and
coding standards.

2.	 Metrics and Dashboards: SonarQube is a tool for gathering
and displaying code-quality data, such as maintainability, test
coverage, complexity, and code duplication. Using interactive
dashboards, it displays the metrics.

3.	 Issue Tracking and Management: SonarQube identifies code
problems and gives comprehensive details about each issue.

With this data, developers can effectively prioritize and
address issues.

4.	 Continuous Inspection: SonarQube facilitates the integration
of pipelines for Continuous Integration/Continuous
Deployment (CI/CD), enabling the automated execution of
code quality tests upon every code contribution.

5.	 Language Support: Programming languages supported by
SonarQube include Java, C/C++, C#, JavaScript, TypeScript,
Python, Go, and more. It is therefore a flexible tool for code
analysis across a range of applications.

6.	 Quality Gate: A "Quality Gate" is a collection of quality
requirements that you may establish using SonarQube.
Should the project fall short of these requirements, it may
halt progress until the problems are fixed.

7.	 Custom Rules and Profiles: With SonarQube, you can
customize quality profiles and coding rules to meet the unique
needs and coding standards of your company.

8.	 Security Analysis: It is possible to find security flaws like SQL
injection and cross-site scripting by using plugins such as
SonarSource's Security plugins (such as SonarQube Security
for Java and JavaScript).

9.	 Plugin Ecosystem: A robust community of plugins for
SonarQube expands its capabilities. To add more languages,
integrations, and custom rules, install more plugins.

10.	 Integration with Development Tools: SonarQube is compatible
with build technologies like Maven, Gradle, and Jenkins as
well as major development tools like Eclipse, IntelliJ IDEA,
and Visual Studio.

11.	 Community and Commercial Editions: SonarQube is free and
open-source software, with community versions accessible at
no cost. Additionally, SonarSource, the business that created
SonarQube, offers commercial editions with much more
sophisticated capabilities and support services.

SonarQube for Go Projects
Establishing static code analysis and code quality checks in a
Golang project requires many steps when using SonarQube. The
main purpose of SonarQube is to analyze JVM-based languages,
such as Java. However, with the use of a "SonarGo" plugin, you
may use the SonarQube Scanner to analyze other languages,
such as Golang. SonarGo is an external plugin that facilitates the
analysis of Golang projects within SonarQube.

A step-by-step guide to using SonarQube with a Golang project
Step 1: Set up SonarQube Server
•	 Download and install the SonarQube server from the official

website: https://www.sonarqube.org/downloads/
•	 Start the SonarQube server by running the appropriate

script (e.g., sonar.sh on Linux/macOS or StartSonar.bat on
Windows).

•	 Access the SonarQube web interface at http://localhost:9000
(by default). Log in with the default credentials (admin/
admin), and change the password after the first login.

Step 2: Install and Configure SonarGo Plugin
•	 Download the SonarGo plugin (JAR file) from the SonarGo

GitHub repository: https://github.com/360EntSecGroup-
Skylar/goreporter

•	 Copy the downloaded JAR file into the extensions/plugins
directory of your SonarQube installation.

•	 Restart the SonarQube server to load the SonarGo plugin.

Citation: Pallavi Priya Patharlagadda (2023) Integration of SonarQube, The Quality Inspector for GO & Docker Compose . Journal of Engineering and Applied Sciences
Technology. SRC/JEAST-E111. DOI: doi.org/10.47363/JEAST/2023(5)E111

 Volume 5(4): 3-5J Eng App Sci Technol, 2023

Step 3: Install SonarScanner
•	 Download and install the SonarScanner for your platform

from: https://docs.sonarqube.org/latest/analysis/scan/
sonarscanner/

•	 Add the SonarScanner executable to your system PATH.

Step 4: Prepare the Golang Project
•	 Make sure your Golang project is structured according to the

GOPATH convention.
•	 Ensure your project contains a sonar-project.properties file

in the root directory. This file is used by SonarScanner to
configure the analysis.

Step 5: Configure SonarQube Analysis
•	 Open the sonar-project.properties file and configure it

according to your Golang project:

Project identification
sonar.projectKey=my_project_key
sonar.projectName=My Golang Project
sonar.projectVersion=1.0
Path to the project sources
sonar.sources=.
Define the language
sonar.language=go
Define the Go import path (optional)
sonar.go.goroot=/usr/local/go
sonar.go.gopath=/path/to/your/gopath
#Sonar.Exclusions are required otherwise, sonarwube would
consider the test and vendor files as source files and ask for
coverage for those.
sonar.exclusions=**/*_test.go,**/vendor/**,**/testdata/*,**/*.
sql,**/*.json,**/*.yml

Additional configuration options (optional)
sonar.go.tests=./path/to/tests
sonar.test.inclusions=**/*_test.go
sonar.test.exclusions=**/vendor/**
sonar.go.coverage.reportPaths=/path/to/coverage_reports
•	 Customize the properties according to your project structure

and requirements.

