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Introduction
The study of dynamical systems with abrupt, discontinuous 
transitions plays a vital role in understanding non-linear phenomena 
across disciplines such as physics, biology, engineering, and 
economics [1-3]. These transitions often signal critical thresholds 
or tipping points, where small, continuous changes in control 
parameters lead to sudden, dramatic shifts in system behavior. 
Among the theoretical frameworks used to model such phenomena, 
the cusp catastrophe, introduced by Thom and popularized by 
Zeeman, stands out as a cornerstone of catastrophe theory [4, 5]. 
The cusp catastrophe describes systems characterized by multi-
stability, bifurcations, and hysteresis, making it applicable to 
real-world scenarios such as ecological thresholds, market crashes, 
and biological tipping points [6, 7]. 

Mathematically, it is defined through a potential function
 

where u and v are control parameters, and x is the response 
variable. The equilibrium states of the system are determined by 
the stationary condition:

Resulting in a cusp-shaped surface in (u, v, x)-space [8]. This 
model captures the interplay of control parameters and response, 

offering insights into the bifurcations and sudden state transitions 
inherent in non-linear systems.

Despite its theoretical elegance, accurately modeling cusp 
catastrophe behavior from real-world data remains a formidable 
challenge. Nonlinearities, coupled with noise, sparsity, and irregular 
sampling, complicate the approximation of the mapping between 
control parameters (u, v) and the response variable x. sudden 
transitions and bifurcations require techniques that can effectively 
capture localized features in data [9]. Traditional regression 
methods often fall short in addressing these complexities.

Recent advancements in machine learning offer promising 
alternatives for tackling these challenges. Techniques such as 
deep neural networks and reservoir computing have demon started 
success in approximating catastrophe surfaces and predicting 
tipping points directly from data [10, 11]. Among these, the 
Random Forest algorithm, an ensemble-based learning method 
introduced by Breima , is particularly well-suited for predicting 
cusp catastrophe surfaces [12]. By aggregating predictions from 
multiple decision trees trained on bootstrap samples, Random 
Forest can model complex, non-linear relationships while 
maintaining robustness to noise and outliers. Its ability to identify 
feature importance further enhances its utility for understanding 
the influence of control parameters [13].

Previous studies have validated the application of machine 
learning to catastrophe prediction. For example, Chen and Chen 
applied logistic cusp regression to binary out comes, highlighting 
the model’s capacity to handle abrupt transitions [14]. Similarly, 
Cross and Wheat demonstrated the effectiveness of Random 
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Forest in analyzing cusp like dynamics. Building upon these 
foundations, this study ventures into the largely uncharted 
territory of predicting the unstable regions of the cusp surface 
using Random Forest regression [9]. By tackling this intricate 
challenge, it seeks to deepen our understanding of these complex 
systems, shedding light on their chaotic dynamics and pushing 
the boundaries of machine learning’s applicability in modeling 
nonlinear phenomena. Understanding this region enables a deeper 
insight into the mechanisms driving system instability and the 
onset of catastrophic transitions. This study focuses specifically 
on the instability region within the broader spectrum of multiple 
equilibria, assessing the model’s capability to approximate the 
complex mapping between (u, v) and x. The analysis encompasses 
the model’s effectiveness in capturing bifurcations, hysteresis, and 
abrupt state transitions defining characteristics of cusp catastrophe 
systems. By systematically evaluating predictive accuracy within 
these critical regions, this work seeks to rigorously examine the 
robustness and applicability of Random Forest regression in 
modeling the intricate dynamics underpinning catastrophe theory.

The paper is organized as follows: Section 2 outlines the 
methodology, detailing the Random Forest framework and 
experimental setup. Section 3 examines the impact of data 
uncertainty on model performance, while Section 4 investigates the 
effects of data availability. Section 5 considers model complexity 
and computational effectiveness. Finally, the conclusions and 
implications of the findings are discussed in Section 6.

Methodology
Random Forest Regression is an ensemble learning technique 
designed to approximate complex, non-linear relationships in 
data by aggregating predictions from multiple decision trees. It 
combines the principles of bootstrap sampling, random feature 
selection, and recursive partitioning to deliver robust predictions 
while minimizing overfitting [12].

