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ABSTRACT

In this paper, we derive the equations governing the magnetic trajectories produced by Killing vector fields in 3-dimension Heisenberg group, denoted as
H3. Given the challenges in obtaining analytical solutions for these Killing magnetic curves, we resort to the perturbation method to ascertain approximate
solutions. To enhance the accuracy of these approximates, we utilize three distinct techniques: the straightforward perturbation method, the Lindstedt —
Poincare’ method, and the homotopy perturbation method. Subsequently, we visually compare these approximated solutions with numerical solutions
through graphical representations. Ultimately, our findings reveal that the homotopy perturbation method yields the most precise approximation among

the three aforementioned methods.
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Introduction

The investigation of the Killing magnetic curve serves as a pivotal
cornerstone for the advancement of electromagnetic technology,
significantly enhancing technological sophistication and fostering
the integration of novel materials. Neves et al. contributed notably
by refining the magnetic attributed and dye removal efficiency of
composite materials through a meticulous analysis of magnetic
force curves. Their adjustments to the composition and structure of
these materials facilitated optimized application in environmental
governance [1]. Farzin et al. leveraged magnetic force curves
to assess the magnetic properties of nanoparticles, enabling the
design of specific nanoparticles configurations with tailored
magnetic characteristics. This research led to more effective
strategies for cancer diagnosis and treatment [2].

Over the past two decades, research into magnetic curves across
diverse geometric structures has grown significantly. Bejan et al.
have offered several classifications of magnetic curves on Para-
Sasakian manifolds [3]. Calvaruso delved into examples within
the hyperbolic Heisenberg group and other three-dimensional
almost para- contact manifolds [4]. Munteanu et al. contributed
by classifying magnetic trajectories that are Frenet curves of
maximum order 5 within the Heisenberg group H(n, 1) of
dimension (27 + 1) [5]. Furthermore, Korpinar et al. investigated
B|-magnetic curves in three-dimensional Riemannian manifold,
providing valuable insights as outlined in [6]. Lee explored contact
magnetic curves in Sasakian Lorentzian 3- manifolds, enriching
our comprehension as presented in [7]. The Killing magnetic
curves in SL(2, R) geometry has been studied by Erjavec [§].
Inoguchi and Munteanu investigated magnetic curves in Killing

submersions [9]. Additionally, Sun recon- R cted the Cartan
Equations for null Killing magnetic curve in R3 with Killing
magnetic vector field [10].

Kelekci employed the perturbation method, up to the first order,
to tackle the intricate problem of trajectories generated by Killing
vector fields within Hyperbolic spaces, as documented in his work
[11]. Perturbation methods have found extensive application across
diverse academic disciplines for analyzing nonlinear systems.
Nayfeh provided a comprehensive introduction to the fundamental
principles and techniques of straightforward perturbation theory,
with a particular emphasis on the analysis of nonlinear problems,
in his seminal work [12]. Furthermore, to ad- dress the nonlinear
dependency of frequency on nonlinearity, he introduced the
Lindstedt-Poincare method. However, in scenarios where
equations lack parameters, both the straightforward perturbation
method and the Lindstedt-Poincare method encounter limitations.
To overcome these challenges, Ji-Huan He explored the homotopy
perturbation method, leveraging the construction of a homotopy
equation that incorporates perturbation parameters, to solve a
range of complex nonlinear problems [13].

Drawing inspiration from the aforementioned insights, our
objective is to delve into the exploration of the Killing magnetic
force curve within the Heisenberg group. This particular choice
is driven by the group’s distinctive spatial symmetries, which
facilitate a deeper and more nuanced analysis. Consequently, this
endeavor holds profound implications for quantum mechanics and
quantum field theory, with potential applications spanning general
relativity and black hole physics, as evidenced in the works of
[14,15]. With the aim of achieving more re- fined solutions, we
undertake a comparative analysis of three distinct perturbation
methods.
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The structure of this paper is organized as follows: In Section 2, we
present the fundamental geometric structure that will be utilized
in the subsequent sections of the paper. In Section 3, we offer a
comprehensive proof for the existence of the Killing vector field
within the three-dimensional Heisenberg group, denoted as H3.
Moving on to Section 4, we tackle the equation system associated
with the Killing magnetic force curve on the Heisenberg group.
To obtain more accurate approximation results, we calculate and
compare three distinct perturbation methods: the straightforward
perturbation method, the Lindstedt-Poincare method, and the
homotopy perturbation method.

Preliminaries

In the realm of geometric physics, magnetic fields are frequently
modeled utilizing the principles of contact geometry. Within this
context, the magnetic field is regarded as a unique geometric
phenomenon that manifests on a contact manifold. Here, the
magnetic field serves as a constraint, influencing the dynamics of
matter via the contact structure. In these theoretical frameworks,
the magnetic field exerts an influence on the trajectories of particles
traversing the manifold, and the nature of this motion is dictated by
the contact structure. Notably, the Heisenberg group constitutes a
contact manifold, as highlighted and its inherent contact structure
offers avenues for deeper exploration and study [16].

