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Introduction
Per-and Polyfluoroalkyl Substances (PFAS) are a class of 
anthropogenic synthetic compounds with high-energy covalent 
bonds, which are widely use in a variety of industrial and consumer 
applications due to their hydrophobicity, lipophobicity, high 
thermal and chemical stability [1]. Due to their widely application 
and exceptional physicochemical properties, PFAS are almost 
ubiquitous in the environment [2]. Numerous epidemiological 
and toxicological studies have demonstrated that exposure to 
PFAS can cause a series of adverse effects on human health, 
including developmental and reproductive toxicity, neurotoxicity, 
hepatotoxicity, genotoxicity, immunotoxicity, endocrine toxicity, 
and carcinogenicity [3-9]. The persistence and toxicity of PFAS 
have raised global concern about their potential environmental and 
health risks. In order to control the contamination and health hazards 
caused by PFAS, many countries and international organizations 
are implementing regulations to limit the manufacturing and 
utilization of some legacy PFASs, which has led to a growing 

number of manufacturers turning to the production of new 
alternatives of PFASs [10]. However, adequately safety tests are 
lacking for these novel PFASs, and companies refuse to disclose 
their components citing trade secrets, making it difficult for 
regulatory agencies and the public to comprehensively assess their 
safety and long-term impacts [11]. Many of these novel PFASs 
are discharged into the environment and have been detected in 
both environmental and biological samples [10,12-15]. Previous 
studies have indicated that the toxicity of certain novel PFASs may 
be comparable to or even exceed that of legacy PFASs [16-19]. 
Many novel PFASs shown higher affinity in molecular docking 
experiments with PPARα and ERα receptors than legacy PFASs 
[20].

Drinking water is one of the main pathways of human exposure 
to PFASs [21]. To safeguard public health, numerous countries 
and organizations have implemented standards for PFAS limits 
in drinking water. In 2024, the United States Environmental 
Protection Agency (EPA) established Maximum Contaminant 
Level (MCL) standards for six PFASs in drinking water. The 
specific standards are as follows: PFOA at 4 ng/L, PFOS at 
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4 ng/L, PFHxS at 10 ng/L, PFNA at 10 ng/L, and HFPO-DA 
(GenX) at 10 ng/L. Additionally, the Hazard Index MCLs for 
mixtures containing two or more of the substances PFHxS, PFNA, 
HFPO-DA, and PFBS should be less than 1[22]. Chinese sanitary 
standards for drinking water stipulated that the concentrations 
of PFOA and PFOS should not exceed 80 ng/L and 40 ng/L, 
respectively. The current standards are primarily aimed at legacy 
PFASs and a small amount of novel PFAS. However, a significant 
portion of novel PFASs are not covered by existing standards of 
drinking water, and their toxicity remains largely unknown. Thus, 
comprehensively identifying and evaluating the risks of legacy 
and novel PFASs in drinking water is of utmost importance.

Many studies have demonstrated that target PFASs constitute 
only a minor portion of the total organic fluorine (TOF) present 
in living organisms and the environment. In fact, a significant 
portion of extractable organic fluorine (EOF) is attributed to 
unidentified PFAS [23]. EOF mass balance analysis revealed that 
target PFAS account for less than 36% of the EOF in drinking 
water from Shanghai [24]. This indicated the presence of a 
significant amount of unidentified organic fluorine compounds 
in the drinking water, underscoring the importance of identifying 
and studying these unknown pollutants. Currently, the majority 
of studies on PFAS in drinking water primarily focused on the 
routinely monitored targeted PFAS. However, the utilization of 
high-resolution mass spectrometry (HRMS) had enabled both 
suspect and non-targeted screening methods to identify unknown 
PFAS compounds within complex environmental samples [11]. 
Only a few researches had conducted suspect and non-targeted 
screening of PFASs in drinking water, but none of these studies 
had considered the toxicity and risk assessment of these emerging 
PFASs [24-27]. Linking the chemical information obtained from 
non-targeted screening to the toxicity of compounds is vital for risk 
assessment. This linkage is essential for identifying and evaluating 
potentially harmful substances that may not be regulated, thereby 
enhancing our ability to protect public health and the environment 
[28]. The Toxicological Prioritization Index (Toxpi) framework 
was designed to integrate multiple sources of information about 
exposure, compound properties, health and environmental risk, 
enabling a comprehensive prioritization of chemicals based on 
their hazards to facilitate informed decision-making [29-31]. It 
was frequently utilized for risk assessment of multiple emerging 
pollutants in food, biological samples and environmental media 
[12,32-35].

