
J Arti Inte & Cloud Comp, 2022 Volume 1(2): 1-6

Review Article Open Access

Observer Design Pattern Applied on Real Life Store Use Case

1Sr. Director – Enterprise Architecture, Fortune Brands Home & Security,USA

2Sr. Manager - Digital Applications, , Fortune Brands Home & Security,USA

Nilesh D Kulkarni1* and Saurav Bansal2

Journal of Artificial Intelligence &
Cloud Computing

*Corresponding author
Nilesh D Kulkarni, Sr. Director – Enterprise Architecture, Fortune Brands Home & Security, USA.

Received: April 07, 2022; Accepted: April 15, 2022; Published: April 25, 2022

Keywords: Design Patterns, Observer, Object, .Net, Software
Maintainability

Introduction
The importance of design experience is widely recognized. How
often have you encountered a familiar problem during design,
sensing that you've tackled something similar in the past, yet
struggling to recall the specifics of where and how it was resolved?
If you were able to recall the nuances of that past challenge and
the strategy you employed to overcome it, you could leverage that
previous experience instead of having to re-explore the solution
from scratch.

A design pattern represents a universally recognized solution,
widely observed in various cases, that effectively addresses a
specific problem in a context that may not be predefined. It offers
a highly efficient approach to developing object-oriented software
that is not only flexible and elegant but also reusable. The utilization
of design patterns facilitates the reuse of successful designs and
architectural models. By translating proven technologies and
methodologies into design patterns, they become more easily
accessible to developers building new systems.

Design patterns guide developers in selecting design options that
enhance the reusability of a system, while steering clear of choices that
could hinder it. Moreover, design patterns can significantly enhance
the documentation and maintenance of existing systems by providing
a clear and explicit description of class and object interactions, along
with their fundamental purposes. In essence, design patterns empower
designers to achieve a more effective design more swiftly.

Typically, a design method comprises a set of synthetic notations
usually graphical and a set of rules that govern how and when
we use each notation. It will also describe problems that occur in
a design, how to fix them, and how to evaluate the design. Each
pattern describes a problem which occurs over and over again
in the environment, and then describes the core of the solution
to that problem, in such a way that you can use this solution a
million times over without ever doing it the same way twice [1].

Design patterns describe problems that occur repeatedly, and
describe the core of the solution to that problem, in such a way
that the solution can be used many times in different contexts and
applications. A good design should always be independent of the
technology and the design should help both experience and the
novice designer to recognize situation in which these designs can
be used and reused.

Eric gamma at el in their book Design Patterns, discussed total 23
design patterns clarified by two criteria figure 1. The first criterion,
called purpose, reflects what a pattern does. Patterns can have
either creational, structural, or behavioral purpose. Creational
patterns concern the purpose of object creation. Structural pattern
deals with the composition of classes or objects. Behavioral pattern
characterizes the ways in which classes or objects interact and
distribute responsibility [2]. The second criteria called scope,
specifies whether the pattern applies primarily to the class or to
the object.

ISSN: 2754-6659

ABSTRACT
The paper explores the Observer Design Pattern in the context of a software system. It discusses the significance of design patterns in software engineering,
particularly for object-oriented design, emphasizing their role in creating flexible, elegant, and reusable systems. The Observer pattern is specifically
examined for its effectiveness in distributed event handling systems, highlighting its utility in decoupling components and facilitating communication
between objects. A real-life scenario involving a customer and a store is used to illustrate the application of this pattern, showcasing how it optimizes
customer experience and resource management in a retail context. The document also delves into technical aspects like .NET framework, UML basics, and
provides C# code examples to demonstrate the practical implementation of the Observer pattern in a software ordering system.