It’s evident that 3-dimensional Heisenberg group, denoted as
(H3, g, ¢, &, n) possesses an almost contact structure. In which g

is a metric, ¢ is a (1, 1) —tensor field, ¢ is a vector field, # 1—form
contact structure, satisfying [17]

P*=-T+n®&n () =1,
and

¢€ = Ov U Cb = 0.
In this scenario, a closed 2—form on H3 gives rise to a magnetic
field F, where the corresponding Lorentz force ¢, associated with
F, is defined as follows:
F(X,, X)) =9(0X,,X,),X,, X, € X(M).
The smooth curve y on H3 is referred to as a magnetic curve
for the magnetic field F if it serves as a solution to the Lorentz
equation [18].
Vit = ¢ (%)

Regarding F, if we wish to categorize it as a Killing vector field,
it must satisfy the following Killing equation

V“Fg + VﬂFH =0.
The Heisenberg group H3 can be seen as the space R? endowed
with the multiplication
/ / ’ / / ’ 1 / 1 /
('r ,y,z)(x,y,z) = (33 —I—x,y +y72 +z+§xy—§yx) .

and the Riemannian metric g given by

2
g =dz® 4+ dy? + (dz+ gdx— gdy) .

Firstly, we will determine the Levi-Civita connection V of the
metric g in relation to the left invariant orthonormal basis

g yo g x0 0
e = — = —+ =

or 202 " 0y 202 P 0z

We can easily check that

1 1
velel = 0, veleQ = 5637 V6163 = _56%
1 1
vezel = _5637 v6262 = 07 V6263 = 5617
1 1
V83€1 = —5627 VESGQ = 561, V6363 = 0

In the meantime, we have the well-established Lie bracket relations

le1,e2] = e3, [es,er] =0, [e2,e3] =0.

Killing Vector Field in H3
The research carried out by Rahmani explores Killing vector fields
in Heisenberg group with the Lorentzian left invariant metric

g = —da? +dy? + (xdy + dz)2 [19]. Consequently, we arrive

at the following Lemma.

Lemma 1: The Lie algebra of infinitesimal isometries of (H3, g) is
four- dimensional and admits as basis the following vector fields:
O A S LAY A
1=Y5o ffay,Xzf 6y+ , X3 = + X4782'
Proof: Let X be a Killing vector field of H3. We put X = Xjej +
Xoen + X3e3, where Xi fori=1, 2, 3 are real-valued C* functions

on H3.

X

0X,

Y zy _
0Xy Ty, 7
?y+§X1*IX3—O7 ()
0X5
0Xy  0Xy y T 22 — y? _
W‘FTy*Q(ZXl‘FZXQ*F ) XS)—0> (4)
0X3  0Xy 1 Y
S = 22X - 2X3) =0 (%)
oy * oz (2 Pyt ’
0Xs 00Xy 1 x (6)
— 4+ — -2 =X ——-X3] =0
Oz - 0z ( 277 4 3>
Equation (5) derived relatively to z becomes
0?X, L 0Xy (7
022 0z
Equation (6), when derived relative to z, transforms into
0?X; 09Xy _0
022 oz
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with Eq. (3), one knows

Xy = fi1(z,y) + fa (x,y) cosz + f3 (z,y)sin 2,
Xy = g1 (2,y) — f3 (x,y) cos 2z + fa (x,y)sin 2,
Xs=h(z,y).

Equation (1), first derived relative to z and then relative to y,
provides us with

2

T yafS:O,
21:"6 ! yaf
07 f3 2_
D20y ’f2+ 2oy

Similarly, equation (2) first derived relative to z and then relative
to x gives

Pfs 1, z0h _
&gay 2727 2 0z ’
0fa 1 rdfs
aroy T2l T =

Equation (1), first derived relative to z and then multiplied by x,
yields

%f3_x%:07
ﬁf +m% 0
972 Oz ’

Differentiating equation (1) first with respect to z and then
multiplying by y gives

f +y 8f‘°’=0
3f27
*f3+ 2y =0.

Based on the preceding analysis, it can be deduced that /> =13 =

Consequently, Equation. (7) transforms into

:fl (xvy)a
Xo=q1 (:c,y)7
ngh(l‘,y).

Taking into account Equations. (5) and (6), it follows that

0X3 |y
Xy = agx—l- 2X3, )
__ 9% T
Ko = Oz 2X3'

Upon considering Equations. (1) and (4) in conjunction, it can be
deduced that

Xy - 0?Xg
0xdy Oy?

0%X4
ox?

which means

1
= 561 (56‘2 + y2) + Cox + C3y + Cy.

Taking into consideration Eq. (8), it can be inferred that

2 2 2 >y+c37

e fee)

By sequentially setting C; = 1, i = 1, 2, 3, 4 and C; = 0 for all

Co C
X = %Cl (®+9%) + Zay4+ 2

X2 = —%Cl (;v2 + y2) 1'2 _ -

X3 = ECl (x2 + yg) + ng + Csy + C4.

i # j, we can obtain the Killing vector field in H3.

Killing Magnetic Curves in H3
The magnetic curve induced by the i Killing vector field, which
is governed by the Lorentz equation is expressed as follows:

ViY =0 () =Xi x 4.

