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Introduction
Magnetic hysteresis is a complex phenomenon, which is important 
both from theoretical and practical points of view. It affects the 
dynamic behaviour of ferromagnetic materials; thus, it should be 
taken into account in engineering calculations.

A realistic hysteresis model must be able to take into account 
the diversity of the operating conditions of the systems such the 
variation of the excitation field frequency and the temperature.

Several models are existing in the literature and can describe 
all facets of the magnetic hysteresis. The two most common 
ones are the Jiles- Atherton and Preisach models. The first one 
is of considerable interest due to its relative simplicity and the 
physical meaning of its parameters. Recently, some improvements 
have been introduced to this model in order to describe the 
magnetization processes in ferromagnetic materials in dependence 
of the temperature and the frequency [1]. However, its numerical 
implementation is quite complex, especially the modified models, 
and requires the identification of four parameters. Among the 
phenomenological hysteresis models, the Preisach model is the 
most common approach as well as its numerous extensions which 
are often summarized as Preisach-like hysteresis models. The 
Preisach model rests upon the weighted elementary hysteresis 
operators whose superposition determines the whole hysteresis 
behaviour. Numerous reformulations of the scalar Preisach model 
have been further elaborated in order to obtain the Preisach operator 
in a general vectorial form [2]. The numeric implementation of 
this model is also quite complex and requires more CPU times. 

The design of highly efficient electromagnetic devices requires an 
optimization procedure for minimizing the core losses due to time-
varying electromagnetic fields. In order to achieve the optimum 
design, accurate core loss calculations have to be performed for 
each candidate design. Therefore, it is essential to have an accurate 
and fast hysteresis model to calculate core loss in order to optimize 
the device within a convenient computation time. 

Recently, a new mathematical model of frequency dependent 
hysteresis (based on the model presented in) is proposed [3,4]. 
Variation of only one model parameter with the frequency is 
suggested. This model is closely related to the Bergqvist hysteresis 
model with the dry friction-like hysteresis mechanism, but it 
has a simplified mathematical form and method of computation 
[3,5]. The variation of the coercivity with frequency is fitted 
with empirical functions containing tree fitting parameters. Those 
parameters need to be identified from the measured cycle.

In this paper, an artificial neural network has been used to learn 
directly the relation between coercivity and frequency. The 
obtained neuronal model is introduced in mathematical hysteresis 
model to achieve accurate and computationally efficient hysteresis 
loss prediction.

The frequency dependent hysteresis and its influence on the core 
loss in Fe81B13Si14C2 amorphous alloy sample at frequencies in 
the range of 50–1000Hz has also been presented and discussed. 
The simulation results are compared with the experimental data 
published in [3].

Employed Frequency-Dependent Hysteresis Mathematical 
Model 
A new arctangent mathematical model of the frequency-dependent 
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ABSTRACT
In this paper, the dynamic hysteresis energy losses of the FeBSiC amorphous alloy sample were determined by means of mathematical model and neural 
networks. The changes in magnetic hysteresis curves as a function of frequency are introduced via the variation of the coercive magnetic field. So, a neural 
network (NN) has been trained to learn this function and used in the modelling of frequency-dependent hysteresis with a mathematical model. The model 
can calculate core losses based on the input parameters obtained from experimental measurements. This study is especially aimed at giving improved issue 
to avoid the empirical functions that require the identification of several parameters.
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hysteresis loop is proposed in [4]. The major hysteresis loop can 
be represented by the following expression [3,4]:

  B=±a.arctan[b (±H+d)]+c.H           (1)
  B=±a.arctan[b (±H-d)]+c.H            (2)

The positive sign in (1) and (2) should be used in modelling of 
the positive parts of the descending (ascending) curve and the 
negative sign should be used in modelling of the negative part of 
the descending (ascending) curve.

Parameters model can be calculated using simple expressions 
using the measured values of the coercive magnetic field Hc, the 
saturation magnetic field Hs, the remanent magnetic induction Br 
and the magnetic induction at saturation Bs. Parameter d can be 
set to the value of the coercive magnetic field Hc. The Parameter 
a can be calculated as 2Bs/π. The descending curve of the major 
loop must pass through the points (0, Br) and (Hs, Bs). Therefore, 
parameters b and c can be calculated using Eq. (3) and Eq (4) [4]:

                                                                                   (3)

                                                                                    (4)

Each parameter has influence on the shape of the constructed 
major hysteresis loop.