Citation: Nilesh D Kulkarni, Saurav Bansal (2022) Observer Design Pattern Applied on Real Life Store Use Case. Journal of Artificial Intelligence & Cloud Computing.
SRC/JAICC-197. DOI: doi.org/10.47363/JAICC/2022(1)183

J Arti Inte & Cloud Comp, 2022 Volume 1(2): 2-6

Scope Purpose
Creational Structural Behavioral

Class Factory
Method

Adapter Interpreter
Template
Method

Object Abstract
Factory
Builder

Prototype
Singleton

Adapter
Bridge

Composite
Decorator

Façade
Flyweight

Proxy

Chain of
Responsibility

Command
Iterator

Mediator
Memento
Observer

State
Strategy
Visitor

Figure 1: Design Patterns

UML Basics
The first versions of UML were created by “Three Amigos” - Grady
Booch at el defines “The Unified Modeling Language (UML),
is a standardized visual language for specifying, constructing,
and documenting the artifacts of software systems. It provides
a set of diagrams and notations to represent various aspects of
software design and architecture, allowing software engineers to
communicate, visualize, and model complex systems effectively.”

Three Types of Relations Between the Classes
Association Relationship
When classes are connected together conceptually, that connection
is called an association. As shown in the Figure 2, let’s examine
the association between passenger and airplane. A passenger can
sit in an airplane or multiple passengers can sit in an airplane.

Figure 2: Association Relationship

Aggregation Relationship
This is a special type of relationship, used to model situations
where one class (the whole) contains or is composed of other
classes or objects (the parts), and the parts have a lifecycle that is
independent of the whole. As shown in the figure 3., next examine
the aggregation relationship, an engine (whole) can have many
Pistons (parts) similarly an airplane (whole) can have multiple
engines (parts) as well as an airplane can have multiple wheels
(parts).

Figure 3: Aggregation Relationship

Composition Relationship
A composition is a strong type of aggregation where each
component in the composite can belong to just one whole. As
shown in fig 4., a dog can have a tail, four legs, two ears, and
two eyes, but eyes, legs, tail, and ears cannot exist on its own.

Figure 4: Composition Relationship

Inheritance / Generalization
In this relationship one class (the child class or subclass) can
inherit attributes and operations from another (the parent class
or superclass). The generalization allows for polymorphism. In
generalization, a child is substitutable for parent. That is anywhere
the parent appears, the child may appear. The reverse isn’t true [3].
As shown in the Fig 5, signifies that "Bus," "Car," and "Truck"
inherit from "Vehicle." They are expected to share common
characteristics or behaviors that are defined in "Vehicle." For
instance, if "Vehicle" has attributes like 'number of wheels' and
'fuel type' and operations like 'start engine ()', then "Bus," "Car,"
and "Truck" would inherit these operations and attributes.

Figure 5: Generization

Interface
An interface is a set of operation that specifies some aspect
of classes behavior, and it’s set of operation class presents to
other classes [3]. As shown in figure 6., the "Electric System"
is considered an interface between the light bulb and the light
switch. The "Electric System" serves as a contract between the
light bulb and the light switch, stipulating that when the switch is
turned on, the bulb should light up. Interfaces are used to decouple
the implementation and the abstract design, allowing for changes
in implementation without affecting the system that uses the
interface. Similarly, the light switch and bulb are decoupled from
each other, you could replace either the bulb or the switch without
needing to change the other, as long as they both adhere to the
same electrical system standards. Interface also allows different
classes to be treated through a single interface type, the electric
system could work with any device that conforms to its standards,
not just a light bulb. This could include a fan, a heater, or any
other electric device that can be turned on or off.

Figure 6: Interface Representation

Citation: Nilesh D Kulkarni, Saurav Bansal (2022) Observer Design Pattern Applied on Real Life Store Use Case. Journal of Artificial Intelligence & Cloud Computing.
SRC/JAICC-197. DOI: doi.org/10.47363/JAICC/2022(1)183

J Arti Inte & Cloud Comp, 2022 Volume 1(2): 3-6

Programming Technologies
We will using the basic programming tools to show the
implementation of the Observer design pattern.

.NET Framework
The .NET Framework, is a software development framework
designed and supported by Microsoft. It provides a controlled
environment for developing and running applications on Windows.
Few features listed below

Windows-Specific
The .NET Framework is designed to work on Windows operating
systems.

