
Research Article Open    Access

Mode of Action, Mechanism and Role of Microbes in Bioremediation 
Service for Environmental Pollution Management

1Microbial Biodiversity Directorate, Ethiopian Biodiversity Institute, P.O. Box 30726, Addis Ababa, Ethiopia

2Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, P. O. Box: 1176

 Birhanu Gizaw Tegene*1 and Tesfaye Alemu Tenkegna2

*Corresponding author
Birhanu Gizaw Tegene, Microbial Biodiversity Directorate, Ethiopian Biodiversity Institute, P.O. Box 30726, Addis Ababa, Ethiopia, Phone: 
0911862561, E-Mail: gizachewbirhan@gmail.com

Received: July 21, 2020; Accepted: July 28, 2020, Published: September 26, 2020

J Biotechnol Bioinforma Res, 2020

Keywords: Biormdiation, Ex-Situ, Enzyme, In-Situ, Pollution, 
Sequestration, Waste

Introduction 
Environmental pollution currently became one of the global 
sensitive issues. Rapid population growth and human activities, 
urbanization, unsafe agricultural practices and rapid industrialization 
brought huge environmental pollution due the release of various 
types of wastes. Municipal and domestic solid waste and swage, 
industrial effluent are source of pollutant containing of inorganic 
chemicals (NH3, N2, P,NO3,NO2), Organic chemicals and volatile 
organic cpd (Benzene, Toluene, Xylenes, Dichloromethane), Agro 
waste (Coffee pulp, bagasse, rice bran etc.), Heavy metals (Cd, Ld, 
Mercury, Cu, Pb, Chromium), Xenobiotic, Agrochemicals (Pesticide, 
fertilizer) , Chlorinated compounds, Dyes stuff (Azodye, vat dye, 
triphenylmethane, Anthraquione dye etc), Greenhouse gases, 
Hydrocarbons petroleum, Nuclear waste, Plastics, Polychlorinated, 
biphenyls, detergents , lubricants, nanoparticles, paints, disinfectants 
which contaminate agricultures soil, ground water, rivers and air 
in general terrestrial and aquatic ecosystem [26]. The report from 
the third world network showed that more than one billion pounds 
(450 million kilograms) of toxins are released globally in air and 
water. Approximately 6×106 chemical compounds have been 
synthesized with 1,000 new chemicals being synthesized annually. 
Almost 60,000 to 95,000 chemicals are in commercial use for 
different purpose [230]. In other study from industrial daily activities 
shows in each second about 310kg of toxic chemicals are entered 
into the air, land and water body with approximate amount 10 
million tonnes per year globaly [218]. At global scale, 140 billion 
metric tons of agriculture biomass waste is produced every year 

like fronds, husk, shell, coffee (hull, husk, ground), (cob, stover, 
stalks, leaves), cotton (stalks), nuts (hulls), peanuts (shells), rice 
(hull/husk, straw, stalks), sugarcane (leavings, bagasse, molasses), 
vegetable wastes, etc [21]. In other study each year, human, livestock 
and crops by product generate approximately 38 billion metric tons 
of organic waste alone worldwide [56]. The estimated quantity of 
Municipal Solid Waste (MSW) generated also worldwide is 1.7 – 
1.9 billion metric tons. Sources of waste generated 76% households, 
18% institutions, commercial, factories, hotels, 6% is street 
sweeping. These municipal solid wastes composed of biodegradable 
and non-biodegradable waste consisting of high and low density 
polyethylene and organic lignocellulose waste. Often more than 
50% of the solid waste produced is organic and biodegradable. 
Organic waste composed of the Lignocellulosic complex contains 
approximately 40 to 60% cellulose, 20 to 40% hemicellulose, and 
10 to 25% lignin. Currently sever environmental pollution arise 
from non biodegredble plastic waste evok our ecosystem with an 
estimated amount reached to 500 billion to 1 trillion plasticbags 
are utilized worldwide [183]. Annually 140 milliontonnes of 
synthetic polymers are produced at a growing rate of 12% per year 
[90, 198]. The polyethylene bags or any other polyethylene based 
products are finally dumped into the landfills which pollute the 
environment at all [13, 93]. Other waste type is industry dye stuff, 
worldwide over 10,000 different dyes and pigments are used in 
dyeing and printing industries. The total world colorant production 
is estimated to be 8, 00,000 tons per year and at least 10% of the 
used dyestuff enters the environment through waste [121,162]. It 
is estimated that 2,80,000 tons of textile dyes are discharged in such 
industrial effluents every year worldwide [142]. Improper textile 
dye effluent disposal in aqueous ecosystems leads to the reduction 
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Environmental pollution is the global sensitive issues currently resulting ecologicl crise, drastic climate change and biodiversity loss. Bioremediation is 
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waste. Several microorganisms (natural/exotic/ engineered) having specific metabolic capability and various enzyme production ability which fall under six 
main divisions include Oxidoreductases, Transferases, Hydrolases, Lyases, Isomerases and Ligases (synthetases) are used during bioremediation process. 
Understanding the mechanism, mode of action and role of microorgsnism in bioremediation process is essential to utilize microorganism potential and 
designe waste management strategy.

ISSN: 2755-0168



Citation: Birhanu Gizaw Tegene and Tesfaye Alemu Tenkegna (2020) Mode of Action, Mechanism and Role of Microbes in Bioremediation Service for Environmental 
Pollution Management. Journal of Biotechnology & Bioinformatics Research. SRC/JBBR-112. DOI: https://doi.org/10.47363/JBBR/2020(2)116.

J Biotechnol Bioinforma Res, 2020

in sunlight penetration which in turn decreases the photosynthetic 
activity, dissolved oxygen concentration, water quality and depicts 
acute toxic effects on aquatic flora and fauna, causing severe 
environmental problems world-wide [242]. Environmental pollution 
has great devastating impact on the biodiversity at all. The 
contaminants causing ecological problems leading to imbalance in 
nature is one of great global concern [63,205]. Global warming, 
drastic climate change, microbial community lapse, soil mineral 
depletion, species extiniction and biodiversity loss which leads to 
ecological crise. Consequence results more than 1 billion people 
around the world cannot get healthy air to breathe, 3 million die 
annually due to air pollution [235]. Globally, over 1 million seabirds 
and thousands of sea mammals are killed by pollution every year. 
More than3 million children under the age of 5 die annually from 
various environmental pollutions [45]. Biodiversity has also been 
significantly impacted, and more than 20% of bird species have 
become extinct in the last 200 years [240]. 39–50% of the land 
surface of our planet was changed and modified due to human 
activities such as agriculture and urbanization, resulted the 
atmospheric CO2 concentration increased by 40% over the past 140 
years [85]. Pollutant carcinogenic effect and their bioaccumulation 
and bio-magnification upset human and animal health like kidney 
damage, brain and nerve damage, testicular tissue destruction, 
respiratory problem, high blood pressure, gene defect, red blood 
cell destruction, liver problem, reproductive problem, depression 
and irritability, chromosome breakage, birth defect, 
psychopathological problem, stunt growth, unusual deformed birth 
and other complex problem on whole ecosystem biodiversity [147]. 
Several methods till now are implied and used for removing waste 
from environmental pollution using like chemical precipitation, 
photo catalysis, ion exchange, reverse osmosis, membrane processes, 
evaporation, purification, recycling, incineration, solvent extraction 
and adsorption [49]. Globally a huge budget is invested for the 
remediation of contaminated environment. The cost utilized for 
worldwide remediation of organic pollutants is projected to be USD 
25-30 billion annually [143]. Remediation costs for sites 
contaminated with hazardous wastes in Europe are expected to 
exceed $1.5 trillion in the near future [46]. In the United States, the 
Office of Technological Assessment (OTA) of the U.S. Congress 
estimates that the cost of cleaning up more than 300,000 highly 
contaminated sites will exceed $500 billion [153]. There for cost 
effective and environmental friendy waste removal approach is 
timely important. Bioremediation is an optional and a modern 
concept for environmental pollution management highly involved 
in degradation, eradication, immobilization, or detoxification diverse 
chemical wastes and physical hazardous materials from the 
surrounding environment through the action of microorganisms 
and using their byprduct. Bioremediation can use biological agent 
i.e. Yeast, actinomyctes, fungi and bacteria to suppress or clear 
contamination [205]. Bioremediations not only a process of 
removing the pollutant from the environment but also it an eco-
friendly and more effective process [195]. Generally it is less 
expensive method for the removal of hazardous contaminants. 
Bioremediation was first used commercially in 1972 to treat a Sun 
Oil gasoline pipeline spill in Ambler, Pennsylvania [176] and has 
been used almost as long as simple pump-and-treat technology. 
There are different bioremediation strategy these are bio 
mineralization, bio-sorbation, bio-stimulation, rhizoremediation, 
mycoremediation, bioventing, bioreactor, composting, bio-
agumentation, land farming, soil vapor extraction, soil washing and 
land filling [229]. The major mechanism of microorganism in mode 
of action for catalytic role using degrading enzymes or mineralizing 
various contaminants and converting non-toxic by-products during 
soil bioremediation processes [66,72,206]. Various enzymes are 
produced by microorganisms fall under six main divisions include 