Step 6: Run SonarScanner
Open a terminal and navigate to the root directory of your Golang
project.
Run the SonarScanner command:
sonar-scanner
SonarScanner will analyze your Golang project and send the
results to the SonarQube server.

Step 7: View Analysis Results in SonarQube
Go back to the SonarQube web interface at http://localhost:9000
(or the address where your SonarQube server is running). You
should see the analysis results for your Golang project under
the project key you specified in the sonar-project.properties file.
You can now investigate your Golang project's code quality metrics,
possible problems, and other analysis results in SonarQube.

Please be aware that SonarGo is a third-party plugin and might
not be as complete as the language analyzers that come with the
program. In addition, Golang support could be less extensive than
that of JVM-based languages like Java. SonarGo can still offer
insightful information on the caliber of the code in your Golang
projects, nevertheless.

SonarQube with Docker Compose
Developers may package, distribute, and run programs and their
dependencies in separate containers with the help of Docker and
Docker Compose, two potent tools for containerization. Here is
a quick rundown of the available utilities along with installation
instructions for Ubuntu computers:

Docker
You can develop, launch, and use apps inside containers with the
help of the open-source Docker platform. Containers are self-
contained, lightweight, and portable units that come pre-configured
with all the applications, libraries, and software needed to operate
them. Docker facilitates the creation, testing, and deployment of
applications by offering a standardized environment at every level
of the software development lifecycle.

Docker Compose: A tool for creating and overseeing multi-
container Docker apps is called Docker Compose. It enables you
to run a complicated application with several interconnected
containers by using a YAML file to describe the services, networks,
and volumes. Several containers and their settings may be more
easily managed as a single, integrated application with Docker
Compose.

Installing Docker and Docker Compose on Ubuntu
Step 1: Update System Packages
Execute the below commands in an open terminal window to
install the necessary dependencies and update the package index:
sudo apt update
sudo apt install apt-transport-https ca-certificates curl software-
properties-common

Step 2: Install Docker
To install Docker, run the following commands:
curl -fsSL https://get.docker.com -o get-docker.sh
sudo sh get-docker.sh
Docker will be downloaded and installed on your Ubuntu machine
as a result. Add your user to the "docker" group after installation
to enable executing Docker commands without requiring sudo:
sudo usermod -aG docker $USER

Step 3: Install Docker Compose
sudo curl -L "https://github.com/docker/compose/releases/latest/
download/docker-compose-$(uname -s)-$(uname -m)" -o /usr/
local/bin/docker-compose
sudo chmod +x /usr/local/bin/docker-compose
This will trigger your Ubuntu computer to download and install
the most recent version of Docker Compose.

Step 4: Verify Installations
Use these commands to confirm that Docker and Docker Compose
are installed correctly:
docker --version
docker-compose –version

The corresponding Docker and Docker Compose versions should
be shown in the terminal.
And that's it! Having successfully installed Docker and Docker
Compose on your Ubuntu computer, you are now able to create,
manage, and launch containerized apps.

Install SonarQube using docker-compose.yml

Citation: Pallavi Priya Patharlagadda (2023) Integration of SonarQube, The Quality Inspector for GO & Docker Compose . Journal of Engineering and Applied Sciences
Technology. SRC/JEAST-E111. DOI: doi.org/10.47363/JEAST/2023(5)E111

 Volume 5(4): 4-5J Eng App Sci Technol, 2023

By using the official SonarQube Docker image from Docker Hub
and configuring a Docker Compose file to set up the SonarQube
service, you may deploy SonarQube using Docker Compose.
Here's a detailed tutorial on using Docker Compose to deploy
SonarQube:
Step 1: Create a Docker Compose File
Create a new file named docker-compose.yml in your desired
directory and add the following content:
version: '3'
services:
sonarqube:
image: sonarqube:latest
container_name: sonarqube
ports:
- "9000:9000"
networks:
- sonarqube_network
volumes:
- sonarqube_data:/opt/sonarqube/data
- sonarqube_logs:/opt/sonarqube/logs
- sonarqube_extensions:/opt/sonarqube/extensions
networks:
sonarqube_network:
volumes:
sonarqube_data:
sonarqube_logs:
sonarqube_extensions:

Step 2: Deploy SonarQube with Docker Compose
To execute the command, open a terminal or command prompt,
go to the directory containing the docker-compose.yml file, and
type the following:
docker-compose up -d
After downloading the most recent SonarQube image from Docker
Hub, Docker Compose will launch the SonarQube service in the
background. "Detached mode," which operates the services in the
background, is what the -d flag stands for.

Step 3: Access SonarQube Web Interface
Upon deployment completion, open a web browser and navigate
to http://localhost:9000 to view the SonarQube web interface.
Use the server's IP address or domain name and the relevant port
number instead of localhost if Docker is executing on a remote
server or a different port.