Base Class Library (BCL)
 It includes a large class library known as the Framework Class
Library (FCL), providing user interface, data access, database
connectivity, cryptography, web application development, numeric
algorithms, and network communications.

Common Language Runtime (CLR)
 Programs written for the .NET Framework execute in a software
environment named the Common Language Runtime, which
provides services such as security, memory management, and
exception handling.

Languages
The .NET Framework supports multiple programming languages,
such as C#, VB.NET, and F#.

CLI
Console programming refers to the process of writing software
applications that interact with the user through a text-based
interface. These applications run in a console or a command-line
interface (CLI), where the user inputs text commands and the
program provide output in text form.

Visual Studio Code (VS Code) for .NET Development
Visual Studio Code is a lightweight, open-source, and cross-
platform code editor developed by Microsoft. It's not specific
to any one programming language or framework. With the help
of extensions, it can support a wide variety of languages and
frameworks, including those of the .NET ecosystem. Few features
listed below

Cross-Platform
VS Code runs on Windows, Linux, and macOS.

Extensions
The C# extension by Omni Sharp adds support for .NET
development, including features like IntelliSense, debugging,
project file navigation, and run tasks.

Lightweight Editor
VS Code is designed to be a fast and lightweight editor, with a
smaller footprint than a full IDE like Visual Studio.

Integrated Terminal
Developers can use the integrated terminal to execute .NET CLI
commands, enabling them to create, build, run, and test .NET
applications.

Git Integration
VS Code has built-in Git support, which is essential for modern

software development workflows.

Language Features
VS Code with the C# extension supports advanced language
features like code refactoring, unit testing, and code snippets
for .NET.

Behavioral Pattern
Behavioral design patterns are a set of design patterns in software
engineering that focus on the interaction and communication
between different objects and classes in a system. They help in
defining how objects collaborate and communicate with each other
to achieve a specific behavior or functionality. Behavioral design
patterns primarily deal with the delegation of responsibilities
among objects and how they interact to accomplish tasks.

Common Behavioral Design Patterns
Strategy Pattern
The strategy pattern defines a family of algorithms, encapsulates
each one, and makes them interchangeable. It allows to select an
algorithm or behavior at runtime without altering the client code
that uses it. This pattern is useful for providing multiple ways to
accomplish a task.

Observer Pattern
This pattern defines a one-to-many relationship between objects so
that when one object (the subject) changes state, all its dependents
(observers) are notified and updated automatically. It's commonly
used in implementing distributed event handling systems.

Command Pattern
The command pattern encapsulates a request as an object, thereby
allowing for parameterization of clients with different requests,
queuing of requests, and logging of requests. It also provides
support for undoable operations.

Chain of Responsibility Pattern
In this pattern, a request is passed along a chain of handlers.
Each handler decides either to process the request or pass it to the
next handler in the chain. It's commonly used in implementing
event-driven systems like event handling in GUI-Graphical User
Interface applications.

State Pattern
The state pattern allows an object to alter its behavior when its
internal state changes. It represents various states of an object as
separate classes and delegates the state specific behavior to these
classes. This pattern is useful when there is an object that needs
to change its behavior dynamically based on its internal state.

Behavioral Pattern – Observer
Observer is a behavioral design pattern that lets you define a
subscription mechanism to notify multiple objects about any
events that happen to the object they’re observing. In this pattern,
when one object (known as the subject) changes its state, all its
dependents (known as observers) are automatically notified and
updated. This allows the observers to react to changes in the
subject's state without the need for the subject to have direct
knowledge of its observers.

Here are the key components and participants in the observer
Pattern (figure 7)-
Publisher
Issues events of interest to other objects. These events occur

Citation: Nilesh D Kulkarni, Saurav Bansal (2022) Observer Design Pattern Applied on Real Life Store Use Case. Journal of Artificial Intelligence & Cloud Computing.
SRC/JAICC-197. DOI: doi.org/10.47363/JAICC/2022(1)183

J Arti Inte & Cloud Comp, 2022 Volume 1(2): 4-6

when the publisher changes its state or executes some behaviors.
Publishers contain a subscription infrastructure that lets new
subscribers join and current subscribers leave the list. When a new
event happens, the publisher goes over the subscription list and
calls the notification method declared in the subscriber interface
on each subscriber object.