Oxidoreductases, Transferases, Hydrolases, Lyases, Isomerases and 
Ligases (synthetases) during bioremediation process [124]. The 
purpose of bioremediation is to make environment free from 
pollution with help of environmental friendly microbes making the 
glob safe for the life of all inhabitants and proper functioning of 
biophysical networks of natrur. This paper reviews the role and 
mechanism of microbes in bioremediation process for environmental 
pollution control and detoxification of hazardous toxic compounds.

Microbial Remediation Strategies
Ex-Situ Bioremediation Strategies
In cases where soils cannot be treated in the contaminated site for 
in situ due to regulatory reasons or the unavailability of sufficient 
land, risk to ground water or air pollution, soils must be excavated 
into another place and bio remediated. The ex-situ bioremediation 
can be carried out by bio piling, composting, bioreactor, land 
farming methods of ex-situ bio-remediation service.

Bio-Piling
Bio-piles interchngably called as bio-cells, bio-heaps, bio-mounds 
and compost piles. This type of Ex-situ bioremediation strategy is 
used to reduce concentrations of petroleum pollutants in excavated 
soils during the time of biodegradation. Biopiles involve soil 
excavation, shifting and heaping into piles. The soil is packed on 
a protective layer formed by a bottom inert liner. In this process, 
air is supplied to the bio-pile system during a system of piping and 
pumps that either forces air into the pile under positive pressure 
or draws air through the pile under negative pressure [40]. The 
microbial activity is enhanced through microbial respiration then 
the result in degradation of adsorbed petroleum pollutant became 
high [47,107]. The basic bio pile system includes a treatment bed, 
an aeration system, an irrigation/nutrient system and a leachate 
collection system. For proper degradation there should be control 
of moisture, heat, nutrients, oxygen, and pH. The irrigation system 
is buried under the soil and provides air and nutrient through 
vacuum. To prevent the run off the soil is covered with plastic 
and due to which evaporation and volatilization is also prevented 
and promote the solar heating. Bio-pile treatment takes 20 days 
to 3 month to complete the procedure [155].

Land Farming
Land farming is a simple and less equipment requiring 
bioremediation approach in which contaminated soil is excavated 
and spread over a prepared bed and periodically tilled until 
pollutants are degraded. The goal is to stimulate indigenous 
biodegradative microorganisms and facilitate their aerobic 
degradation of contaminants in general the practice is limited to 
the treatment of superficial 10–35 cm of soil [244]. Spilled oil 
and wood-preserving wastes have been bioremediated by land 
farming treatments [71,141]. Mostly for pesticide degradation, 
land farming is very important, the excavated soil is kept as 
sandwich layer in between clean and clay soil or concrete. It 
allows for natural degradation, it also provide oxygen, moisture 
and pH should also maintained by using lime.

Composting
Composting is one of ex-situ bioremediation strategy and an 
ancient technology practiced today at every scale from the 
backyard compost pile to large commercial operations. Basic and 
acceptable principles in the integrated solid waste management 
(ISWM) under the 4Rs principles which are involved as reductions 
reuse, recycling and recovery methods [87]. Composting occurs 
through the activity of microorganisms naturally found in soils. 
Under natural conditions earthworms, nematodes and soil insects 
such as mites, sow bugs, springtails, ants, and beetles do most 
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of the initial mechanical breakdown of organic materials into 
smaller particles. Microorganism degrades the waste at elevated 
temperature that is ranges from 55- 65°C. During the process of 
degradation microbes release heat and increase the temperature 
which leads to the more solubility of waste and higher metabolic 
activity in composts. Compost “happens” either aerobically (with 
oxygen) or anaerobically (without oxygen) when organic materials 
are mixed and piled together. Aerobic composting is the most 
efficient form of decomposition and produces finished compost 
in the shortest time. Under controlled conditions, composters 
break down large particles through grinding or chopping. Once 
optimal physical conditions are established, soil bacteria, fungi, 
actinomycetes and protozoa colonize the organic material and 
initiate the composting process. There is no fixed time to produce 
finished compost. Duration depends on feed stocks, composting 
method used and management. It can take as little as three months 
and as long as two years. During aerobic composting, the average 
temperature curve within the piles showed three classic phases. 
(1) Mesophilic (moderate temperature phase), (2) thermophilic 
(high temperature phase) and (3) cooling and maturation phase. 
Bulking and air access are very necessary, in addition to allowing 
some control over the C: N ratio, another key purpose of adding 
plant-based materials to a compost mixture can be to provide 
structure and channels for aeration [79,255,256].

In-Situ Bioremediation Strategies
In situ bioremediation is the application of a biological treatment 
to clean up hazardous compounds present in the environment 
or contaminated site. The optimization and control of microbial 
transformations of organic contaminants requires the integration 
of many scientific and engineering disciplines. Bioremediation is 
carried in the contaminated area where enhanced microbial activities 
are achieved by creating a favorable environment to stimulate the 
natural or inoculated population of microorganisms and exploit their 
catabolic potential to grow and consume the contaminants as a food 
and energy source. Among the most important of the enzymes used 
by bacteria in degradation of organic compounds are oxygenases. 
Biodegradation or biotransformation rate is influenced by the type 
and concentration of specific contaminant present, Oxygen supply, 
moisture, temperature, pH, nutrient supply or bio-stimulation, bio-
augmentation with strains containing desired catabolic properties 
and cometabolism [42]. There are different in-situ bioremediation 
techniques include bio slurping, bioventing bio-sparging, bio-
augmentation, Microbial assisted phytoremediation.

Biosparging
In biosparging air is injected below the ground water under pressure 
to increase the concentration of oxygen for microbial degradation 
of pollutant. Biosparging increase the aerobic degradation and 
volatilization [122]. This technique is very similar to bioventing 
in that air is injected into soil subsurface to stimulate microbial 
activities in order to promote pollutant removal from polluted sites. 
Unlike bioventing, air is injected at the saturated zone, which can 
cause upward movement of volatile organic compounds to the 
unsaturated zone to promote biodegradation. The effectiveness of 
biosparging depends on two major factors namely soil permeability, 
which determines pollutant bioavailability to microorganisms, and 
pollutant biodegradability [169].

Bioventing
It is a technique to degrade any aerobically degradable compound. 
In bioventing the oxygen and nutrient like nitrogen and phosphorus 
is injected to the contaminated sit. The distribution of these nutrient 
and oxygen in soil is dependent on soil texture. In bioventing 
enough oxygen is provided through low air flow rate for microbes. 

Bioventing uses low air flow rates to provide only enough oxygen 
to sustain microbial activity. Oxygen is most commonly supplied 
through direct air injection into residual contamination in soil by 
means of wells. Bioventing is nothing but it is pumping of air into 
contaminated soil above the water table through well which sucked 
the air. Bioventing is more effective if the water table is deep from 
the surface and the area having high temperature. It is mainly 
used for the removal of gasoline, oil, petroleum etc. The rate 
removal of these substances is varied from one site to another site. 
This is just because of the difference in soil texture and different 
composition of hydrocarbons [179]. Effective bioremediation of 
petroleum contaminated soil using bioventing has been proved 
by many researchers [10,119].