In the orthogonal basis, {e;, €,, €5}, the velocity vector y* §in be
expressed as 7 =4'e1+4%e2+4%s (the 'dot’ indicates a derivative
with respect to time). Then we obtain the equation:

Vi = 0ile; + 447 Ve e;.
On the right-hand side of the equation, the vector product is
computed utilizing the orthogonal basis within the tangent space
of the underlying manifold. By defining F;) = X; x 4, we
derive the following expressions:

F(l) = (—SC’.)/B — ’.)/2 (LE2 +y2) /2) e + (’Yl ($2 +y2)
/2 —y¥®) e + (yi* + 23") es,

Foy = (=% —a%*) e1 + (23") e2 + (') e,
Fiay = (—y¥*) e1 + (v¥' — %) ea + (37) es,
Fuy=(3%) er = (') ea.

The relationship between the components of % in the orthonormal
basis (5¢) and the coordinate basis ( i) is straightforwardly
expressed as: ¥1 = @, 42 = 9,43 = 2+ Yi — Z5. By
leveraging this relatlonshlp, we can subsequenzly deduce the
subsequent magnetic curves as follows:

X 1—magnetic curves

2 2
2 2

e g._g.):_ ( g._f.) 4y
y “’(z+2m 29 AR 1) A R
z+§x—§y—yy+mx 9)

X2 —magnetic curves

r+y Z+2x §y =—\z+Zx—ZYy) —xY

Y. .\
y— (z+ 23:— §y) = xT (10)
+y.. Z ..
Z+=r——y==x
27 Y
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X3 —magnetic curves

+ (+y. x) .
Z z T——y)=—
Yy 9 QZJ yy
y—x(z—kgm—%y):—(é+%$—§y)+yw (11)
z — —_ = =
9 23/ Y
X 4 magnetic curves
n (+y x) .
Z z T——y)=—
(] 9 Qy Y
y—a'c(é—f—%dc—gy)::t (12)
Zr—Z4=0
FhartoRy

Since analytical solutions (excluding the fourth Killing vector)
are unattainable and there is a scarcity of small parameters, we
contemplate employing the perturbation method for solving the
problem. Consequently, we introduce constants B; (i = 1, 2, 3)
to facilitate the application of the perturbation method. Taking
Equation. (9) as an illustrative, we compare the three perturbation
methods and select the most efficacious one. This selected method
is then applied to Eq. (10) and Eq. (11), as outline in detailed
below. Furthermore, we will present the comprehensive equations,
up to either first or second order, in term of B;.

Magnetic Trajectory by the First Killing Vector Field
Straightforward Perturbation Method
After weighting constants B1, Equation. (9) can be expressed as,

2 2
i+y (24 2o -29) = B (4(“%%%9)7% ‘2”’ y)
2 2
j—i(:+%e-29) = B (—y(é-ﬁ-%i—gy)-&-z ;ry x)
z+g$—§y:Bl(yy+azx).

Matching the coefficients of term with identical powers of B we
can obtain x0, y0, z0 in the equations: %o, yo, 2o

T9 = 1 Ay sin (Cyt) + Az cos (Cht)

\CI

Yo = A2 sin (Clt) A1 COs (Clt)

\CI
2 2
zg:C1 <1+#>f

where C1, A1, A2 are constant.

For the first order B!, we have

.. . . 1 . 1 .

T1+ Y1 <20 + 53/0960 — 2x0y0> +
- 1 n 1 1 . 1.
Yo | Z1 2yo:v1 22119170 2960111 23713/0

. 1 . 1. 1., 5 5
= —xo | 20 + 3 Y00 = 5%oYo | = Y0 (950 + Z/o) ;

.. . i 1 . 1 .
Y1 — 1 (20 + §yol‘o - §l‘oyo> -

. .+1 .+1 . 1 . 1 .
Zo | 21 23/0361 2ylilfo 2$0y1 255190

. r . . L. o 5
==Y | 20 + 5 Y00 = 5%0Yo + 50 (1’0 + yo) ;

1 1 1
Z + 52/0% + 51/19% - 5150131 — 5361:&0 = Yo¥Yo + ToZo.

Upon integrating the final equation, we arrive at:

. 1 . 1 . 1
z1 + S Y01 + Y120 —

- Za1go = Cy. (13
5 2 1Yo = Co. (13)

oY1 —

oY1 — 5
where Cy represents a constant arising from the integration
process. By substituting the expression from Eq. (13) into the
aforementioned equations, we obtain:

x1 = ——Assin (C1t) + Ay cos (Cyt) — AaNytsin (C1t) +

&
|C1
Ch

—— ANyt Cit
|01| 14V1 COS( 1 )
y1 = Ay sin (Cit) — %AB cos (C1t) + |g—1|A1N1tsin (Cht)
+ As Nyt cos (Cht),

A2 1A
(02 + A AsCh + AsALCy + ; 2N1>

where A3, Aq are constant, and N is defined as follows:

A2 + A2
Ny =Cy+1+ %
Forx = zg+ By, y = yo + Biy1, 2 = 29 + B12. Refer to

Figure (1) for a detailed comparison of the first-order result versus
the numerical solution.
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0 2 4 6 8 10 4100 -100

(a) (b)

Figure 1: A comparative analysis is conducted between the first-order approximation, visualized through the uppercase plots in Figure
(a) and the blue plot in Figure (b), and the numerical solution, represented by the lowercase plots in Figure (a) and the blue plot in
Figure (b). To facilitate a more refined observation, Figures (c) and (d) are dedicated solely to the variables ’x, X, y, Y.
By equating the terms that possess identical powers of BZ, we can obtain:

. e 1 . 1.