Subscriber
An interface declares the notification interface. In most cases, it
consists of a single update method. The method may have several
parameters that let the publisher pass some event details along
with the update.

Concrete Subscribers
Perform some actions in response to notifications issued by the
publisher. All of these classes must implement the same interface
so the publisher isn’t coupled to concrete classes. Usually,
subscribers need some contextual information to handle the update
correctly. For this reason, publishers often pass some context
data as arguments of the notification method. The publisher can
pass itself as an argument, letting subscriber fetch any required
data directly.

Client
Creates publisher and subscriber objects separately and then
registers subscribers for publisher updates.
The Observer pattern is widely used in software development
to implement distributed event handling systems, decouple
components in a system, and facilitate communication between
objects in a flexible and loosely coupled way. It promotes the
principle of "loose coupling," where the subject and observers
are not tightly bound to each other, making the system more
maintainable and extensible.

Figure 7: Observer Basic Construct

Real Life Use Case
Imagine a scenario (fig 8)where we have two types of objects: a
"Customer" and a "Store." The Customer is eagerly waiting for
a product (VR Glasses) which is currently out of stock, and it is
expected to become available in the Store very soon.

In this situation, a customer could potentially visit the Store daily
to check if the desired product is in stock. However, during the
time when the product is still enroute to the Store, most of these
visits would be futile and a waste of the Customer's time.

On the other hand, the Store could take the approach of sending
numerous emails to all its customers every time a new product
becomes available. While this would save some Customers from
making unnecessary trips to the Store, but it could also be seen
as spam and would inconvenience other Customers who have no
interest in the specific product.

To resolve this conflict, the Observer design pattern can be applied-

Subject (Store)
The Store serves as the subject in this scenario. It maintains
information about product availability and keeps a list of registered
Customers who want to be notified when the desired product
arrives.

Observer (Customer)
Each Customer interested in the new VR Glasses becomes an
observer. They provide their contact details and preferences to
the Store, indicating their interest in receiving notifications about
this specific product.

Concrete Subject (Specific Store Location)
In a real-world implementation, there may be multiple Store
locations. Each store becomes a concrete subject, managing its
product availability and associated observers.

Concrete Observer (Individual Customers)
Each Customer who wishes to be notified about the VR Glasses
is a concrete observer. They specify how they want to be notified,
whether through email, SMS, or other means.

When the new VR Glasses arrives at the Store, the Store, acting
as the subject, checks its list of registered Customers (observers)
and sends targeted notifications only to those who have expressed
interest in the product. This ensures that Customers are informed
about product availability without the need for constant visits,
and the Store avoids unnecessary notifications to uninterested
Customers, thus optimizing resources and providing a better
customer experience.

Figure 8: Observer Candidate

Observer Construction
The figure 9. Components applicable based on the observer pattern
is explain below -

Publisher (Subject - Store)
•	 The Publisher class represents the Store, which is the subject

in this context. It has a list of ‘subscribers’, which corresponds
to the customers who wish to be notified. The ‘mainState’
attribute represents the current state of product availability
in the store.

•	 The subscribe(Subscriber s) method allows a new customer
to register for notifications.

•	 The unsubscribe(Subscriber s) method allows a customer to
unregister from notifications.

•	 The notifySubscribers() method is invoked to notify all
registered customers about the availability of the product.
This is usually done via a loop, as indicated in the pseudo-
code foreach (s in subscribers) s.update(this).

Citation: Nilesh D Kulkarni, Saurav Bansal (2022) Observer Design Pattern Applied on Real Life Store Use Case. Journal of Artificial Intelligence & Cloud Computing.
SRC/JAICC-197. DOI: doi.org/10.47363/JAICC/2022(1)183

J Arti Inte & Cloud Comp, 2022 Volume 1(2): 5-6

•	 The mainBusinessLogic() method represents the operations
the Store may perform, which could include updating the
product availability state (mainState).