The model starts with a training dataset                            where    
                       are the input features and yi is the corresponding target 
value. Random Forest constructs an ensemble of T decision trees, 
where each tree is trained on a unique bootstrap sample a randomly 
drawn subset of the original training data with replacement. This 
ensures that each tree sees a slightly different dataset, introducing 
diversity into the ensemble.

At each node within a decision tree, the algorithm identifies an 
optimal split of the data. The split is determined by selecting a 
feature j ∈ Ft from a randomly chosen subset of features Ft ⊆ F 
and a threshold value s. The data is divided into two child nodes 
based on whether the feature value satisfies xi,j ≤ s or xi,j > s. 
To evaluate the quality of a split, the algorithm minimizes the 
weighted Mean Squared Error (MSE) for the two resulting nodes:

                                                                                          (1)
 

where Nleft and NRight are the number of samples in the left and 
right nodes, respectively.
The MSE for a given node is defined as:

                                                                                           (2)   

where ynode is the mean of the target values in the node.

This splitting process continues recursively, partitioning the data 
into smaller and more homogeneous subsets at each step. The 
recursion stops when one of the following conditions is met: the 
maximum tree depth is reached, the number of samples in a node 
falls below a predefined threshold, or further splitting does not 
significantly reduce the MSE.

Random Forest introduces two key sources of randomness to 
reduce overfitting and improve generalization: bootstrap sampling 
and random feature selection. Bootstrap sampling ensures 
variability by training each tree on a slightly different dataset. 
Random feature selection further enhances diversity by limiting 
the candidate features for splits at each node. By combining these 
strategies, Random Forest reduces the correlation between trees 
and improves the model’s ability to generalize to unseen data.

Once all T decision trees are constructed, the Random Forest 
prediction for a new input x is obtained by averaging the outputs 
of all individual trees:

                                                                                  (3)

where ft(x) is the prediction from the t-th tree in the ensemble. 
This averaging reduces variance and smooths out the predictions, 
leading to a more stable and accurate model.

To estimate the model’s generalization error, Random Forest uses 
the Out-of-Bag (OOB) error. During training, each tree is built on 
a bootstrap sample, leaving out approximately 36.8% of the data 
points, referred to as OOB samples. The OOB error is calculated 
as the mean squared error of predictions for these OOB samples:

                                                                                      (4)
 

where              is the average prediction from all trees where xi 
was not included in the bootstrap sample. The OOB error serves as 
a reliable estimate of the model’s performance without requiring 
a separate validation set.

The computational complexity of Random Forest depends on the 
number of trees T, the number of samples N, and the number of 
features M. For a dataset with N samples and M features, the time 
complexity for building the Random Forest is approximately:
 
                                                                                       (5)

where the logN term corresponds to the average depth of a decision 
tree in a balanced split. This makes Random Forest efficient for 
moderately sized datasets and scalable to larger problems when 
combined with parallel computation.

The Random Forest algorithm builds multiple decision trees using 
randomized data and features, aggregates their predictions through 
averaging, and estimates its generalization error using the OOB 
samples. By incorporating randomness and ensemble averaging,
Random Forest provides a robust and versatile solution for 
regression tasks, capable of capturing complex, non-linear 
relationships while minimizing overfitting and reducing variance.

Analysis of Model Performance: Data Noise
The Random Forest model was evaluated on datasets with 
increasing levels of randomness, ranging from 0.1% to 30%. To 
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assess the model’s performance, three key metrics were used: Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), 
and the coefficient of determination (R2). Additionally, residual plots, actual vs. predicted plots, and feature importance plots were 
analyzed to understand the behavior of the model under varying
levels of noise.

Figure 1: 1% Randomness: Actual Versus Predicted Values

Figure 2: 10% Randomness: Actual Versus Predicted Values

Figure 3: 20% Randomness: Actual Versus Predicted Values
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Figure 4: 30% Randomness: Actual Versus Predicted Values

The performance of the model, measured by MAE, RMSE, and R2, exhibits a clear trend as the level of randomness increases. At low 
randomness levels (0.1%–2%), the model performs exceptionally well, achieving low MAE and RMSE values, and R2 scores close to

This indicates that the model accurately captures the relationships between the input features u, v, and the target variable x. As the 
randomness level increases (5%–10%), the errors (MAE and RMSE) gradually rise, and the R2 score declines. This behavior reflects 
the model’s decreasing ability to predict accurately due to the noise in the data. At high randomness levels (20%–30%), the model 
performance deteriorates significantly, with large errors and R2 scores approaching zero or negative values, indicating that the model 
fails to explain the variance in the target variable.