The model is generalized to calculate initial magnetization curve, 
first-order and higher-order reversal curves.

Generally, the hysteresis loop evolves with the change of the 
frequency and the two representative parameters of the loop, 
Hc and Br, depend on the frequency. In the case of the FeBSiC 
amorphous alloy presented in, the most important visible change 
in the hysteresis loop with the increase of the frequency is the 
increase of the coercivity [3]. The variation of Br is negligible 
and can be considered constant. 

The frequency dependence of hysteresis curves is incorporated in 
the mathematical model by setting parameter d equal to Hc. The 
variation of the coercivity with frequency can be fitted with the 
following function [3,6]:

                                                                          (5)

where α, β, and γ are fitting parameters that need to be calculated 
from experimental data.
Parameters α correspond to the coercivity at zero frequency. 
Parameters β and γ correspond to the anomalous eddy currents 
and normal eddy currents, respectively [3].

In those parameters are fitted from some measurements of the 
variation of the coercivity with frequency and using Wolfram 
Mathematica software [3]. The obtained results are: α=17.336, 
β=0.1983 and γ=0.0073.

In this paper, we propose a neural network model for fitting the 
observed dependence of the coercivity on the frequency directly 
from measurements. The generalisation characteristic of this model 
offers an accurate predictive approach to calculate the coercivity 
over a wide range of frequencies and its use in the mathematical 

hysteresis model gives an accurate and computationally efficient 
hysteresis loss prediction. It can extrapolate the coercivity for 
zero frequency and so the static-hysteresis loss with an acceptable 
precision.

A Neural Network Model for Fitting the Frequency Dependence 
of the Coercivity
In previous works, ANN has been successfully used for modelling 
the magnetic hysteresis of different materials. For example, In 
an ANN is used for modelling the mechanical stress influence 
on magnetic hysteresis of magnetostrictive materials [7]. In, 
the temperature dependency of the 3F3 magnetic hysteresis is 
presented using an ANN [8].

The aim of this paper is to improve the presented mathematical 
model by seeking a simple relation to represent the frequency 
dependence of the coercivity. It is especially aimed at giving 
improved issue to avoid the empirical functions that require the 
identification of several parameters. In addition to its simplicity 
and accuracy, the seeking model must overcome the problems 
of identification. To do, it was thought to neural networks. It is 
well-known that neural network technique can implement all 
sorts of nonlinear mappings, it has always been regarded as one 
of the best approaches to modelling nonlinearities. In our work, 
a single-input-single-output three layers NN is adopted. It has the 
task of predicting the frequency dependence of the coercivity. The 
implemented NN architecture consists of three-layers perceptron 
made of an input layer, a single hidden layer and an output layer. 
The NN input is the frequency (Hz) of the magnetic field, while 
the output is the coercivity (A/m).

Several tests were carried out to determine the optimal architecture 
of the neural network, and more exactly the number of neurons in 
the hidden layer. The optimal configuration consists of a neural 
network with one neuron in the input layer with a linear transfer 
function, four neurons in the hidden layer with a sigmoid transfer 
function and one neuron in the output layer with a linear transfer 
function. The pattern for NN training (a list of frequency and 
corresponding coercivity) are created from the experimental data 
published in [3]. The authors have measured the hysteresis loops 
with a toroidal core sample made of Fe81B13Si14C2 amorphous alloy 
[3]. Measurements have been made under sinusoidal excitation 
of the variable frequency in the range from 50 to 1000Hz and a 
maximum of the excitation magnetic field amounted to 100A/m. 
The coercive magnetic field values Hc, are obtained from 
the experimental hysteresis loops and their variation with the 
frequency f is presented in Table 1 [3].