Subscriber (Observer - Customer)
•	 The Subscriber interface represents the Customer in this

context. Each customer interested in receiving updates about
VR glasses implements this interface.

•	 The update(context) method is a contract that all observers
must implement, defining how they will be notified of changes
in the Publisher’s state.

Concrete Subscribers (Concrete Observer - Individual
Customers)
•	 This represents specific customers. Each customer will

implement the update(context) method to receive updates
according to their notification preferences (e.g., email, SMS).

Client (Concrete Subject - Specific Store Location)
•	 The Client represents a particular store location that manages

its own stock and customer notifications.
•	 It's responsible for creating instances of ConcreteSubscribers

(customers) and registering them with the ‘Publisher’ (the
store) for updates.

The figure 9 shows the Client section where an instance of
ConcreteSubscriber is created and then subscribed to the Publisher.
This reflects the action of a customer visiting a specific store
location, providing their contact details and preferences, and then
being added to the store's notification list for when the new VR
Glasses become available.

Figure 9: Applying Observer Design Pattern

In the context of the Observer design pattern, the Publisher
(Store) does not need to know the specifics of the Subscribers
(Customers), just that they implement the Subscriber interface and
can be notified through the ‘update’ method. When the mainState
changes (new VR Glasses arrive), the notifySubscribers method is
called, which in turn calls the update method on each Subscriber
(Customer), passing along the relevant information (context).
Each ConcreteSubscriber (Individual Customer) has their own
implementation of update (context), which handles the notification
based on their specified preference (e.g., email, SMS).

In summary, the Store maintains a list of Customers who want
to be notified about the VR Glasses. When the product becomes
available, each Store location (acting as a ConcreteSubject)
notifies its registered Customers (ConcreteObservers) using their
preferred notification method. Each Customer (ConcreteObserver)
has a method to update their state or take action based on the
notification from the Store (ConcreteSubject) using their preferred

notification method. Each Customer (ConcreteObserver) has a
method to update their state or take action based on the notification
from the Store (ConcreteSubject).

Code Construction
The representation of the code using C# , Visual Studio Code and
.Net Framework shown below-
using System;
using System.Collections.Generic;

// Observer interface
public interface ICustomer
{
 void Update(ProductAvailabilityInfo availabilityInfo);
}
// Concrete Observer
public class Customer : ICustomer
{
 public string Name { get; set; }
 public string NotificationPreference { get; set; }

 public Customer(string name, string notificationPreference)
 {
 Name = name;
 NotificationPreference = notificationPreference;
 }
 public void Update(ProductAvailabilityInfo availabilityInfo)
 {
 Console.WriteLine($"{Name}, the product
'{availabilityInfo.ProductName}' is now available. Notifying
via {NotificationPreference}.");
 // Here you would add the logic for sending the notification
based on the customer's preference.
 }
}
// Subject interface
public interface IStore
{
 void Subscribe(ICustomer customer);
 void Unsubscribe(ICustomer customer);
 void NotifySubscribers();
}
// Concrete Subject
public class Store : IStore
{
 private List<ICustomer> _customers = new List<ICustomer>();
 private ProductAvailabilityInfo _availabilityInfo;

 public void SetProductAvailability(ProductAvailabilityInfo
availabilityInfo)
 {
 _availabilityInfo = availabilityInfo;
 NotifySubscribers();
 }
 public void Subscribe(ICustomer customer)
 {
 _customers.Add(customer);
 }
 public void Unsubscribe(ICustomer customer)
 {
 _customers.Remove(customer);
 }
 public void NotifySubscribers()
 {

Citation: Nilesh D Kulkarni, Saurav Bansal (2022) Observer Design Pattern Applied on Real Life Store Use Case. Journal of Artificial Intelligence & Cloud Computing.
SRC/JAICC-197. DOI: doi.org/10.47363/JAICC/2022(1)183