Bio Augmentation
It is one of the mechanisms of biodegradation. Microorganisms 
(natural/exotic/ engineered) having specific metabolic capability are 
introduced to the contaminated site for enhancing the degradation 
of waste. Therefore, bioaugmentation corresponds to an increase 
in the gene pool and thus the genetic diversity of the site. In 
principle, this genetic diversity could be increased by augmenting 
the microbial diversity [38,190]. This process can be enhanced 
by the continuous addition of microorganisms to a bioreactor 
for the above-ground treatment of ground waters. Commercial 
inoculants of enriched cultures consisting of one or more microbial 
species have been successfully used to colonize contaminated 
environments where the intrinsic microbial communities act on 
metals. In order to rapidly increasing the natural microorganism 
population growth and enhance degradation that preferentially 
feed on the contaminants site. Microbes are collected from the 
remediation site, separately cultured, genetically modified and 
returned to the site. Most commonly, it is used in municipal waste 
water treatment to restart activated sludge bioreactors. At sites 
where soil and ground water are contaminated with chlorinated 
ethanes, such as tetrachloro ethylene and trichloroethylene, bio-
augmentation is used to ensure that the in situ microorganisms can 
completely degrade these contaminants to ethylene and chloride, 
which are nontoxic in nature [155]. Bioaugmentation is mainly 
undertaken in oil contaminated environments as an alternate 
strategy for bioremediation.

Bio Stimulation
This kind of strategic is the addition of specific nutrients usually 
sources of carbon, nitrogen, and phosphorus, oxygen or other 
electron donors or acceptors at the site (soil/ground water) to 
stimulate the activity of indigenous microorganisms [179]. 
Amendments can be added in either liquid or gaseous form, via 
injection. Liquids can be injected into shallow or deep aquifers 
to stimulate the growth of microorganisms involved in the 
bioremediation. It is focus with in the stimulation of indigenous 
or naturally existing bacteria and fungus community. Firstly, by 
supplying fertilizers, growth supplements and traces minerals. By 
providing other environmental requirements like pH, temperature 
and oxygen to speed up their metabolism rate and pathway [95,101]. 
The Presence of small amount of pollutant can also act as stimulant 
by turning on the operons for bioremediation enzymes. This type 
of strategic path is most of the time continued in the addition of 
nutrients and oxygen to help indigenous microorganisms. These 
nutrients are the basic building blocks of life and allow microbes to 
create the basic requirement for example, energy, cell biomass and 
enzymes to degrade the pollutant. All of them will need nitrogen, 
phosphorous and carbon [150]. The major contaminants that can 
be successfully remediated through biostimulation are petroleum 
hydrocarbons, sulphate and polyester polyurethanes [130,131].
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The Beneficial Role of Microorganisms in Different Pollutant 
Waste Types 
Role of Microorganisms in Heavy Metal Bioremediation
Heavy metals are environmental contaminants globally. They 
have polluted agricultural soils and caused detrimental effects 
on our ecosystem. Heavy metals at certain concentrations can 
have long-term toxic effects within ecosystems and have a 
clear negative influence on biologically mediated soil processes 
[120]. Toxic effects of heavy metals have been reported in plants, 
animals, humans, and microorganisms. There is more than 20 
heavy metals, only few of them such as Cadmium (Cd), Cupper 
(Cu), Argon (Ar), Silver (Ag), Chromium (Cr), Zinc (Zn), Lead 
(Pb), Uranium (Ur), Ra, Nickel (Ni) etc. is considered due to 
their toxicity potential [237]. Heavy metal stress poses severe 
threats to agricultural crops by inhibiting plant growth parameters 
and yield as documented by many researchers [41,66, 81,114, 
125]. The non-biodegradable nature of metals enhances their 
availability and longevity in soils. The longer persistence of metals 
in soils causes carcinogenic and mutagenic effects and becomes 
part of our food chain [3, 5]. Heavy metal concentrations above 
the threshold limit also causes also disturbances in microbial 
activity and soil health [80]. Generally neurological disorders, 
Parkinson, Alzheimer, depression, schizophrenia, cancer, poor 
nutrition, lack of hormones balance, obesity, abortion, respiratory 
and cardiovascular disease, damage in organs (liver, kidneys and 
brain), anorexia , arthritis, hair loss, osteoporosis and death (in 
severe cases) are adverse effects of heavy metals in the human 
body are researched by many scholrs [238]. For instance Cr (VI) 
by inhalation, may include irritating respiratory effects, possible 
circulatory effects, effects on stomach and blood, liver and kidney 
effects, and increased risk of death from lung cancer. Chromium 
in its hexavalent form is carcinogenic and the permissible limit 
is 0.05 ppm [144]. Hexavalent chromium is in general more 
toxic to organisms in the environment [182]. Inhalation and 
ingestion of Arsenic, Lead, Nickel Cadmium and Mercury cause 
irritation of respiratory system, Liver and Kidney damage, Loss 
of appetite, loss of hearing and muscle coordination, nausea and 
vomiting [8]. There are different report in microorganisms are 
important in heavy metal remediation highly efficient even at 
low metal concentrations. Vibrio harveyi, a normal inhabitant 
of the saline environment, is reported to possess the potential 
for bioaccumulation of cadmium up to 23.3 mg Cd 2+/1g of dry 
cells. A reported a consortium of marine bacteria to efficiently 
remove mercury in a bioreactor in a disturbance-independent 
mechanism [23]. A new combination of genetic systems in bacteria 
for the potential degradation of phenol and heavy metals was 
also described. Bacteria also possess the properties of chelation 
of heavy metals, thus removing them from the contaminated 
environment by the secretion of exopolysaccharides which have 
been evident from the reports of a marine bacterium Enterobacter 
cloaceae [92]. This bacterium has been reported to chelate up to 
65% of cadmium, 20% copper, and 8% cobalt at 100mg/L of metal 
concentration. In line with that, certain purple nonsulfur bacterial 
isolates, e.g., Rhodobium marinum and Rhodobacter sphaeroides, 
have also been found to possess the potential of removing heavy 
metals like copper, zinc, cadmium, and lead from the contaminated 
environments either by biosorption or biotransformation. Thus, the 
bacteria have been designated for assessing pollution through their 
tolerance and biosorption of heavy metals. However, the genetic 
mechanisms of bioremediation towards toxic metals have been 
reduced for a smaller number of bacteria. For instance, Bacillus 
spp. and Pseudomonas aeruginosa have been used to alleviate 
Zn and Cu stress [101]. Moreover, symbiotic association between 
plants and rhizobacteria efficiently improve plant growth by 
increasing mineral nutrition and alleviating heavy metal toxicity 

on target plants [222]. However, many mechanisms are adopted 
by plants to combat heavy metals. Fungi are known to tolerate 
and detoxify metals by several mechanisms including valence 
transformation, extra and intracellular precipitation and active 
uptake [59].

Mechanism of Microbial Detoxification of Heavy Metal
Microorganisms adopt different mechanisms to interact and 
survive in the presence of inorganic metals. Various mechanisms 
used by microbes to survive metal toxicity are biotransformation, 
extrusion, use of enzymes, production of exo-polysaccharide 
(EPS) and synthesis of metallothioneins [86,132] (Fig1 &Table 
1). The mechanism involves several procedures, together with 
electrostatic interaction, ion exchange, precipitation, redox process, 
and surface complexation [209]. The major mechanical means 
to resist heavy metals by microorganism are metal oxidation, 
methylation, enzymatic decrease, metal-organic complexion, 
metal decrease, metal ligand degradation, metal flux pumps, 
demethylation, intracellular and extracellular metal sequestration, 
exclusion by permeability barrier, and production of metal chelators 
like metallothioneins and bio surfactants [106]. Detoxification 
mechanisms involved in fungi are different from eukaryotes [20]. 
Extracellular mechanisms involved are chelation, precipitation, 
and cell wall binding. Intercellular mechanisms include binding 
to sulfur compounds, organic acids, peptides, polyphosphates, and 
transport into intracellular compartments [20].

Bio sorption mechanisms
Biosorbation is the metal cations sorbed to negatively charge 
bacterial cell surface. The uptake of heavy metals by microbial cells 
through bio-sorption mechanisms can be classified into metabolism-
independent bio-sorption, which mostly occurs on the cells exterior 
and metabolism-dependent bioaccumulation, which comprises 
sequestration, redox reaction, and species-transformation methods 
[67,234]. Bio-sorption can be carried out by dead biomass or living 
cells as passive uptake through surface complexation onto the cell 
wall and surface layers [52]. Bioaccumulation depends on a variety 
of chemical, physical, and biological mechanisms and these factors 
are intracellular and extracellular processes, where bio-sorption 
plays a limited and ill-defned role [52].