T2 + Y2 | 20+ 5Y0To — 5ToYo

2 2
v (34 1 " 1 1 1
Y|~ 2yoﬂl?l 2y1x0 2»’50?11 2x1y0

111 .1 1
T Y0 22 T G¥0T2 + SU1T1F GYaTo — ToY2 — 5T1Y1 — 5T2Yo

2 2 2 2 2
. 1 . 1 .
=—x (Zo + 53/0330 - 2x0y0>
. 1. 1. 1 1
— Zo (21 + 5 Y0t + ZY1%o = 5%oY1 — 2x1y0>
L. Lo o o
— 3% (2zox1 + 2yoy1) — Ju (25 +v5)

.. .. 1 . 1 .
Y2 — T2 (Zo + 51/0330 - 2330y0> (14)

. .+1 .+1 . 1 . 1 .
1|~z 2yoﬂfl 2y19730 2$0y1 2x1y0

..+1.+1.+1.1.1.1.
Zo | 22 2y0$2 2y1w1 2y2$0 2$0y2 2x1y1 2362110

. 1 . 1 .
== (2’0 + 51/0960 - 2$0y0>

.+1 .+1 . 1 . 1.
Yo | ~1 2y0331 2ylx0 2x0y1 2z1y0

1. 1.
+ 5% (2zox1 + 2yoy1) + 3% (23 +v0)
1 1

1 1 1 1
Za + §y0f2 + §y1éé1 + 592550 - 596011'2 - §$1i]1 - 5332??0

= Yoy1 + Y190 + ToT1 + T1T0.
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By solving the integral of the ultimate equation, we derive:

.+1.+1.+1.1.1.1.C
%o+ =Yoo + =y141 + =Yoo — =ToY2 — =T1Y1 — =2y = Cs.
2 2y02 2?J11 2?J20 203/2 213/1 223/0 3
where C5 is constant. By using this expression in Eq. (14), we obtain:
C
To = ﬁfk sin (C1t) + Ag cos (C1t) + Nyt sin (C1t) + Nyt cos (Ct) ,
1
C A N? AN
ys = Agsin (Cyt) — ——As cos (C1t) + ( Ny — ==L ) tsin (C1t) — ( Ns + - ) tcos (Cht)
(&1 |Ch 1
A? — A2 A1 Ay 3
=Cy + L2 N?sin (20t N cos (2C1t) + Cst + = Ny Nt
29 4+ 8012 ISIH( 1)+4C1|Cl| 1COS( 1)—|— 3—|—2 AL
A2 + A2 205 — 2N; — N? A2 + A2
+1;2<03+N2+ 2 201 1)t+01<A1A5+A2A6+3;4>t.
1

where C3, Cy4, As, Ag are constant, and Np, N3, N4 are defined as follows
Ny = A1 Az + Az Ay,

1
5= Cq (A2 — AyCh) N1 — C2As — C1C345 — C1A2No]
Cl |:<A1 > CQAl
Nyi=——|[Z== —A: | Ny — C:A; — ANy —
Poal\a )R g

For x = xo + Bix1 + Biaa, y = yo + Biy1 + Biy2, 2 = 20 + B1z1 + Biz2. Consult Figure 2 for a detailed comparative

assessment of the second-order approximation versus the numerical solution.
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Figure 2: In this analysis, we undertake a comparative examination of the second-order solution, illustrated by the uppercase plots
in Figure (a) and the blue plot in Figure (b), against the numerical solution, represented by the lowercase plots in Figure (a) and
the corresponding blue plot in Figure (b). To facilitate a clearer understanding, Figures (c) and (d) are presented, which specifically
concentrate on the variables ”’x, X, y, Y.” Our findings indicate a notable augmentation in the significance of the secular term as time
progresses.
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The expressions sin (C1¢) and cos (C1¢), represent periodic
functions characterized by constant amplitudes. Conversely,
the terms t sin (C1¢) and t cos (C1f) exhibit periodicity but
with amplitudes that grow linearly with time ¢#. Consequently,
it is imperative to implement certain measures to prevent the
emergence of secular terms in the resultant solutions.

Lindstedt — Poincare” Method

To get rid of the secular term, we turn to the Lindstedt — Poincare’
method, referenced in [20]. Since z (t) may not naturally exhibit
periodic behavior, we apply both the Lindstedt — Poincare” method
and a direct perturbation method to tackle the differential equation
system.

Through the process of integrating the ultimate equation presented
in (14), we have:

where M is a new constant of integration. We substitute it into the
first and second equation in (14), resulting in:

af+My:—Mx—%(2y+x),
j—Mi=—My+ 23 (20 —y).

Subsequently, we set 7 = wt and introduce an additional term, B1:
w?i + wMy = By [-Mz — 2wy + z) (22 + y?) /2],
w?j —wMi = By [-My+ (2wi — y) (z* + %) /2] .