Scatter plots comparing actual and predicted values provide further insight into the model’s accuracy [Figures: 1, 2, 3, 4]. at low 
levels of randomness, the predicted values align closely with the actual values along the diagonal line y = x, indicating highly accurate 
predictions. However, as randomness increases, the scatter around the diagonal line becomes more pronounced, with points deviating 
significantly from the line. At very high random- ness levels (e.g., 20% and above), the scatter plot appears almost random, reflecting 
the model’s inability to capture meaningful relationships due to noise dominance.

Residual plots were used to visualize the prediction errors (Residual = yactual − ypredicted) across different levels of randomness. At 
low randomness levels, the residuals are small and randomly distributed around zero, indicating a good model fit with no significant 
bias. As the noise in the data increases, the residuals become more widely scattered, with a larger magnitude of errors. At high 
randomness levels, the residuals exhibit no discernible structure and deviate significantly from the zero line, further confirming the 
model’s reduced predictive accuracy [Figures: 5, 6, 7, 8].
 

                               Figure 5: Residual at 1%                                                                        Figure 6: Residual at 10%
 

                                Figure 7: Residual at 20%                                                                     Figure 8: Residual at 30%

The feature importance plot highlights the relative contributions of the input features u and v in the Random Forest model [Figures: 9, 
10, 11, 12]. At low noise levels, both features contribute meaningfully to the model predictions, with relatively balanced importance 
scores. This suggests that the model effectively leverages the information provided by both input features. However, as randomness 
increases, the noise obscures the relationships be- tween the features and the target variable, reducing their relative importance.
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         Figure 9: 1% Noise                   Figure 10: 10% Noise                         Figure 11: 20% Noise             Figure 12: 30% Noise                  

Figure 13: Feature Importance Analysis

Figure 13 shows feature analysis reveals a notable shift in the balance of importance between features u and v as data noise increases. 
At low noise levels (e.g., 1%), the model assigns disproportionate importance to v, with the feature balance skewed at 30-70 in favor 
of v. However, as noise increases to 30%, the balance gradually equalizes, approaching a near 50-50 distribution. This suggests that 
higher noise levels compel the model to leverage both features more equitably, possibly as a compensatory mechanism to preserve 
predictive performance amidst diminishing signal clarity. These findings highlight the adaptive interplay between feature importance 
and data quality in Random Forest models.

Figure 14 summarizes the behavior of MAE, RMSE, and R2 across all levels of randomness. At low randomness (0.1%–2%), the model 
achieves low error values (MAE and RMSE) and high R2 scores, indicating strong predictive performance. At moderate randomness 
(5%–10%), prediction errors begin to increase, and the R2 score starts to decline, reflecting reduced accuracy. At high randomness 
(20%–30%), MAE and RMSE increase significantly, and R2 approaches zero or negative values, indicating that the model is unable 
to explain the variance in the target variable.

Figure 14: Performance Metrics (Mae, Rmse, and R2) As a Function of Randomness Levels.

The analysis of the performance metrics, residual plots, and feature importance high lights the impact of increasing noise on the 
Random Forest model as shown in figure 14. At low levels of randomness, the model effectively captures the underlying relationships 
in the data and produces accurate predictions. However, as randomness increases, the model’s performance declines due to the noise 
overwhelming the signal. This behavior is consistent with expectations, as high noise levels reduce the signal to noise ratio, making 
it more challenging for the model to generalize.

In summary, the Random Forest model demonstrates strong performance at low noise levels but struggles as the randomness increases. 
To improve model performance un- der noisy conditions, the following recommendations are proposed: preprocess the data to reduce 
noise through smoothing or denoising techniques, experiment with alternative models such as Gradient Boosting or noise-tolerant 
techniques, and investigate additional features or transformations that may help the model better generalize under noisy conditions. 
These findings provide a comprehensive understanding of the model’s behavior and its limitations, informing future improvements 
for handling noisy datasets.