Yangtze River Delta is located in downstream of the Yangtze 
River, near its estuary. The local drinking water mainly relies 
on the surface water of the Yangtze River, which gather various 
pollutants from the upper and middle reaches of the Yangtze 
River and are vulnerable to further contamination [36]. With the 
rapid urbanization and industrial development along the region of 
Yangtze River, large amounts of industrial wastewater, domestic 
sewage, and agricultural runoff flow into the Yangtze River and 
its tributaries, resulting in a gradual deterioration of water quality 
[37]. Therefore, the safety of drinking water in Yangtze River Delta 
has become particularly crucial. As a major economic center in 
China, the drinking water safety in Yangtze River Delta directly 
affects the health of more than 20 million residents [24]. Ensuring 
the purity and safety of drinking water is not only an important 
measure to protect public health but also a key to maintaining 
regional economic stability and development.

In this study, a total of 49 drinking water samples were collected 
from Yangtze River Delta. The aims of the study were to (1) 
comprehensively investigate the occurrence and concentrations 
of legacy and novel PFASs in drinking water samples through 
the combination of target and suspect analyses; (2) identify the 
potential sources of PFAS in drinking water of Yangtze River 
Delta by analyzing the contamination profiles of PFAS in drinking 
water, surface water adjacent to potential industrial emission 
sources in the local area, the Taihu Basin, and the Yangtze River; 
(3) prioritize and risk assessment of identified PFASs according 
to their potential hazard effects and environmental exposure. 
The findings of our study would provide valuable insights into 
the prevalence of PFASs in drinking water from Yangtze River 
Delta and the associated exposure risks among the general public.

Materials and Methods
Chemicals and Standards
Authentic standards of 68 target PFASs along with their 13 
corresponding internal standards were purchased from Wellington 
Laboratories Inc. (Guelph, Ontario, Canada) for target analysis, 
and detailed information of these PFASs is provided in the 
Supporting In-formation (Table S1). The mixed standard solution 
and the mixed internal standard solution were prepared separately 
in methanol at 100 μg/L and stored at −20 ◦C. The ultrapure 
water was generated by a Milli Q system (18.2 Ω, TOC < 5 ppm, 
Merck, New South Wales, Australia) and HPLC grade methanol 
and acetonitrile were purchased from Sigma-Aldrich (New South 
Wales, Australia). Besides, all the other reagents (e.g. ammonium 
hydroxide, ammonium acetate) were purchased with HPLC grade 
from reliable suppliers. 

Samples Collections and Pretreatment
Samples were collected in August 2023. A total of 49 water 
samples were obtained from Yangtze River Delta, including 5 
source water samples, 24 treated water samples, and 20 tap water 
samples. High-density polyethylene (HDPE) bottles (1L) and their 
caps were pre-rinsed using methanol (MeOH) and HPLC-grade 
water, then dried before use. Tap water samples were collected 
using the following procedure: operators wore laboratory nitrile 
gloves during sample collection, the tap water was allowed to flow 
for approximately 3 minutes, and the HDPE bottles were rinsed 
three times with tap water from the site before being filled. The 
collected water samples were stored at 4°C and extracted within 
48 hours using the routine solid-phase extraction (SPE) method.