Intracellular Sequestration
Intracellular sequestration is the complexation of metal ions by 
various compounds in the cell cytoplasm. The concentration of 
metals within microbial cells can result from interaction with 
surface ligands followed by slow transport into the cell. The 
ability of bacterial cells to accumulate metals intracellular has 
been exploited in practices, predominantly in the treatment of 
effluent treatment. Intracellular sequestration of heavy metal 
like Copper, Cadmium and Zinc ions with the help of cysteine 
rich low molecular weight proteins [76]. The rigid cell wall 
of fungi is made up of chitin, mineral ions, lipids, nitrogen-
containing polysaccharide, polyphosphates, and proteins. They can 
decontaminate metal ions by energetic uptake, extracellular and 
intracellular precipitation, and valence conversion, with several 
fungi accumulating metals to their mycelium and spores.

Extracellular Sequestration
Extracellular sequestration is the accumulation of metal ions by 
cellular components in the periplasm or complexation of metal 
ions as insoluble compounds. Cop0per-resistant Pseudomonas 
syringae strains produced copper-inducible proteins CopA, CopB 
(periplasmicproteins), and CopC (outer membrane protein) which 
bind copper ions and microbial colonies [24]. Another example 
of extracellular sequestration is metal precipitation as insoluble 
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complexes. Sulfate-reducing bacteria generate large amounts 
of hydrogen sulfide that causes precipitation of a number of 
metal cations [126,247]. Klebsiella planticola strain produced 
hydrogen sulfide from thiosulfate under anaerobic conditions and 
precipitated cadmium ions as insoluble sulfides [199].

Methylation of Metals
Methylation increases metal toxicity as a result of increased 
lipophilicity and thus increased permeation across cell membranes. 
Microbial methylation plays a significant function in metal 
remediation. Methylated compounds are regularly explosive; for 
instance, Hg (II) can be bio methylated by some bacteria such as 
Bacillus spp., Escherichia spp., Clostridium spp., and Pseudomonas 
spp. to gaseous methyl mercury. Bio methylation of selenium (Se) to 
volatile dimethyl selenide and arsenic (As) to gaseous arsines as well 
as lead (Pb) to dimethyl lead was witnessed in polluted top soil [177].
   
Reduction of Heavy Metal Ions by Microbial Cell
Microbial cells can convert metal ion from one oxidation state 
to another, hence reducing their harmfulness [99]. Bacteria use 
metals and metalloids as electron donors or acceptors for energy 
generation. Metals in the oxidized form could serve as terminal 
acceptors of electrons during anaerobic respiration of bacteria. 
Reduction of metal ions through enzymatic activity could result in 
formation of less toxic form of mercury and chromium [19,232]. 
Direct enzymatic reduction (metal ion are reduced during the 
oxidation of orgnics). In direct enzymatic reduction (metal ion 
get reduced during Fe or S oxidation process).

Active Transport of Metal Ions (Efflux)
Active transport or efflux is one of the mechanisms where 
microorganism heavy metal resistance systems. Bacteria exploit 
these systems to export metal ions from cells. Genetic determinants 

of efflux systems can be localized on chromosomes [58,120,251] 
and on plasmids [62,158]. Some metal ions can enter the cell 
through the systems responsible for the uptake of essential elements 
for example, chromate is transported inside the cell via sulphate 
transportsystem [30], ions of cadmium, zinc, cobalt, nickel and 
manganese enter the cells of Ralstonia metallidurans (Alcaligenes 
eutrophus) using systems of magnesium transport [154] ATP 
hydrolysis [16] or electrochemical gradient [154] are used to 
export metal ionsfrom the cell. Efflux systems contain proteins 
belonging to three families: RND (resistance, nodulation, cell 
division, CDF (cation diffusion facilitator) and P-typeATPases.P-
type ATPases and CDF proteins of gram-negative bacteria 
transport specific substrates through the plasma membrane into 
the periplasm. It should be noted that PtypeATPases predominantly 
transfermetalions with high affinity for sulfhydryl groups (Cu+/
Ag+Zn2+/Cd2+/Pb2+) while CDF-proteins specifically interact with 
ions of divalent metals (Zn2+, Co2+, Ni2+, Cd2+ and Fe2+). Next 
transport complexes formed by RND proteins transport cations 
from the periplasm across the plasma membrane [154].

Figure 1: Metal-Processing Features of Bacteria Required To 
Utilize In Bioremediation

Table1: Some microorganisms involved in heavy metal detoxification
Heavy metals Sources Heavy metal degrader References
Cr Tanneries, steel industries, flying 

ash from the burning of coal
Pseudomonas mendoca,Cellulosmicrobium cellula
ns,Oedogoniumrivulare,Saccharomyces cerevisiae, 

Oscillatoria sp., Arthrobacter sp., Agrobacter 
sp.,Pseudomonas aeruginosa S128, Chlamydomonas 

sp. (algae), Chlorella
vulgaris (algae), Zoogloea ramigera

[105,98,33,100,175]

Pb Herbicides, batteries, insecticides, 
aerial emissions from petrol

Pseudomonasaeruginosa,Oedogonium rivulare, 
Saccharomyces cerevisiae

[33,248,98]

Hg Medical waste, coal burning, and 
Au-Ag mining

Trichoderma Viride, And Humicola 
InsolensSaccharomycescerevisiae, Pseudomonas sp., 

Escherichia sp., Bacillus sp., Clostridium sp.

[248,133,170]

Ni Battery manufacturing, steel 
alloys, kitchen

appliances, surgical instruments, 
industrial effluents

Pseudomonas aeruginosa, Oedogonium rivulare [224,33,226]

Cu Pesticides and fertilizers usage Bascillus species, Pseudomonas aeruginosa [105,167]
Cd Electroplating, plastic burning, 

phosphate fertilizer, paints and 
pigments

Bascillus species, Pseudomonas aeruginosa, 
Micrococus roseus

[167,171,33]

As Wood storage and pesticides Bacillus spp. [225]
Zn Priming paints for metals, 

varnishes and pigments in 
aerospace paints.

Escherichia coli, Aspergillus niger [69,227]
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Dye Stuff Pollution and Role of Microorganisms in Dyes 
Remediation
A dye is an organic compound containing both auxochrome and 
chromophore groups linked to benzene group. The history of 
dyeing can be divided into two great periods, the “preaniline”, 
extending to 1856and the “post-aniline” period. Following these 
early syntheses, numerous azo dyes have been made and it is 
estimated that over 2,000 are in use. Of all the different types of 
dyes, azo dyes are the most useful and widely used colorants which 
accounts for 50% of all the industrial dyes produced worldwide. 
Azo dyes and several other groups of dyes are recalcitrant to 
conventional wastewater treatments and persist in the environment. 
Worldwide 100,000 types of textile dyes with an estimated of 
7x105 metric tonns are annually produced currently [15,184,210]. 
10-25% of total textile dyes are lost during the dyeing process, 
and 2-20% of dyes are directly discharged as aqueous effluents in 
different environmental components. A large number of synthetic 
dyes with specific groups (azo, base, acid, triphenylmethane, 
anthracene etc) are widely used in textile, pharmaceutical, food, 
leather and cosmetic industries [32,156]. The residual dyes from 
different source such as textile industries, cosmetics, paper mills, 
pulp industries, dyeing and dye intermediates and bleaching 
industries, more than 80,000 tons of dyes and pigments are 
produced in these industries. The effluent which is untreated 
is one of the major sources of consumed metal dyes, phenol, 
aromatic amines [103,211,174]. Several aromatic amines are 
source of mutagens and carcinogens to human beings. These dyes 
can also affect the human health by causing nausea, ulceration of 
the skin, gastrointestinal tract, hemorrhagic and severe damage 
to reproductive system, kidney, liver, brain and central nervous 
system [212,242]. Many of the synthetic Azo dyes and their 
metabolites are toxic mutagenic and carcinogenic [147]. Azo 
dyes are reduced in mammals to carcinogenic aromatics, which 
are oxidized to N-hydroxy derivatives and finally give rise to 
electrophiles capable of forming covalent linkages with DNA 

amines. Several numbers of microbes involved in bioremediation 
of different class of dye. P. chrysosporium has been reported 
to decolorize azo dyes, Congo red, Orange II and Tropaeolin 
[34]. Flavodonflavus, a basidiomycete isolated from the coastal 
marine environment, produces laccases, MnPs, and LiPs, and that 
efficiently degrades the dyes poly R, poly B, azure B. Pleurotus 
eryngii was reported to be involved in the decolorization of the 
industrial dyes Reactive Violet 5, Reactive Black 5, Reactive 
Orange 96, Reactive Red 198 and Reactive Blue 38 and 15 
[74]. Gloeocapsa pleurocapsoides and Phormidium ceylanicum 
decolorized Acid Red 97 and FF sky Blue dye more than 80% 
after 26 days. (Table2).