Analysis of Model Performance: Data Reducation
The performance of the Random Forest regression model was systematically evaluated across datasets with varying levels of 
randomness and data availability to assess its robust- ness and predictive accuracy. Randomness levels ranged from 0.1% to 30%, 
simulating increasing levels of noise in the data, while subset percentages ranged from 100% to 30%, representing different levels 
of data availability [Figures: 15, 16, 17, 18].
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Figure 15: 100% Data: Actual Versus Predicted Data, 10% Noise

Figure 16: 80% Data: Actual Versus Predicted Data, 10% Noise

Figure 17: 60% Data: Actual Versus Predicted Data, 10% Noise

Figure 18: 40% Data: Actual Versus Predicted Data, 10% Noise
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At low randomness levels (0.1% and 1%), the model exhibited excellent performance, achieving high R2 values (above 0.98) and 
low error metrics, such as Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). These results highlight the model’s 
capacity to accurately capture the underlying relationships in the data when noise is minimal. However, as randomness increased 
to higher levels (10%–30%), performance deteriorated significantly. MAE and RMSE values rose steadily, while R2 scores dropped 
below 0.7 in some cases, demonstrating the sensitivity of the model to noise in the data. This performance degradation was particularly 
evident in smaller subsets, where the combined effect of limited data and high noise further hindered the model’s ability to generalize 
[Figures: 19, 20, 21, 22].

Figure 19: 100% Data: Actual Versus Predicted Data, 20% Noise

Figure 20: 80% Data: Actual Versus Predicted Data, 20% Noise

Figure 21: 60% Data: Actual Versus Predicted Data, 20% Noise



Citation: Pascal Stiefenhofer (2025) Machine Learning Insights into the Dynamics of Cusp Catastrophe Instability Region. Journal of Mathematical & Computer 
Applications. SRC/JMCA-230. DOI: doi.org/10.47363/JMCA/2024(4)199

J Mathe & Comp Appli, 2025                   Volume 4(1): 8-10

Figure 22: 40% Data: Actual Versus Predicted Data, 20% Noise

The model’s performance was strongly influenced by the size of the data subsets. Larger subsets (100%–80%) consistently outperformed 
smaller ones, particularly at higher randomness levels. With access to more training data, the model effectively mitigated the adverse 
effects of noise, resulting in better predictive accuracy and generalizability. Conversely, smaller subsets (50%–30%) showed significant 
drops in performance metrics, especially when coupled with high randomness. For instance, at a randomness level of 20%, the RMSE 
for the 30% subset increased by over 50% compared to the full dataset, and the R2 score fell below acceptable thresholds (R2 < 0.5) 
[Figures: 23, 24].

The inclusion of cross validation during training provided reliable performance estimates and enhanced the model’s robustness across 
different data configurations. Despite the challenges posed by noise and reduced data availability, the model maintained a consistent 
level of stability in its predictions, reflecting the inherent strengths of the Random Forest algorithm in ensemble learning.

Figure 23: Model Performance for 100% and 80% Data

Figure 24: Model Performance for 60% and 40% Data

The analysis highlights the Random Forest regression model’s robustness in scenarios with adequate data and low noise, where it 
reliably captures complex patterns and relation- ships. However, its sensitivity to noise and reduced data availability underscores 
the need for additional measures, such as noise reduction techniques, feature engineering, or model ensembling, to further enhance 
performance in challenging conditions. These findings provide valuable insights for deploying Random Forest models in real-world 
applications, particularly in noisy or resource-constrained environments.
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Analysis of Model Performance: Model Complexity
Random Forest models are celebrated for their predictive robustness 
and versatility; how- ever, their computational complexity is 
intrinsically tied to hyperparameter choices, particularly tree 
depth and the number of trees. In this study, we systematically 
analyze the time complexity of Random Forest regressors by 
examining training and prediction times across varying model 
configurations. Specifically, tree depth (5, 10, and 15) and the 
number of trees (50, 100, and 200) were varied, using synthetic 
datasets with controlled randomness to ensure consistency. For 
each combination, average training and prediction times were 
meticulously recorded and analyzed.