Before extraction, 100ml water samples were added 0.925g 
ammonium acetate (adjust PH to 6.8-7) and spiked with the 
internal standard solutions (20 μL of 100 μg/L each) before SPE. 
The extraction of water samples was performed by Oasis WAX 
Cartridges (150 mg, 6 mL, Waters). Briefly, the cartridges were 
preconditioned by 5 ml of 0.1%NH4OH in methanol, 5 mL of 
methanol and 10 mL of Milli-Q water in sequence, then the water 
samples were passed through the cartridges at a flow rate of 
approximately 5-10 mL/min. After sample loading, the cartridges 
were rinsed by 5mL 25mmol/L ammonium acetate solution and 
10mL ultra-pure water and then dried under vacuum for about 
15min. The WAX cartridges were hereafter eluted by 2mL of 
methanol and 4 mL of 0.1%NH4OH in methanol in succession. 
The eluents were nearly dried under a gentle stream of nitrogen 
and re-dissolved with 200ul 60% methanol aqueous solution. After 
vortex mixing, the sample were centrifuged at a rotating speed of 
16000 RCF for 3min. Then, the supernatants were collected into 
the sample bottle for analysis. 
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Instrumental Analysis
Target and suspect screening of the water samples was performed 
using an Agilent 1290 Infinity II LC system coupled with an 
Orbitrap ExplorisTM 240 Mass Spectrometer (Thermo Scientific, 
San Jose, CA, USA) with electrospray ionization (ESI)source. 
Samples (5 μL) were injected onto an Agilent Infinity Lab 
Poroshell 120 EC-C18 analytical column (3.0 × 150 mm × 2.7 μm) 
with the column oven temperature set at 40 °C. Data acquisition 
was operated in negative ionization mode, utilizing both full scan 
(150−1500 Da) and data- dependent MS2 (ddMS2) scans to ensure 
comprehensive feature collection. The detailed parameters of 
chromatography and mass spectrometry parameters can be found 
in the Supporting Information (Text S1).

PFAS Screening Workflow
The suspect screening process (Figure 1) was conducted in 
accordance with our previous research [13]. An in-house library 
was established using 68 reference standards. This library was 
utilized for target screening and the development of a machine 
learning-based retention time (RT) prediction model. We collected 
four lists for suspect screening, including PFASSTRUCT v5 

(14,735 PFASs, 785 cationic PFASs, as of August 2022) and 
PFASMASTER (12,043 PFASs, 817 cationic PFASs, as of 
August 2021) from the US EPA CompTox Chemistry Dashboard, 
FluoroMatch v3.3 (7,206 PFASs, 493 cationic PFASs, accessed 
in September 2023), and “Suspect List of Possible PFAS” v1.7 
(PFAS-Nist, 4,967 PFASs, 539 cationic PFASs, DOI: 10.18434/
mds2-2387, January 2023). These lists were compiled to build 
a comprehensive database, which was then screened using 
Compound Discoverer 3.3 (Thermo Scientific, USA). Key criteria 
for feature filtering in raw data included precise m/z values (<5 
ppm), intensity >5 times the intensity in the extraction blank, IPs 
(fit threshold >70%, allowable intensity deviation <30%, and 
mass deviation <5 ppm), predicted retention time (<1.5 min), and 
identification of at least one characteristic fragment ion (<10 ppm). 
For structural confirmation, the formula-assigned features from 
suspect screening were further annotated by manual interpreting 
their fragment ions or comparing their MS2 spectra with literature. 
Positive identification required at least one characteristic fragment 
could be explained. The proposed structures were assigned three 
confidence levels (CL) based on criteria established in Charbonnet 
et al.’s study [38].

Figure 1: (a)Workflow for Target, Suspect Screening of PFAS and Prioritization and (b) Proposed Structures of PFAS Identified by 
the Target, Suspect Screening

Semi-Quantification of Suspect PFASs
In our study, a neural network model was developed to semi-quantify 10 PFASs without authentic standards by predicting their 
response factors (RFs), which are the slopes of the linear regression lines in the calibration curves. The RF prediction model was 
constructed using 68 reference standards. A molecular descriptor set containing 3,874 descriptors was generated from the 2D structures 
(canonical SMILES from PubChem) of these standards using alvaDesc v2.0. The RFs and molecular descriptor set of all 68 standards 
were randomly divided into training and test sets in an 8:2 ratio for model training. The neural network algorithm, implemented in 
the Optuna mode (mljar-supervised v1.0, Python package), was employed to automatically tune the machine learning parameters. 
Over 5,000 models were generated with various parameters, and the model with the best RMSE was selected as the
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optimized model. Using this optimized model, RFs for 10 PFASs 
without authentic standards were then predicted. 

Quality Assurance/Quality Control (QA/QC)
A 100mL volume of ultrapure water, spiked with the same internal 
standard solutions as the water samples, was used as a procedural 
blank to evaluate potential contamination during the extraction 
and analysis processes for each batch. The method LOD and LOQ 
values for 47 PFASs were detailed in the Supporting Information 
(Table S2). The calibration curves for each target compound 
exhibited high correlation coefficients (r² > 0.99) (Table S2). 
Additionally, during the instrumental analysis, a standard mixture 
solution and methanol were sequentially injected following every 
six samples to act as calibration standards and blanks for data 
acquisition.