Define z = 2o + Bi21, Yy = yo + Biy1, 2 = 20 + Bi21,

w = wg + Biws.
Then we equate the terms with corresponding powers of BY:

wgfi'() 4+ Mwoyo = 0,
w(Q)go - MWO:].'JO =0.
At this juncture, we recognize that the initial term of the frequency

series must coincide with the natural frequency, wy = M.
Consequently, we know:

rg = A sinT + Ascos T,
Yo = AgsinT — Aj cosT.
By equating the terms that have the same powers of Bi:

x5 + 3

ngl + 2&)0&]11.’0 + wOMZ;Il + wlMyo = 7MI]'J0 — B)

(2wogo + o) ,

. . . . 3+ y3
wodit + 2wowi o — woM ) — wiMig = —Myo + 5
(2woto — yo) -

By substituting £ and Yo into the previously derived equations,

A2 + A2
M? (i1 + 1) = [Mwl —M—l—;z(QM+1)]
(AysinT + Ay cosT),
2 2
M? (jjy — 1) = [Mwl - M - At ;AQ (2M + 1)]

(AgsinT — AjcosT).

The inclusion of sin 7 and cos 7 terms will result in secular
contributions within the solutions for x| and y;. To eliminate the
emergence of these secular terms, we determine ®; in such a way
that the coefficients of sin 7 and cos 7 rendered zero

M+ (A7 + A3) (2M +1)
w1 = .

M

The remaining set of equations will then be

M? (i1 +91) =0,

2 /. .
M= (ijh — 1) =0.
whose solutions entail
x1 = Azsint + A4 cost,
y1 = Agsint — Az cost.

For the expressions © = x¢ + B1x1, y = Yo + B1y1,

z = 20+ B121, we can obtain the following numerical values:

Figure 3: In this comparison, we showcase the first-order solution
using uppercase letters in Figure (a) and the corresponding blue
plot in Figure (b). Similarly, the numerical solution is represented
by lowercase letters in Figure (a) and the same blue plot in Figure
(b). For better visualization, Figures (c) and (d) are provided,
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which specifically concentrate on the variables 'x, X, y, Y’.

Our analysis reveals that the solution obtained through the
Lindstedt — Poincare” method exhibits a higher degree of proximity
to the numerical solution than those presented in section 4.1.1.

Homotopy Perturbation Method

Due to the stringent requirement of the existence of a small
parameter, traditional perturbation techniques are not universally
applicable. To overcome the limita- tion posed by the” small
parameter,” Liu introduced the artificial parameter method, while
Liao proposed the homotopy analysis method. Furthermore, He
has expertly utilized these methods to develop a novel perturbation
approach known as the homotopy perturbation method [21-23].

If the set of differential equation is accompanied by initial
conditions

z(0) =P, #(0) =P, y(0) =P, §(0)= P, 2(0) = Py,

:(0)= P,  (15)

where Py, Py, P3, P4 are constant.

We postulate the initial approximate form of Eq. (15) as
xo (t) = Py cos (t) + Pysin (t),
yo (t) = Pacos (t) + Pysin(t),
20 (t) = Pyt + Ps.

And we can establish the following homotopy

X —io =By | i — (X +7) (2+§X7§y)7§(x2+y2) ,
. . . Y. X. X
Y — o= B —i/'o-&-(X—Y)(Z-&-EX—EY) (X))

Z—3 =58 [720+%XY7%YX+XX+YY].

Matching the coefficients for terms involving identical powers of
BY,
Xo = Picos(t) + Pasin (t),
Yy = Py cos (t) + Py sin (t)
Zo = Pyt + Ps.

(16)
Equating the coefficients of terms with identical powers of B},

Xo o Yy
2 2 2

. . . Yy .
X1 = —ito — (Xo+ %) (Zo + 5 X0 - T ) - (XF 7).

.. . . Y, . D' X

#i = —jio + (%o — o) (Zo + 5 %o - 705/0) + 2 (XY,
. 1 1. ) )

Zy = —Zy + §X0Y0 - §Y0X0 + XoXo + Yo Yo.

Upon incorporation of Eq. (16) into the equation, we attain:
; 2 2 o3 2p0p 3
X1 =—Qqsint+ (Qs +2P1Q) cost + §P1P2 cos® t — §P1 Pysin” t,
_ P 2 2 3 2 2 3
Yl = Qgcost+(Q3+2P1Q1)smt 9P1 PQCOS t+ 9P1P2 s t,

(17)

1
Z1 = _ZPIPQ Ccos (2t) .

The values of Q1, 02, O3 are as detailed below:

1 1
Q1:P4+§(P12+P22)7Q2:P2+5P23*

1
EPfPQ,

1
—P,PZ.

1 3
Q37—P1+§P1—6

Given the expressions X = X, + B, X1, Y = Y, + B Yy,

Z = Zp + B1Z1, we can derive the subsequent numerical values,

10t

Figure 4: We pit the first-order solution, vividly captured by the
uppercase plots in Figure (a) and the striking blue plot in Figure
(b), against the numerical solution, portrayed by the lowercase
plots in Figure (a) and the same captivating blue plot. To enhance
clarity, Figures (c) and (d) zoom in on the crucial variables ’x,
XyY.