Microbial Mode of Action in Degradation of the Complex 
Dye Structure
Both aerobic and anaerobic bacteria have different mechanisms of 
degradation. Enzymes play the key role in these biotransformation 
mechanisms. Oxidizing enzymes such as LiP, veratryl alcohol 
oxidase, laccase, and tyrosinase are well known to degrade textile 
dyes. However, reducing enzymes such as azo reductase, riboflavin 
reductases, DCIP reductase, and Green HE4B reductase also 
break the complex dye structures [200]. Peroxidases in particular, 
catalyze phenolic substrates result in in radical formation by using 
hydrogen peroxide as the electron donor. Versatile peroxidases 
(VP) can oxidize not only Mn but also phenolic and nonphenolic 
aromatic compounds including dyes [74, 75]. Laccase is a copper-
containing oxidase enzyme which performs oxidation of a wide 
range of organic pollutant substrates such as phenols, polyphenols, 
and anilines as well as highly recalcitrant environmental 
pollutants on the basis of a one-electron transfer mechanism 
[168, 185, 249]. Laccase couples the oxidation of substituted 
phenolic and nonphenolic chemical moieties with oxygen as an 
electron acceptor to form free radicals.These free radicals further 
undergo demethylation, depolymerization, repolymerization or 
quinoneformation [186].

Table 2: Dye Degrder Microorganisms
Classification of Dye Dye degrader Reference
Based on chemical structure
Azodye dye P. rettgeri, Pseudomonas sp, Paenibacillus 

polymyxa, Micrococcusluteus, 
Micrococcussp. as Bacillus vallismortis,
Bacillus pumilus, Bacillus cereus, Bacillus 
subtilis and Bacillus megaterium, Daphnia 
magna, Exiguobacterium indicum, 
Exiguobacterium aurantiacums, Bacillus 
cereus andAcinetobacter baumanii.

[148,228,50,55,221]

Metal complex azo dye
Anthraquione dye Pseudomonassp, Shewanellasp., Aeromonas 

sp. Rhodococcus sp.Klebsiella sp.
[54,238,178,181,241]

Phthalocyamine dye Phanerochaete chrysosporium [12]
Triphenodioxazine Trametes hir suta , Pleur otus

pulmonarius ECS-0190, Bjerkander aadusta
[73,104]

Formazon dye Bjerkander a adusta , Pleur otusostr eatus [94]
Based on usage/application
Disperse dye P. chrysosporium [202]
Direct dye P. chrysosporium [161]
Sulphure dye Acidithiobacillus thiooxidans [220]
Acid dye T. versicolor, Coriolopsis polyzona; 

Perenniporia ochroleuca; Perenniporia 
tephropora, Pycnoporus sanguineus.

[243]
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Vat dye Bacillus firmus, Bacillus macerans, 
Staphylococcus aureus and Klebsiella 
oxytoca

[9]

Pesticide Pollution and Role of Microorganisms in Pesticide 
Bioremediation
Pesticide is substance intended for preventing, destroying, 
attracting, repelling or controlling any pest including unwanted 
species of plants or animals during production, storage, transport, 
distribution and processing of food, agricultural commodities or 
animal feeds or which may be administered to the animals for the 
control of ectoparasites. Pesticides are used in areas of agriculture, 
horticulture, fish farming, forestry, homes and gardens, food and 
commodity storage, animal husbandry, etc for pest control. 
Globally, the use of synthetic pesticides has increased rapidly in 
the last fifty years due to intensification of farming in order to 
obtain higher yields [236]. More than 55% of the land used for 
agricultural production in developing countries uses about 26% 
of the total pesticides produced in the world. Pesticides are 
necessary to protect crops and losses that may amount to about 
45% of total food production worldwide [44]. About one third of 
the world’s agricultural production is lost every year due to pests 
despite the pesticide consumption which is more than two million 
tons. Excess fertilizer, herbicides and pesticides when washed by 
rain into rivers causes serious danger to life. Excess phosphorus 
in fertilizer causing severs eutrophication. 98% of the pesticides 
imported were classified as acutely toxic for fish and crustaceans 
and 73% for amphibians. Organophosphorus poisoning is a global 
health problem with around 3 million poisonings and 200000 
deaths annually [110,194]. Pesticides are problematic because 
they are designed to be persistent (for long-lasting action), and 
many are lipophilic often accumulating in animal’s fatty tissue 
through food webs. The pesticides can be classified in many ways 
on the basis of use, toxicity, mode of entry, mode of action, 
chemistry and formulations. Classification based on the basis of 
use can be group as Acaricides, Algicide, Antifeedants, Avicides, 
Bactericides, Bird repellents, Chemosterillant, Fungicides, 
Herbicide softeners,Herbicides, Insect attractants, Insect repellents, 
Insecticides, Mammal repellents, Mating disrupters, Molluscicides, 
Nematicides, Plant activators, Plant growth regulators, 
Rodenticides, Synergists, Virucides and Miscellaneous. Pesticides 
can also be broadly classified according to their intended target 
pest and also by their chemical structure and properties in the 
form of fungicides, herbicides, insecticides, nematicides, 
rodenticides, fumigants, disinfectants, wood preservatives, and 
anti foliants. There are different classes of Pesticides. These are 
Organochlorine, Organophosphate, Carbamate, Pyrithroid, 
Thiocarbamates, Organotin, Di-nitrophenol [208]. Organochlorine 
pesticides group consists of, the polychlorinated derivatives of 
cyclohexane (Lindane), polychlorinated biphenyls (DDT, dicofol) 
and polychlorinated cyclodiene (Endosulfan). The effect of 
Organochlorine’s in the environment is serious which can kill 
bees, pollination decline and the loss of bees that pollinate plants, 
and colony collapse disorder (CCD). A number of the 
Organochlorine pesticides have been banned from most uses 
worldwide, and globally they are controlled via the Stockholm 
convention on persistent organic pollutants. (POP’s) Organochlorine 
pesticide include: aldrin, chlordane, DDT, dihedron, 
endrin,heptachlor, mirex and toxaphene.High level of DDT and 
its metabolites have been detected a human adipose tissues, blood 
plasma, liver, brain, placenta and even in breast milk. It is reported 
to be a potential endocrine disruptor in both avian and mammals. 
Resulting egg shell thinning, impaired male reproductive ability, 
interference with sex hormone, causes cancer and other nervous 
disease [25]. Organophosphorus (OP) pesticides are another class 