Step 4: Configure SonarQube
After you can access the SonarQube web interface, you must
finish setting everything up initially.
•	 Log in to SonarQube using the default credentials: admin/

admin.
•	 Change the admin password to a secure one.
•	 Create a new project and obtain an authentication token for the

project. You will need this token later to analyze your code.

Step 5: Analyze Your Code
Now that SonarQube is operational, you may integrate it with
several build technologies, like Maven, Gradle, or npm, to evaluate
your code. Generally, you will need to utilize a SonarQube Scanner
together with the relevant build tool to examine a project.

And that's it! Using Docker Compose, you can now use SonarQube
to examine the quality of the code in your projects. Keep in mind
that you might want to think about extra settings and security
precautions, such as SSL certificates and appropriate data backups,

for production installations.

Pull Request Analysis
A pull request analysis occurs when a pull request is opened and
every time a change is pushed to the pull request branch. Analysis
results only include issues that have been introduced by the pull
request itself. The Quality Gate of your project is used for the
pull request analyses. Quality gate on the pull request uses these
results to ensure that the code changes introduced are always
clean. Only the Quality Gate’s conditions applying to new code
metrics are used.

In a pull request analysis, new code is defined as the code that
has changed in the pull request branch compared to the target
branch. Only issues on new code are reported. The pull request
analysis results and quality gate status can be reported directly to
the configured DevOps platform’s interface.

Prerequisites
Before Reviewing your Pull Requests, Confirm That
1.	 The local repository has the pull request source branch

checked out.
2.	 The pull request target branch is fetched and is available in

the local repository.
3.	 A local repository with legitimate repository metadata (such

as the existence of.git folders) is being used for the analysis.
Steer clear of any attempt to preview the merge or any activity
related to your main branch.

4.	 The code in the local repository and the remote repository
are identical (for example, no code is updated to the local
branch on the CI side before analysis after a PR is published).

To set up Pull Request Analysis, Perform the below Steps.
1.	 Include the SonarQube analysis step in the CI pipeline for

your pull request like installing a sonar scanner on the pipeline
etc.

2.	 Verify that the pull request parameters needed for the project
analysis are received by SonarScanner.

sonar.pullrequest.key - The pull request's unique identification
number. It must match the pull request's key in your DevOps
Platform. Usually, it would be the Pull Request number.

Example
sonar.pullrequest.key=3
sonar.pullrequest.branch - The name of the branch containing the
changes that need to be merged.

Example
sonar.pullrequest.branch=feature/new-feature
sonar.pullrequest.base - The branch (target branch) into which the
pull request will be merged.

Example
sonar.pullrequest.base=master

Automatic detection is overridden when pull request parameters
are manually defined. By configuring the pull request analysis
and Quality gates, we can mark the build as failed if the Quality
metrics are not met. This way we can ensure that we will only
commit the clean code to our main baseline [1-8].

Conclusion
SonarQube's mission is to give power to developers first and foster

Citation: Pallavi Priya Patharlagadda (2023) Integration of SonarQube, The Quality Inspector for GO & Docker Compose . Journal of Engineering and Applied Sciences
Technology. SRC/JEAST-E111. DOI: doi.org/10.47363/JEAST/2023(5)E111

 Volume 5(4): 5-5J Eng App Sci Technol, 2023

Copyright: ©2023 Pallavi Priya Patharlagadda. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

an open community around code security and quality. At the outset,
it can monitor changes in your most important metrics over time
and offer insightful information about how your code quality is
changing. Additionally, SonarQube can analyze code in a wide
variety of programming languages, allowing you to compute vital
metrics overall making it the go-to choose for organizations and
developers to adopt and embrace it.

References
1.	 (2024) Introduction to the pull request analysis. https://docs.

sonarsource.com/sonarqube/latest/analyzing-source-code/
pull-request-analysis/introduction/.

2.	 (2024) Setting up the pull request analysis. sonarsource
https://docs.sonarsource.com/sonarqube/latest/analyzing-
source-code/pull-request-analysis/setting-up-the-pull-
request-analysis/.

3.	 (2024) Overview. SonarSource https://docs.sonarsource.com/
sonarqube/latest/analyzing-source-code/overview/.

4.	 (2023) How to Use Sonarqube in Go Project?. WCE https://
golang.withcodeexample.com/blog/how-to-use-sonarqube-
with-golang/.

5.	 (2023) How to Use Sonarqube With Docker Compose. WCE
https://golang.withcodeexample.com/blog/how-to-deploy-
sonarqube-with-docker-compose/.

6.	 SonarQube. https://en.wikipedia.org/wiki/SonarQube.
7.	 Code Analysis with SonarQube. https://www.baeldung.com/

sonar-qube.
8.	 (2019) Set up SonarQube for Golang Project. Yubing Hou

https://yubinghou.wordpress.com/2019/03/19/set-up-
sonarqube-for-golang-project/.