Equating coefficients for terms with B? raised to the same
power

XQZ—

/

. . 1 . 1 . 1 . 1 .
Xo+ ) (21 +5Y Ko + SYokn - 5 Xo¥i - §X1YO>

~—

. Y. X
X)+ Y1> (Zo + EOX0 - 70Y0>

. 1.
Yo (2Xo X1 +2YoY1) - oY1 (X5 +Y5),

N =

.. . . 1 . 1 . 1 . 1 .
¥2 = (%0 - o) <21 +5Y Ko + SYokn - 5 Xo¥i - 5X1Y0>

. . Yo o Xo o
+(%-n) (Zo + %o - TOYO)
1. 1.
+ 5 X0 (2X0 Xy + 2YoY) + 5 X4 (X¢+Y3),
[ T T T B . . . .
Zo :§X0Y1 + §X1Y0 - §Y0X1 - §Y1X0 +YoY1 + V1Yo + X1 Xo + Xo X

Through the substituting the Egs. (16) and (17), we have

1 29 ) 43 1
= <Q4 - 6PfQ2 + ﬁpfpgj sint — <Q5 + ﬁP{‘P,j — ﬁP1P24> cost

1 2 7 1
L Zp2 ' p2p3 ) gindt — =
+3<Q5+3 1Q2+135 TPy ) sin” t 3

2 1 29
<Q7 — 3 PlQs+ - PPy + EPf”Pf) cos®t
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4 5 4
+ <7%P1 P2> sin” ¢ — ( 225P1P2> cos’ t,

73 5 ) 38
Y, = (Qu+ﬁP1P2 + 27P1P2>smt+ <Q4+ -PIQs + 45P1P2>C05t

1 5 1 1 26
3( Q7 + 7P1P2+ P2Q5+135P3P2>bm t——( Q,,+45P1P2)cos3t

4
(ﬁPSPZ> sin®t — (75P1 PZ?’) cos f

1 2 1
Zy = 5 [P]QQ - P (Qs+2PQy) — P1P2] cos (2t) + = PPyt + P1 P3sin (4t) .

9 3 36
The expressions for 04, Q5, Q6, Q7 are given as follows,

2 20 1
Q4 :7P2Q2+ P1P2*§P4P2+27P1P2Q1+ S P1P2Q3,

5 1
Qs = §P1P2Q2 P1P2Q1 + P2Q3+P1 Q1+ P1 Q3 — 2Q1Q3 — 4P1Q7,
Q6 :*§P1P2*§P1P2Q1 P1P2Q3+ P1P2,
32 4
Qr=—-—PP{Q:+ P1P2Q2

27

For the equations
X =Xo+ B X, +B2X,,Y =Yy + BY] + B¥Y,, and Z =

Zo+ B1Z1 + B% Z2, we can obtain the following figures,

200 200
3 I

Figure 5: A comparative assessment is conducted between the
second-order solution, which is illustrated by the uppercase plots
in Figure (a) and the blue plot in Figure (b), and the numerical
solution, represented by the lowercase plots in Figure (a) and the
corresponding blue plot. To enhance clarity and facilitate analysis,
Figures (c) and (d) are provided, focusing solely on the variables
x, X,y,and Y.

It is evident that the solution obtained through the homotopy
perturbation method is the most proximate numerical solution
among the three methodologies, and the second-order solution
demonstrates superior performance compared to the first-order
solution.

Magnetic Trajectory by the Second Killing Vector Field
Ifthe set of differential equations is equipped with initial conditions

x(0) =Q@Q1P5, ©(0)=Ps, y(0) =Q1Fs, y(0) = Fs,

(18)
where P5, Pe, O1 are constant.

We postulate that the initial approximate pertaining to Eq. (18)
possesses the following form:

zo (t) = Q1P5 cos (t) + Pssin (t),
Yo (t) = Q1P6 cos (t) + Pssin (¢) ,
20 (t) = ——==cos (t) + Pssin (¢).

Q1

We can formulate the subsequent homotopy:

X_xO*BZ-_-TO_(1+Y)(Z+5X—5Y)—XY:|,
Y — ijo = By —y'O+X(Z+5X—5Y> +XX},

We equate the terms with identical powers of BY by
matching their coefficients,
XO = Q1 Ps5cos (t) + Pssin (t),
= Q1 FPscos (t) + Pssin (t),
Zo = —Q—cos( )+ Pssin(t).
By equating the terms that possess the identical powers of B,

(19)

.. . Y, X, .

&1 = —ivg - (14 %) (Zo + 20X, - —°Yo> - YoXo,
¥ = —io + Xo <Zo + EOXO - 7‘%) + XoXo,

.. . 1 . 1. . .