of broad-spectrum insecticide used on a wide range of crops 
including vegetables, fruits, grains and ornamentals. They are 
designed to kill or repel pests but may be harmful and fatal to 
other organisms, including humans. Exhibits acute extreme 
toxicity to slight toxicity (Phorate1.5 to 3.7 mg/Kg, temephos 
8600mg/Kg). LD50 values may change with the purity of the 
compound. This Pesticide contributes significantly to cancer 
mortality [254]. Organophosphorus (OP) pesticides all act by 
inhibiting the nervous system enzyme acetylcholinesterase (AChE) 
and as such are termed anticholinesterase insecticides [88]. The 
adverse short-term effects of exposure to these mchemicals have 
been studied mostly in the nervous system, which is the main 
target [60,61]. The majority of people are continually exposed to 
low OP concentrations, and long- term epidemiologic studies 
reveal linkage to higher risk of cancer development [22,245]. 
Organophosphates group was responsible for admission millions 
of people to hospitals with accidental poisoning, in addition to 
suicidal cases. Meanwhile, it was estimated that about 25 million 
agricultural workers suffering from poisoning every year inthe 
third world countries [4]. Some commonly used organophosphates 
include monocrotophos, phosphamidon, methylparathion, 
fenitrothion, Phosphorothiates oxy demeton methyl, dimethoate, 
phorate, Phosalone, DDVP, Malathion, methyl parathion, 
chlorpyrifos, and diazinon. N-methyl carbamates are often grouped 
together with Organophosphoruss because they act similarly. 
Which is active against a relatively narrower range of target 
organisms than the organophosphates, but they are highly toxic 
to such beneficial insects as honeybees. Common N-methyl 
carbamates include aldicarb and carbaryl [68, 204]. The other 
types of insecticide are synthetic pyrethroid which used primarily 
in structural pest control and agriculture, function much like 
organochlorines. However they are fairly short-lived in the 
environment and are less acutely toxic to humans. The toxicity 
of these chemicals ranges from 80 to 4000mg/Kg body weight 
and toxicity varies with the ratio of isomers and test animals/
species. Toxicity to the insects can be increased by synergists (e.g. 
Piperonyl butoxide, sesamex) (9:1) Typical pyrethroids include 
permethrin, cypermethrin, cyfluthrin, lambda-cyhalothrin). 
Cypermethrin is a synthetic pyrethroid insecticide that has high 
insecticidal activity, low avian and mammalian toxicity, and 
adequate stability in air and light. It is used to control many pests 
including lepidopterous pests of cotton, fruit and vegetable crops 
and is available as an emulsifiable concentrate or wettable powder 
[109]. Emamectin benzoate is a salt with benzoic acid is widely 
used in controlling lepidopeterous pests and sea lice.Thiamethoxam 
is also considered as moderately hazardous to human as it is harm 
as it is harmful if swallowed. It is nontoxic to fish and algea, 
mildly toxic to birds and highly toxic to midges and bees [53]. 
The current study involves use of three Endosulfan, Chlorpyrifos 
and Cypermethrin insecticide widely used in pest control of crops 
including cereals, fruit, oil seeds, potato, tea and vegetables. For 
example the Pesticide Registration Council of Ethiopia has 
registered a total of 171 pesticides consisting of 86 insecticides, 
45 herbicides, 22 fungicides and 18 miscellaneous groups [217]. 
Of these, 159 are currently in use. The largest proportion of 
pesticide use in Ethiopia has been for the control of bollworms 
and other pests such as the cotton aphid and the cotton whitefly 
in cotton. Horticultural crops such as vegetables and fruits have 
also become heavy users of pesticides in recent years [151]. 
Various studies suggested that a wide range of microorganisms 
are capable of degrading pesticides. Most notable among the 

                Volume 2(3): 7-18



Citation: Birhanu Gizaw Tegene and Tesfaye Alemu Tenkegna (2020) Mode of Action, Mechanism and Role of Microbes in Bioremediation Service for Environmental 
Pollution Management. Journal of Biotechnology & Bioinformatics Research. SRC/JBBR-112. DOI: https://doi.org/10.47363/JBBR/2020(2)116.

J Biotechnol Bioinforma Res, 2020

pesticide degrading bacteria are Pseudomonas, Bacillus, Flavobacterium, Alcaligenes, Arthrobacter [96]. Several fungi such as 
Agrocybesemiorbicularis, Auricularia auricula, Coriolus versicolor, Dichomitus squalens, Flammulina velupites, Hypholoma 
fasciculare, Pleurotus ostreatus, Stereum hirsutum, and Avatha discolor have shown their ability to degrade various pesticide groups 
like phenylamide, triazine, phenylurea, dicarboximide, chlorinated and organophosphorus compounds [11]. Microbes which were 
commonly reported in pesticides bioremediation include Pseudomonas sp., Bacillus sp, Klebsiella sp, Pandoraea sp, Phanerochaete 
Chrysosporium, Mycobacterium sp. Agrocybe semiorbicularis, Auricularia auricula, Coriolus versicolor, Dichomitus squalens, 
Flammulina velupites, Hypholoma fasciculare, Pleurotus ostreatus, Stereum hirsutum, and Avatha discolour [29]. These microorganisms 
have shown their ability to degrade various pesticide groups like phenylamide, triazine, phenylurea, and dicarboximide, chlorinated 
and organophosphorus compounds. Several classes of pesticides such as lindane, atrazine, diuron, terbuthylazine, metalaxyl, DDT, 
gamma-hexachlorocyclohexane (g-HCH), dieldrin, aldrin, heptachlor, chlordane, lindane, mirex, etc. have been degraded to different 
extent by white-rot fungi [172] (Table 3).

Table 3: Pecticide Degrsder Icroorganisms
Pesticide Microorganism Reference
Organochlorine class
DDT Alcaligeneseutrophus, Aerobacter 

aerogenes,Sphingobacterium sp,Penicillium 
miczynskii, Aspergillus sydowii, 
Trichoderma sp., Penicillium raistrickii, 
Aspergillus sydowii and Bionectria 
sp.Aerobacter aerogenes, Trichoderma 
viridae, Pseudomonas sp., Micrococcus sp., 
Arthrobacter sp., Bacillus sp,Pseudomonas 
sp.Sphingobacterium sp.P. Chrysosporium 
Escherichia coli, Enterobacter aerogens., 
Enterobacter cloacae., Klebsiella 
pneumonia.Pseudomonas putida. Bacillus 
species.Hydrogenomonas.Saccharomyces 
cervisiae.,Phanerochaete chrysosporium.
Trichoderma viridae.Serratia marcescens 
DT-1P

[14,48, 115,157,159,164, 165,246,]

Endosulfan Aspergillus terreus, Bacillus sp., 
Cheatosartorea stromatoides,Cladosporium 
oxysporum, Fusarium,ventricosum, Klebsiella 
oxytoca KE-8,Klebsiella pneumoniae KE-
1, Myco-bacterium sp. ESD,Pandoraea 
sp.,Pseudomonas aeruginosa,Pseudomonas 
spinosa, Pseudomonas,cepacia

[82,193,214,189,116,136].

Aldrin, lindane Bacillus sp., Exiguobacterium,aurantiacum, 
Pandoraea sp.,Pseudomonas 
pseudoalcaligenes

[160,91]

Organophosphorus class
Cadusafos,dichlorovosethoprophos,fenami
phos,malathion,methyl-parathion,parathion, 
phospho-midon, quinolphos,Chlorpyrifos

Acinetobacter radioresistens,Arthrobacter 
sp., Aulosira fertilissima,ARM 68, 
Flavobacterium sp., Fusa-rium 
oxysporum, Nostoc muscorum,ARM221, 
Pseudomonas -putida (epI),Sphingomonas 
paucimobilis,Enterobactersp., Klebsiella 
sp.,Alcaligenes faecalis

[84,108,113,213,215, 216,253]

Carbofuran Novosphingobium sp. [252]
Carbamate Aldicarb Rotylenchulus reniformis [139]
Dieldrin Pseudomonas sp [127]
1,4- Dichlorobenzene Pseudomonas sp.Sphingomonas paucimobilis [201]
Lindane Pleurotus ostreatus, Streptomyces 

sp,Ganodermaaustrale
[17,180]

DDD Trichoderma sp [159]
Heptachlor epoxide Phanerochaete chrysosporium, Phlebia sp [7, 250]
Heptachlor O Bjerkandera sp,Trichoderma viridae, 

Pseudomonas sp., Micrococcus sp., Bacillus 
sp.