Table1: Variation of Coercivity with Frequency [3].
Frequency f [Hz] Corcivity Hc [A/m]

50 19.16
200 21.38
400 24.57
600 26.26
800 28.98
1000 30.84

The frequency values are normalized to avoid injecting large 
values in the neural network and thus improving the process of 
convergence.
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NN Performance
Figure 1 shows the trend of the mean square error performed by 
Levenberg-Marquard algorithm. We notice the fast convergence 
of the NN

Figure 1: Mean Square Error Performed by Levenberg-Marquard 
Algorithm for the Training Set

In order to test the NN training, the NN thus prepared is used to 
predict the coercivity for the training data base frequencies. The 
convergence test results are listed in the Table 2

Table 2: Results of the Convergence Test
Frequency f [Hz] Experimental Value 

of Hc [A/m]
NN Predicted Value 
of Hc [A/m]

50 19.16 19.16
200 21.38 21.38
400 24.57 24.57
600 26.26 26.26
800 28.98 28.98
1000 30.84 30.84

Through simulation, the results prove that the approximation 
precision is very high and the error prediction for the whole tests 
is zero. This is justified by the simple nonlinear mapping.The 
obtained predicted results are used for modelling the frequency-
dependent of the hysteresis loops of the Fe81B13Si14C2 amorphous 
alloy, using the mathematical model described above. The model 
parameters are: a=0.35395, b=0.875, c=0.000015 and d is equal 
to the value of the coercivity Hc. Figure 2 shows the simulation 
results.

Figure 2: Modelling Hysteresis Loops using the Predicted Values 
of the Coercivity of the Table 2 

Generalization Test of the NN
The generalization test consists of using the NN to predict 
the frequency dependence of the coercivity for the values of 
the frequency out of the training database. Due to the lack of 
experimental data, the obtained results are compared with those 
obtained using eqt (5) with parameters α =17.336, β=0.1983 and γ 
=0.0073 [3]. The generalization test results are listed in the Table 3

We can notice a slight difference between the predicted values 
and those calculated. This difference occurs because the small 
size of the training database. So, the generalization ability can be 
improved by using a large database of the pattern for NN training.

Table 3: Results of the Generalization Test
Frequency f [Hz] NN Predicted Value 

of Hc [A/m]
Calculated Value of 
Hc [A/m]

100 19.3659 20.0490
300 24.5065 22.9607
500 25.9681 25.4201
700 26.8664 27.6925
900 30.5419 29.8550
950 30.7608 30.3830

Figure 3 Presents the Modelling Frequency-Dependent of the 
Hysteresis Loops of the Fe81B13Si14C2 Amorphous alloy using 
the Predicted Values of Hc listed in table 3

Figure 3: Modelling Hysteresis Loops using the Predicted Values 
of the Coercivity of the table3 

Calculation of the Dynamic Hysteresis Energy Loss 
The described approach has been applied to compute the dynamic 
hysteresis energy loss of the Fe81B13Si14C2 amorphous alloy sample 
at frequencies in the range of 50–1000Hz. The hysteresis loops 
are calculated using equations (1) and (2) and the frequency 
dependence of hysteresis curves is incorporated by NN model. The 
variation of the energy loss per unit volume (areas of loop) with 
the frequency W(f) is presented in figure. 4, where the measured 
values are those published in [3].
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Figure 4: Comparison between Measured and Calculated Loop 
Hysteresis Energy losses [3].

One can notice the good agreement between measurements and 
calculated loop hysteresis energy losses with a slight difference 
for the two last frequencies. 

The NN model is used to extrapolate the value of the coercivity 
at zero frequency Hc(0)=19.0928. According to this, the static 
hysteresis loss amounts to W=42.67 W/m3.

Conclusion 
In this paper, a mathematical model and neural networks combined 
technique has been presented to simulate the BH curves and 
magnetic power losses. The frequency dependence of the 
coercivity is introduced to the mathematical model via a neural 
network. The aim of using the neuronal model is to avoid the 
problem of the identification that requires the empirical functions. 
The generalisation characteristic of the NN offers an accurate 
predictive approach to calculate the coercivity over a wide range 
of frequencies. Another main advantage of the NN is the ability 
to implement multiple nonlinear mappings simultaneously, such 
the effect of the frequency and temperature on the hysteresis loop. 
However, the model precision depends essentially on the size of 
the database of the pattern for NN training. The proposed approach 
is then applied to calculate the hysteresis losses in an Fe81B13Si14C2 
amorphous alloy at frequencies in the range of 50–1000Hz. The 
experimental results approve the proposed approach. 
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