Zy =%+ §X0Yo - §Y0X0 + Xo-

Substituting Eq. (19) gives

X, = —%sin( ) — Moy cos (t) + 81\12113G <<211 Q1> sin (2t) + %m(%),
1 1 99 P5
Yy = —Pgsin (t) — Q1P cos (t) — gl\lzng (Q— — Ql) sin (2t) — —— cos (2t) ,
1
. My,
Zy = Moy sin (t) — —— cos (t) .
@1 (20)

The expressions of M»», M»» are as follows,

Moy = Q1Ps — Ps, My = Q1P5 + Ps.
Equating the coefficients of terms with identical powers of B2,
.. . . 1 i 1 . 1 . 1 .
X =— (1+Yo) (Zl +3Y1Xo + SYo X1 — 5 Xo¥i — §X1Y0>
. . Y, X . .
-Y <Zo + 5 Xo — OYO) — Y1Xo — Yo X1,
.. . . 1 . 1 . 1 . 1 .
Yo =Xo | Z1 + §Y1X0 + *Y0X1 - §X0Y1 - §X1YO
. Yo - X, . .
+ X1 (Zo + *Xo - fOY()) + X1 X0 + Xo X1,

.. X X Y; Y
Z3 771},—0 + 70Y1 - iXo - 70X1 + X1.
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Upon substitution of Egs. (19) and (20), we arrive at

Xo =Mogzsin (t) + MazQq cos (t) + = <Q1 — é)

1
Moy sin (2t) — ZM24 cos (2t)

v % (3 _ é) Mas sin (3t) + = (Ql SJ Mas cos (3t)

1 ,
+ 1024136 (M22P? + M2 Pg) (Qi’ —6Q1 + @) sin (4t)

+ %Ps (M2 PZ + M2, P§) (1 — QF) cos (4t),

= — Magsin () — Mao@Qy cos (1) + & (& - Q1>

1
Mo7 sin (Qt) -+ ZM27 Ccos (Qt)

1 1 3

+ 3 (3 — Q1) Mg sin (3t) + = (Ql 0, ) Mg cos (3t)

1 1\ .
+ 102413 (M2 P2 + M2, P§) (fQif +6Q — @) sin (4t)

+ 35 6Pr (M22 P2 + M2 P3) (QF — 1) cos (4¢),

1 1\424 1 A424
Zy == — 5M.
2 2 (3 PG 0 22) QIH( ) 2(:21 (3

5M22> cos (t)
1
+ 8M21P6 sin (2t) + EM21P6 (Ql - a) cos (2t)
1
b (P 22 (@7 ) sin 30

1 1
+ — (M22P2 + M2, P§) | = —3Q1 ) cos (3t).
96 Q1

the M3, Mpy4, Mps, Mae, Ma7, Mag are as follows,

1 , 1
M23 = EMQ:[PS (Ql +Q1) —+ M22P5 <Q% + 1) +

M 3
m_( +@)Wm%wm¥%
Q1 Q1
Moy = 16P6 (1+Q ) (M21P62+M22P52) + Mo Ps,
1
M25 = 3—2621 (—M21P62 —+ M22P52) + §M222P57
1 1
My = T6M21P5P6 <Q + Q1> - M21M22P6 <Q% + 1) .
Moy = 2Py (1 + Q2) (May P2 + My P2 Mi
2= 15 5 (1+Q7F) (M1 P§ + My PY) + O,

1 1
Msg = EM21P5P6Q1 + §M21M22P6-

Given the expressions X = X, + B1X; + B?Xo,
Y =Yy, + B1Y] + B%YQ, and Z = Zo+ B2, +B%Zz,

we can derive the subsequent numerical values:

(c) (d)

Figure 6: Herein, we undertake a comparative evaluation of
the second-order solution, denoted by the uppercase graphical
representations in Figure (a), against the numerical solution,
represented by the lowercase graphical representations in the same
figure. Additionally, given the inherent uncertainty surrounding
the term ot(where o is constant) in the integration process of
the aforementioned solutions, we further present a solution that
accounts for this term in Figure (b). For the purpose of enhancing
clarity and ease of observation, we have included Figures (¢) and
(d), which exclusively pertain to the variables ’x, X, y, Y.

It is readily apparent that the first-order solution exhibits superior
performance compared to the second-order solution.

Magnetic Trajectory by the Third Killing Vector Field
If the differential equations have initial conditions

2 (0) = Q2P7, ©(0) = Pr, y(0) = Q2Fs, y(0) = P,

e2y)

where P7, P8, 02 are constant.
We postulate that the initial approximate of Eq. (21) adopts the
form

xo (t) = Q2P7 cos (t) + Prsin(t),
Yo (t) = Q2 Ps cos (t) + Pssin (1),
2o () = —% cos (t) + Pgsin (t) .
We can establish the following homotopy
% g = By [4071‘/(24%'(7%1‘/) 4?] ,
Vin= [0 (X 1) (2455 - 57) + 5],
7 5=B, [750 olxv oy y} .
Equating coefficients of like terms powers of BS:
= Q2P7cos (t) + Prsin(t),

Xo
Yo = Q2Ps cos (t) + Pssin (t),

Zy = *% cos (t) + Prsin (t). .

Matching B} powers we have:
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. . Yo o X .
X, = —io — Yo <Zo+ 2X0—7°Y0>—Y0Y0,

1= o + (X0 — 1) (Zo + 5 %o - 7°Yo> + XoYo,

. 1.1 . .
Zy = —Z+ iXOYO — §YOX0 + Yp.