[165]

Aldrin O Pseudomonas sp. 105 [165]
Chlorpyrifos Enterobacter sp. Enterobacter aerogenes, 

Escherichia coli, and Kleibsiella pneumonia
[188,117]
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Malathion Bacillus Thuringiensis, Pseudomonas putida [57, 128,129]
Heptachlor and lindane P. chrysosporium,, P. eryngi, Pleurotus florida 

and Pleurotus sajor-caju.
[7]

Synthetic-pyrethroid pesticides
Allethrin, beta-cyfluthrin, cyper-methrin, 
flumethrin,permethrin

Acidomonas sp., Aspergillus 
niger,Pseudomonas sp., 
Pseudomonas,stutzeri, Serratia sp.,

[60,118,163,196]

Fungicides
Pentachlorophenol Pseudomonas sp. [239]
Herbicides
2,4-D Pseudomonas sp. [146]
Alachlor Streptomyces capoamus, Strepto-

myces galbus, Streptomycesbikiniensis, 
Streptomyces taxa

[187]

Microorganisms in Petroleum Hydrocarbons and Chlorinated 
Compound Bioremediation
Petroleum hydrocarbons comprise a diverse group of compounds, 
including alkanes, alkenes, and heterocyclic and aromatic 
constituents. Another important group of pollutants are the poly 
nuclear aromatic hydro carbons (PAHs), which are commonly 
found near coal conversion facilities and petroleum plants [135] 
short-chain alkanes tend to be volatile and are readily stripped 
from groundwater whereas mono aromatic hydro carbons such 
as benzene, toluene, ethyl benzene, and xylenes (which are 
collectively known as BTEX) tend to be relatively soluble and 
are transported over longer distances by groundwater. PAHs are the 
principal constituents of creosote, which is a complex mixture of 
about 200 compounds also containing phenolic and heterocyclic. 
Chlorinated aliphatic and aromatic compounds make up an 
important group of organic pollutants that are both ubiquitous 
and relatively persistent in aquifers. Common volatile organic 
compounds (VOCs) in the chlorinated solvents group include 
tetra chloro ethylene, trichloroethylene, dichloroethylene, and 
vinyl chloride or chloroethylene. All of these VOCs are potential 
carcinogens. Groundwater contamination by 1,1,1-trichloroethane 
(TCA) and chlorinated methanes, such as carbon tetrachloride 
(CCl4) and chloroform (CHCl3), is also common. Chlorinated 
solvents generally have higher specific gravity than water and tend 
to sink to the bottom of the aquifer if present in a separate organic 
phase. Crude oil is the most important organic pollutant in the 
environment, as 1.7-8.8 3X 106 tonnes of petroleum hydrocarbons 
are being released to the marine and estuarine environments 
annually [137]. Petroleum-based products are the major source of 
energy for industry and daily life. Leaks and accidental spills occur 
regularly during the exploration, production, refining, transport, 
and storage of petroleum and petroleum products. Release of 
hydrocarbons into the environment whether accidentally or due 
to human activities is a main cause of water and soil pollution 
[78]. Soil contamination with hydrocarbons causes’ extensive 
damage of local system since accumulation of pollutants in 
animals and plant tissue may cause death or mutations [1]. The 
technology commonly used for the soil remediation includes 
mechanical, burying, evaporation, dispersion, and washing. 
However, these technologies are expensive and can lead to 
incomplete decomposition of contaminants. Biodegradation by 
natural populations of microorganisms represents one of the 
primary mechanisms by which petroleum and other hydrocarbon 
pollutants can be removed from the environment and is cheaper 
than other remediation technologies [123, 231]. Biodegradation of 
petroleum hydrocarbons is a complex process that depends on the 
nature and on the amount of the hydrocarbons present. Petroleum 
hydrocarbons can be divided into four classes: the saturates, the 

aromatics, the asphaltenes (phenols, fatty acids, ketones, esters, 
and porphyrins), and the resins (pyridines, quinolines, carbazoles, 
sulfoxides, and amides [35]. Bacteria are the most active agents 
in petroleum degradation, and they work as primary degraders 
of spilled oil in environment [18,173]. Several bacteria are even 
known to feed exclusively on hydrocarbons [223]. Acinetobacter 
sp. was found to be capable of utilizing n-alkanes of chain 
lengthC10–C8 as a sole source of carbon [223]. Bacterial genera, 
namely, Gordonia, Brevibacterium, Aeromicrobium, Dietzia, 
Burkholderia, and Mycobacterium isolated from petroleum 
contaminated soil proved to be the potential organisms for 
hydrocarbon degradation [27]. The degradation of poly aromatic 
hydrocarbons by Sphingomonas was reported by Daugulis and 
McCracken [36]. Some novel marine bacterial species like 
Cycloclasticus spirillensus, Lutibacterium anuloederans, and 
Neptunomonas naphthovorans have also been utilized in enhanced 
biodegradationof PAHs in a marine environment [31]. Similarly, 
Achromobacter denitrificans, Bacillus cereus, Corynebacterium 
renale, Cyclotrophicus sp., Moraxella sp., Mycobacterium sp., 
Burkholderia cepacia, Pseudomonas fluorescens, Pseudomonas 
paucimobilis, P. putida, Brevundimonasvesicularis, Comamonas 
testosteroni, Rhodococcus sp., Streptomyces sp., and Vibrio sp. 
have been isolated from marine resources and are capable of 
degrading naphthalene by the process of mineralization. (Table 
4) However, bacteria belonging to the genus Cycloclasticus play 
the major role in biodegradation of hydrocarbons. Bacterial 
isolates like Sphingomonas paucimobilis EPA505 have been 
found to utilize fluoranthene as their sole carbon source. 
Some of the important genera of bacteria that are capable of 
degrading petroleum oil include Acinetobacter, Marinococcus, 
Methylobacterium, Micrococcus, Nocardia, Planococcus, and 
Rhodococcus. In terms of commercial applications, a consortium 
has been developed by [39] by using Arctic bacteria like Agreia, 
Marinobacter, Pseudoalteromonas, Pseudomonas, Psychrobacter, 
and Shewanella for significant degradation of crude oil and its 
components.

Mechanism of Petroleum Hydrocarbon Degradation
The most rapid and complete degradation of the majority of 
organic pollutants is brought about under aerobic conditions. It 
is main principle of aerobic degradation of hydrocarbons [51]. 
The initial intracellular attack of organic pollutant is an oxidative 
process and the activation as well as incorporation of oxygen is the 
enzymatic key reaction catalyzed by oxygenases and peroxidases. 
The tricarboxylic acid cycle. Biosynthesis of cell biomass occurs 
from the central precursor metabolites, for example, acetyl-CoA, 
succinate, pyruvate. Sugars required for various bio syntheses 
and growth is synthesized by gluconeogenesis. The degradation 
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of petroleum hydrocarbons can be mediated by specific enzyme system. Other mechanisms involved are (1) attachment of microbial 
cells to the substrates and (2) production of biosurfactants [77]. The uptake mechanism linked to the attachment of cell to oil droplet 
is still unknown but production of biosurfactants has been well studied. In microorganisms such P450 multiplicity can only be found 
in few species [257]. Cytochrome P450 enzyme systems was found to be involved in biodegradation of petroleum hydrocarbons (Fig 
2). Bacteria are the most active agents in petroleum degradation, and they work as primary degraders of spilled oil in environment 
[18,173].

Figure 2: Main Principle of Aerobic Degradation of Hydrocarbons by Microorganisms

Table 4: Hydrocarbon Degrading Microorgansms
Hydrocarbon Substrates Enzymes Microorganisms References
C1–C8 alkanes alkenes and 
cycloalkanes

Soluble Methane
Monooxygenases

Methylococcus,Methylosinus
Methylocystis,Methylomonas

Methylocella

[134]

C1–C5 (halogenated) alkanes and 
cycloalkanes5

Particulate Methane
Monooxygenases

Methylobacter,Methylococcus,
Methylocystis

[134]

C5–C16 alkanes, fatty acids, 
alkyl benzenes, cycloalkanes and 
so forth

AlkB related
Alkane

Hydroxylases

Pseudomonas,Burkholderia
Rhodococcus,Mycobacterium

[97]

C10–C16alkanes, fatty acids Eukaryotic P450 Candida maltose, Candida 
tropicalis, Yarrowialipolytica

[83]

C5–C16alkanes, cycloalkanes Bacterial P450
oxygenase system

Cinetobacter,Caulobacter
Mycobacterium

[233]

C10–C30 alkanes Dioxygenases Acinetobacter sp [138]