Figure 25: Model Complexity Analysis

The results reveal a linear increase in training time with the number 
of trees, regardless of tree depth. However, deeper trees (e.g., 
depth = 15) consistently demand significantly more computational 
resources during training compared to shallower counterparts 
(e.g., depth = 5), due to the greater complexity of their branching 
structures. Prediction time, while substantially lower than training 
time, also increases with the number of trees but is less affected 
by tree depth. This is attributed to the marginally higher traversal 
cost associated with deeper trees during prediction [Figure: 25].

These findings illuminate the delicate balance between model 
complexity and computational efficiency. Deeper trees and a 
larger number of estimators enhance the model’s capacity to 
capture intricate data patterns, but at the expense of increased 
computational overhead. This trade off is particularly critical in 
time-sensitive applications, such as real time predictions, where 
efficiency must be weighed against accuracy. Practitioners are 
advised to judiciously calibrate hyperparameters to align with the 
specific demands of their use cases, ensuring optimal performance 
without undue computational burden.

Conclusion
This study delved into the utility of Random Forest regression 
models for predicting cusp instability regions of catastrophe 
surfaces under varying conditions of noise and data avail ability. 
The findings affirm that Random Forests are highly effective in 
capturing the intricate, non-linear dynamics of cusp catastrophe 
systems, particularly in scenarios with abundant data and minimal 
noise. At lower randomness levels (e.g., 0.1%–2%), the model 
consistently achieved superior predictive accuracy, as evidenced 
by low MAE and RMSE values and R2 scores approaching 
unity. These results underscore the model’s ability to reliably 
characterize hallmark features of cusp catastrophe systems, 
including bifurcation and hysteresis. Abrupt state transitions are 
not considered in this paper.

Feature analysis further revealed an adaptive shift in the balance 
of feature importance, with the model leveraging both u and v 

more equitably as noise levels increased. This dynamic interplay 
underscores the model’s inherent flexibility in adjusting feature 
reliance to maintain predictive robustness under varying data 
conditions.

The model’s performance declined significantly as randomness 
increased (10%– 30%), with rising errors and decreasing R2 scores, 
particularly when data availability was limited. This sensitivity to 
noise was most pronounced in smaller data subsets (30%–50%), 
where the combined effects of noise and sparsity led to marked 
performance degradation. These observations highlight the 
critical role of data quality and quantity in maintaining predictive 
robustness, as well as the value of techniques such as cross-
validation to bolster the model’s generalizability.

The study also explored the relationship between model 
complexity and computational efficiency, revealing critical trade-
offs inherent in Random Forest configurations. While increasing 
tree depth and the number of trees enhanced the model’s capacity 
to capture complex data patterns, these adjustments came with 
substantial computational costs. Training times scaled almost 
linearly with the number of trees, while deeper trees (e.g., depth 
= 15) disproportionately increased computational overhead due 
to their complex branching structures. Prediction times, though 
less sensitive to tree depth, also scaled with the number of trees, 
underscoring the importance of balancing these hyperparameters 
to achieve both efficiency and accuracy. These findings emphasize 
that optimal model performance is not solely dependent on 
predictive accuracy but must also account for computational 
feasibility, especially in resource-constrained or time-sensitive 
applications. To address the challenges posed by high noise and 
limited data, several strategies merit consideration. Preprocessing 
methods for noise reduction, alternative machine learning models 
such as Gradient Boosting, and advanced feature engineering 
could further improve performance. These refinements may help 
mitigate the model’s sensitivity to adverse conditions and expand 
its applicability to more complex real world scenarios.

In conclusion, Random Forest regression offers a robust 
framework for modeling cusp catastrophe surfaces under favorable 
conditions. However, its sensitivity to noise, data sparsity, and 
computational complexity underscores the need for refinement 
and careful hyperparameter tuning. Future research should 
prioritize integrating noise resistant methodologies, leveraging 
domain-specific insights, and developing strategies to manage 
computational costs. By addressing these challenges, the potential 
of machine learning to elucidate nonlinear dynamical systems can 
be more fully realized, broadening its applicability to a wider array 
of scientific and practical problems [15, 16].
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