Substituting Eq. (22) yields

X1 = —Pysin(t) — Q2P; cos (t) + %J\/I3QP8 (QL - Qg) sin (2t) + % cos (2t)
2
M3y . 1 ( 1 ) . Pr Mso
Y1 = ———=sin(t) — M3y cos(t) — =MsaP; | — — sin (2t) — ——= cos (2t) ,
1 0 () 31 08 (t) gMaln | &7 Q2 (2t) 1 (2t)
M M3,
Zy = M3y sin (t) — 0 cos (). (23)

M3, M3 are denoted as,
M3y = Q2P — Pr, M3z = QaPs + Pr.
By aligning the terms with equivalent powers of B3 and
equating their coefficients,
. . . 1 . 1 . 1 . 1 .
Xo=-Y, (Zl + *YlXo + *YoXl - §X0Y1 - §X1YO>
Y( X . .
-V (Zo + 5 Xo - —“Yb) — Y1y — YpYs,
. . . . . 1. . 1. .
2= (% -1) (21 + 3¥iXo+ 2¥oXy — 2 Xo¥i - §X1Y0>
Y X . .
+X (Zo + 0Xo - 0Y0> + X1Yo + XoY1,

.. X - Xo Y; Y
Zo :711/0+70Y IXO**OXlJrYl

By incorporating Egs. (22) and (23) into the pertinent formulations,

we derive the following results:

1 1
X2 :]\/.[33 sin (t) + M33Q2 COoS (t) + g <Q2 — Q7> M34 sin (2t)
2

1
— ZMM cos (2t)

+ % <3 Qz) Mg sin (3t) + = (Qg Q32> M35 cos (3t)

—— M35 Py (P7 +P8) (Qg — 6Q2 + L) sin (4t)

Q2

+ Qi%Mw& (P?+ PF) (1—Q3) cos (4t),

1024

Y2 :M36 sin (t) + M36Q2 COos (t) + é (é - Q2) M37 sin (Qt)

1
+ ZM;W cos (2t)

+ % (3 Qg) Mg sin (3t) + (Q2 - %) Mg cos (3t)

1
3 .
1024]Vj32p7 (P7 + PS) (7@2 + GQQ — @) Sin (4t)

2561»132137 (P?+ P3) (Q3 — 1) cos (4t)

3
Zy = — <M31 + T6P7P8M32 (1+ Qz)) sin (t)

(g‘“ + 36137P81\432 <Q2 + é)) cos (t)

1 . 1
— §P7]V[32 s (Zt) + EP7M32 (@ - QQ) Ccos (2t)

1 . 1 1
+ @P7P8M32 (3 — Qg) sin (3t) - @P7P8M32 (@ — 3Q2> cos (3t) .

The expressions of M33, M34, M35, M3, M37, M3g are as follows,

1 1 1
M3z = —— M3o P Py +Q2 ) + M31M32P7 —+1],
16 QQ 2
1 2 M3,
M3y = T6M32P8 (1+Q3) (P +PF) + 0
M35 = EM32P7P8Q2 + 8M31M32P7,
M. 3 1
Mag = Q—? + 55 Mo (P? + P2) (@ + Q2> +
L Mgp +Qy) + M P2 +1
16 32477 Q2 2 321478 Q% )
1
M3z7 = EM32P7 (1+ Q%) (P? + PY) + M3y Py,
M3g = M32P8 + M32Q2 (Pg P72) .

16 32

For the equations X = X, + B, X; + B?X,,

Y = YO + BI}/I + B%}/Q, and Z = Z0+B121 +B%ZQ,

we can obtain the corresponding graphical representations as
follows,

(c) (d)

Figure 7: We compare the second-order solution (uppercase plots
in Figure (a)) with the numerical solution (lowercase plots in
Figure (a)). Considering the uncertainty in ot(where ¢ is constant),
Figure (b) includes this term. For clarity, Figures (c¢) and (d) focus
on’x, X,y, Y.

The performance of the first-order solution is notably superior to
that of the second-order solution.
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Magnetic Trajectory by the Fourth Killing Vector Field
The fourth instance of the Killing magnetic curve is described as:

x+y(2+fx—fy) = —1,

2" 2
j—a (24 50— 29) = (24)
Yi—Zij=o.

Tyt TRy

A straightforward integration is feasible for the third equation:

LY. T
zZ+ 9 T B Yy =q.

By utilizing the expression in the initial and subsequent equations

delineated in (24), we derive the resultant:

& =pysin(t), y=pcos(t).
We then employ these two expressions, multiply them by z, and

subsequently perform the integration process to attain the desired
result

x = —pq cos (t) + pa,
y = p1sin () + ps,

1 1 2
z = §p1p2 sin (t) + §p1p3 cos (t) — (2 + p21> t+ py.

Conclusion

In this research, to obtain numerical solutions for the magnetic
force curve in Heisen- berg space, we employ three different
perturbation methods—the straightforward perturbation method,
the Lindstedt—Poincare” method, and the homotopy perturbation
method—to calculate magnetic trajectories. Through graphical
comparisons of their approximations, we conclude that the
homotopy perturbation method offers the highest accuracy among
the three [17-23].
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