Molecular Docking
Results from animal experiments, in vitro tests, and epidemiological 
studies suggested that some PFASs can disrupt the endocrine 
system, interfering with the secretion of sex hormones and thyroid 
hormones, and impacting normal reproductive ability, the nervous 
system, and immune function [39-43]. Receptor mediation is 
the primary mechanism by which compounds exert endocrine-
disrupting activity [39]. Therefore, to assess the endocrine- 
disrupting effects of PFASs, six human hormone receptors (thyroid 
hormone receptors alpha (TRα, PDB ID: 3jzb) and beta (TRβ, 
PDB ID: 3gws), estrogen receptors alpha (ERα, PDB ID: 1ere) 
and beta (ERβ, PDB ID: 5toa), androgen receptor (AR, PDB ID: 
3l3x) and peroxisome proliferators-activated receptors(PPARα, 
PDB ID:3vi8)) were selected for the receptor-ligand docking 
study. Molecular docking simulations were conducted using Biovia 
Discovery Studio 2021 software. The specific processes were 
referred to in our previous research [13]. The Libdock scores 
were utilized to assess the binding affinity between the compound 
and the active site of the receptor, with higher scores indicating 
stronger affinity.

Prioritization and Risk Ranking of Identified PFASs
To prioritize the identified PFASs and pinpoint those of high concern, 
we utilized a prioritization approach that integrated data from 
multiple dimensions, including compounds properties, ecological 
and health hazards, and environmental exposure. This approach 
was based on the research by Hu et al., with some modifications 
[12]. There were three steps in our method: (1) Firstly, we used 
quantitative structure-activity relationship (QSAR) models and 
molecular docking to predict the PBT properties of PFASs (Table 
S5, S6). Based on these PBT properties, we calculated the ToxPi 
score for each PFAS using the ToxPi GUI software (Equation 
(1)); (2) Secondly, we evaluated the exposure to compounds from 
two aspects: detection frequency and concentration, as outlined 
in Equation (2) (3) (4); (3) Ultimately, we calculated the risk 
index (RI) for each PFAS by combining its ToxPi score with the 
normalized exposure value through multiplication(Eq. (5)) (Table 
S7) [30]. To further identify the compounds of high concern, we 
selected the Maximum Contaminant Level (MCL) standard set 
by the EPA for PFOS and PFOA, which is 4 ng/L, as a reference 
dose for risk assessment of the identified PFASs.  
Toxpi scorei =Wp P+ WbB+ WtT	                            (1)
Magnitude = (Ci −Cmin) / (Cmax – Cmin)	              (2)
Exposure =DF ×Magnitude	                            (3)
Exposurenormalized = (Exposurei −Exposuremin ) / (Exposuremax 
−Exposuremin)	                                                         (4)
RI =ToxPi Score ×Exposurenormalized	              (5)

Data Analysis
Targeted and suspect analyses were performed using Trace Finder 
5.0 software (Thermo Fisher Scientific, 2021, Waltham, MA, 
USA) and Compound Discoverer 3.3 software (Thermo Fisher 
Scientific, 2021, Waltham, MA, USA), respectively. The principal 
component analysis was conducted using SIMCA 17 software 
(Sartorius Stedim Data Analytics 2021, Umeå, Sweden).

Results and Discussion
Concentrations and Compositions of PFASs in Drinking Water
After preprocessing the raw data, we generated 414,397 peaks. 
Using suspect screening with blank subtraction and a retention 
time versus m/z filter, we identified 475 possible positive hits. 
Following the removal of duplicates and poorly shaped peaks, 
88 peaks were selected for MS/MS spectra annotation. Through 
further structural elucidation based on diagnostic fragments, we 
ultimately identified 30 PFAS in the drinking water from Shanghai. 
Among these 30 PFAS, 12 legacy PFASs and 7 novel PFASs were 
confirmed using authentic standards.

These 30 PFASs could be divided into 11 categories:(1)perfluoro 
carboxylic acid (PFCAs), (2)perfluoro sulfonic acid (PFSAs), 
(3)perfluoroalkyl dioic acids (PFdiOAs), (4)hydrogenated 
PFCAs (H-PFCAs), (5)hydrogenated PFSAs (H-PFSAs), (6)
polyfluoroalkyl ether carboxylic acid(PFECAs), (7)fluorotelomer 
sulfonic acids (FTSAs), (8)chlorinated polyfluoroalkyl ether 
sulfonates (Cl-PFESAs), (9)hydrogenated polyfluoroalkyl ether 
sulfonates (H-PFESAs), (10)perfluoroalkyl sulfonamide(PFSMs), 
(11) HNTf2. 