J Arti Inte & Cloud Comp, 2022 Volume 1(2): 6-6

Copyright: ©2022 Nilesh D Kulkarni. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

 foreach (var customer in _customers)
 {
 customer.Update(_availabilityInfo);
 }
 }
}

// Information about the product availability
public class ProductAvailabilityInfo
{
 public string ProductName { get; set; }
 public bool IsAvailable { get; set; }
}

class Program
{
 static void Main(string[] args)
 {
 // Create store
 var store = new Store();

 // Create customers
 var customer1 = new Customer("John Doe", "Email");
 var customer2 = new Customer("Jane Smith", "SMS");

 // Subscribe customers to the store for notifications
 store.Subscribe(customer1);
 store.Subscribe(customer2);

 // Product availability information
 var availabilityInfo = new ProductAvailabilityInfo
 {
 ProductName = "VR Glasses",
 IsAvailable = true
 };
 // Notify customers about product availability
 store.SetProductAvailability(availabilityInfo);
 // Unsubscribe a customer if they no longer wish to receive
notifications
 store.Unsubscribe(customer1);
 // Change product availability and notify again
 availabilityInfo.IsAvailable = false; // Example: the product
is sold out
 store.SetProductAvailability(availabilityInfo);
 Console.ReadLine(); // Wait for user input before closing
the console window
 }
}

Design Pattern and Software Maintainability
The original study to evaluate the impact of design patterns
on software maintenance was applied by Prechelt et al [4].
They conducted an experiment call PatMain by comparing the
maintainability of two implementations of an application, one
using a design pattern and the other using a simple alternative.
They used four different subject systems in the same programming
language. They addressed five patterns - decorator, composite,
abstract factory, observer and visitor. The researchers measure the
time and correctness of the given maintenance task for professional
participants. They found that it was useful to use a design pattern
but in case where simple solution is preferred, it is good to follow
the software engineer common sense about whether to use a pattern
or not, and in case of uncertainty it is better to use a pattern as a
default approach.

Conclusion
A design pattern is a generalized reusable solution two commonly
occurring problem in a software design. It can be defined as
a description or template for how to solve a problem that can
be used in many different situations [5]. In this paper, we aim
to demonstrate the practical application of the observer design
pattern in a specific use case. Design patterns serve as invaluable
communication tools and expedite the design process. They
empower solution providers to focus on solving the business
problem while promoting reusability in the design.

Reusability extends not only to individual components but
also to the entire design process, from problem-solving to the
final solution. The ability to apply patterns that offer repeatable
solutions is well worth the time invested in learning them. There
are promising results indicating that the utilization of design
patterns enhances quality and contributes to maintainability. The
proportion of source code lines involved in design patterns within
a system shows a strong correlation with maintainability. However,
it's important to note that these findings represent just a small step
in the empirical analysis of software quality concerning design
patterns. Design patterns should facilitate the reuse of software
architecture across different application domains and promote the
reuse of flexible components.

References
1. A Alexander C, Ishikawa S, Silverstein M, Jacobson M,

Fiksdahl-King I, et al. (1977) A Pattern Language. Oxford
University Press, New York.

2. Gamma H (1995) Design Patterns Elements of Reusable
Object-Oriented Software https://www.cs.uni.edu/~wallingf/
teaching/062/sessions/support/pattern-examples.pdf.

3. Schmuller J (1999) Sams Teach Yourself Uml in 24 Hours
https://nibmehub.com/opac-service/pdf/read/Sams%20
teach%20yourself%20UML%20in%2024%20hours%20
by%20Joseph%20Schmuller%20-A.pdf.

4. Prechelt L, Unger B, Tichy WF, Brossler P, Votta LG (2001)
A controlled experiment in maintenance: comparing design
patterns to simpler solutions. IEEE Transactions on Software
Engineering 27: 1134-1144.

5. Zhang C, Budgen D (2012) What Do We Know about the
Effectiveness of Software Design Patterns? IEEE Transactions
on Software Engineering 38: 1213-1231.