The Role of Microbes in Domestic and Agricultural 
Lignocellulos Wastes Remediation
In nature, lignocellulose is derived from wood, grass, agricultural 
residues, forestry wastes, and solid municipal wastes. 
Lignocellulosic complex contains three types of polymers 
approximately 40 to 60% cellulose, 20 to 40% hemicellulose, and 
10 to 25% lignin. Contaminated soil is removed from the ground 
and mixed with natural materials such as cow manure, activated 
sludge, and corn cobs. These additives provide the biomass 
necessary for microbial growth and worm growth. Each year, 
human, livestock, and crops by product produce approximately 38 
billion metric tons of organic waste worldwide [56]. Hydrolytic 
enzyme producing microorganisms play an important role in the 
recycling of agricultural wastes. Especially cellulase, lacase, 
lignin peroxidase, manganese peroxidase, hemicellulase enzyme 
are vitally important in degaradation of cellulose, hemicellulose 
and lignin containing agricultural waste. Composting is one 
of the bioremediation method where the compost generated 
by bioconversion of agro residues offers several benefits such 
as enhanced soil fertility and soil health which can lead to 
increased agricultural productivity, improved soil biodiversity, 
reducing ecological risks and a healthier environment. These 
virtues make composting an ideal option for processing of the 
enormous quantities of agro wastes that are generated in the 

world. Composting is the biological degradation and stabilization 
of organic substrate under conditions that allow development of 
thermophilic temperature as a result of biologically produced 
heat [64]. During composting, mesophilic population builds up 
initially by the utilization of simple nutrients, which raises the 
temperature of the piles. Thermophilic microbes proliferate in the 
second phase. The final product is stable, free of pathogens and 
plant seeds and can be beneficially applied to land. Composting 
is essentially a microbiological phenomenon that depends highly 
on temperature fluctuation within the windrows. The temperature 
within a composting mass determines the rate at which many of 
the biological processes take place and plays a selective role on the 
evolution and the succession of the microbiological communities 
[152]. In biological terms the operating temperature ranges are as 
follows: > 55°C to maximize sanitation, 45-55°C to maximize the 
biodegradation rate, and 35-40°C to maximize microbial diversity 
[207]. During aerobic composting, the average temperature 
curve within the piles showed three classic phases. Generally, 
composting proceeds through three phase: 1) mesophilic (moderate 
temperature phase), 2) thermophilic (high temperature phase) and 
3) cooling and maturation phase. Mesophilic phase, Psychrophilic 
and mesophilic microorganisms in waste piles tended to increase 
during the first 25 days of the composting cycle. During this phase, 
the temperature increased to reach 40 to 50°C as a consequence 
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of biodegradation of organic compounds [2, 152]. Thermophilic 
phase: This important step occurred between days 30 to 110 of 
the composting process, during which the temperature exceed 
the tolerance limit of mesophilic microorganisms and promoted 
development of thermogenic microorganisms. According to 
[207] temperatures above 55°C are important to maximize 
sanitization. Meanwhile, temperature between 45 and 55°C are 
to improve the degradation rate and between 35 and 40°C to 
increase microbial diversity. Control of the temperature and its 
maintenance below 65°C inside the windrow during composting is 
assured by ventilation and watering. As mentioned by [70 &145] 
temperatures above 60°C affect seriously the decomposition rate 
of the waste organic matter as a result of microbiological activity 
lowering. In Cooling phase, microbial activity slows down and as 
the process nears completion, the material approaches ambient air 
temperature. Finished compost takes on many of the characteristics 
of humus, the organic fraction of soil. The material will have 
been reduced in volume by 20 to 60%, the moisture content by 
40% and the weight by up to 50%. One of the key challenges in 
composting is to retain as much nitrogen as possible. Composting 
may contribute to the greenhouse effect because carbon dioxide 
(CO2), methane (NH4) and nitrous oxide (NO2) will be emitted 
to the atmosphere during composting. During the curing phase 
the need for turning is greatly reduced. However, there is still a 
need for low levels of oxygen for microbial activity. Therefore, 
it is necessary to construct curing piles and/or windrows to a 
size that will allow for passive airflow through the windrow. A 
recommended size for a curing pile is 1.5 meters tall and 3-4 
meters wide. During the curing phase, the windrows should be 
kept in dry areas, away from excess moisture. Exposure to excess 
moisture during this phase may cause the curing piles to become 
anaerobic. The temperature began to decrease after the twelfth 
week. This decrease resulted in a beginning of depletion of organic 
matters; during this phase the C/N ratio in the different windrows 

tended to stabilize by the end of the 4th month of composting, 
average temperatures inside the different windrows marked a 
real fall with values of approximately 30°C. The temperature 
remained low in spite of the watering and the turning of windrows. 
Composting has been used as a means of disposal of organic wastes 
like paddy straw, sugarcane trash and other agricultural wastes. 
Natural succession of microflora takes place during composting. 
Several fungi like Trichoderma harzianum, Pleurotus ostreatus, 
Polyporus ostriformis and Phanerochaete chrysosporium are 
known to play important role in composting of lignocellulosic 
materials [203]. Though fungi, bacteria and actinomycetes 
play unique and important roles during composting, mixed 
cultures of microorganisms enhance the rate of lignocellulose 
degradation due to their synergistic activity through utilization of 
intermediate degradation products [112]. The consortium of four 
hypercellulolytic fungal cultures namely Aspergillus nidulans, 
Trichoderma viride, Phanerochaete chrysosporium and Aspergillus 
awamori were used for compostingof paddy straw in perforated 
pits. Thermophilic fungal consortium of  A. nidulans, Scytalidium 
thermophiluma and Humicola sp. wasfound highly effective in 
degradadion of soybean trash and paddy straw mixture during 
summer months [111]. Similarly a consortium of thermophilic 
microorganisms Scytalidium thermophilum, Humicola insolens and 
Sporotrichum thermophilumare also being used. The contaminants 
may be degraded using different mechanisms like mineralization 
by microbial activity, transformation to non-toxic products, 
volatilization, and formation of humus and inert by products, 
such as carbon dioxide, water and salts. The critical parameters and 
efficiency of compost in bioremediation is essentially determined 
by process parameters like pH, temperature, C: N ratio, moisture 
content and recalcitrance of the material to be composted. Bulking 
agents like peat moss, pine wood shavings, bran flakes accelerate 
composting by favoring the growth of aerobic microorganisms 
[6, 149,166] (Table.5)

Table 5: Composting Microorganisms
Composting phase Microorganisms Reference

1 Thermophilic phase(day 45) Curtobacteriumcitreum,Stenotrophomonas 
rhizophila,Stenotrophomonas maltophilia,
Microbacteriumfoliorum,Xanthom
onas oryzae,Pseudoxanthomonas 
taiwanensis,Bacillus ginsengihumi,Serratia 
marcescens, Serratia odorifera
Rhabditidae spp, Panagolamidae 
sp.Diplogasteridae Sp, Cephalobidae sp., 
Mononchoides sp., Ditylenchus filimus.

[79,191]

2 Mesophilic phase(day 139) Xenophilus azovorans,Bacillus licheniformis, 
Pseudomonas mendocina, Rhodococcus 
rhodochrous
Bacillus sp., Paenibacillius sp, 
Actinomycetes, Aspergillus fumigatus , Feacal 
coliforms,Pseudomonas Sp,Streptococcus sp, 
Proteus Sp,Serratia Sp.

[79, 192,219]

3 Psychophilic phase Asprgillus fumigatus, Emericella 
Sp,Aspergillus ochraceus,Aspergillus 
terreus, Penicillium oxalicum, 
Thermoactinomyces sp. Cladosporium sp, 
Mycotypha sp, Scopulariopsis sp, Coprinus 
sp,Cephalosporium sp,Trichotheclum sp.,

[37,79,219]

Conclusion 
Environmental pollution due to different pollutant source 
from industry, agriculture and urbanization activities leads to 
ecological crise, biodiversity loss and drastic climate change. 
There are different waste removal strategies utilized to tackle 
these global problems till now. Acorrding to cost effectiveness 

and ecofriendly approach waste treatment and detoxifixation 
method seek optional and alternative approach. Bioremedition 
is an incremental technology using the potential of biological 
agent employed for eradiction of environmrntal pollutant and 
detoxification of hazardous toxic contaminnt. It has evolved over 
20 years in use of commercial life and application in remediation 
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service. Through exisitu and in situ bioremediation method like 
biopiling, composting, land frming, bioventing, biosparging, 
biostimulation, bioagumentation, are employed to treat heavy 
metal waste, hydrocbon petroleum, chlorinated compound and 
plastic waste, organic and volatile compound pollutant, organic 
and inorganic municipal solid waste, lignocellulose organic 
agricultural based waste, industry effluent waste, nuclear waste 
and different dyestuff and agrochemical waste like pesticide and 
fertilizer. Microrganisms produce versatile class of enzymes 
belonged in six class Oxidoreductases, Transferases, Hydrolases, 
Lyases, Isomerases and Ligases (synthetases) are used degradation 
and mineralization during bioremediation process. Understanding 
the mechanism, mode of action and role of microorgsnism in 
bioremediation process is essential to utilize microorganism 
potential and designe waste management strategy.
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