PFCAs and PFSAs: By employing both targeted and suspect 
screening approaches, a total of 10 PFCA homologues (C3−C12) 
and 6 PFSA homologues (C3-C8) were identified. 14 of them were 
confirmed by authentic standards based on exact mass, retention 
time, and MS/MS spectra (level 1a). PFPrA and PFPrS were 
assigned to level 2b. In the MS/MS spectra of PFCAs, the neutral 
loss of CO2 (m/z 43.98983) and the fragments [CnF2n+1]− were 
commonly detected. The structures of PFSAs were determined 
using characteristic fragments such as m/z 79.95736 [SO3]

−, m/z 
82.96085 [SO2F]−, m/z 98.95577 [SO3F]−, and [CnF2n+1]

−. Among 
all the legacy PFASs identified, the maximum concentrations, in 
descending order, are as follows:
PFHxA (48.92 ng/L) > PFBA (44.83 ng/L) > PFOA (37.22 ng/L) 
> PFBS (26.77 ng/L) >  PFPeA (8.75 ng/L) > PFHpA (8.42 ng/L) 
> PFNA (7.59 ng/L) > PFPrA (6.45 ng/L) > PFOS (6.10 ng/L) > 
PFPrS (5.32 ng/L) > PFDeA (4.40 ng/L) > PFHxS (3.73 ng/L) > 
PFUdA (2.25 ng/L) > PFPeS (0.16 ng/L) > PFHpS (0.14 ng/L) 
> PFDoA (0.09 ng/L) (Table 1). PFHxA and PFBS exhibited 
the highest detection frequencies and were detected in all water 
samples. The concentrations of PFOA and PFOS in drinking water 
of Shanghai remained lower than current Chinese Standards for 
drinking water (PFOA:80ng/L, PFOS:40 ng/L), but above the 
MCL set by U.S. EPA (PFOA:4ng/L, PFOS:4ng/L) [22].
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Table 1: Structure of PFAS Identified at Level 3 or Above
Category Structure/Proposed 

Structure
Acronym N CL DF Max

(ng/L)
PFCAs PFPrA n 3 2b 63.27% 6.45

PFBA 4 1 95.92% 44.83
PFPeA 5 1 87.76% 8.75
PFHxA 6 1 100.00% 48.92
PFHpA 7 1 91.84% 8.42

PFOA 8 1 97.96% 37.22
PFNA 9 1 89.80% 7.59
PFDeA 10 1 79.59% 4.40
PFUdA 11 1 57.14% 2.25
PFDoA 12 1 51.02% 0.09

PFSAs PFPrS n 3 2b 69.39% 5.32
PFBS 4 1 100.00% 26.77
PFPeS 5 1 79.59% 0.16
PFHxS 6 1 91.84% 3.73
PFHpS 7 1 59.18% 0.14
PFOS 8 1 67.35% 6.10

PFdiOAs PFGdiA n 5 1 46.94% 1.51

H-PFCAs HPFLCA_i n=4 n 4 3a 87.76% 0.03
HPFLCA_i n=5 5 3a 77.55% 0.01
HPFLCA_i n=6 6 3a 18.37% 0.00

H-PFSAs HPFLSA_i n=4 n 4 2a 87.76% 7.42

PFECAs PFMOAA
PFMPA

HFPO-DA

n 3
4
6

2a
2a
1

10.20%
4.08%
79.59%

0.43
0.81
3.20

FTSAs 4:2 FTSA n 6 1 20.41% 0.75

6:2 FTSA 8 1 83.67% 8.17

Cl-PFESAs 6:2 Cl-PFESA n 8 1 10.20% 0.18

HPFESA_i n=4 n 4 2a 12.24% 0.24
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PFSM-FSAA n 6 2b 24.49% 5.11

HNTf2 n 2 2b 87.76% 15.02

CL: Indicates the Confidence Level; Max: the Maximum Concentration; DF: Detection Frequency

PFdiOAs: One PFdiOA homologues (C5) were identified through 
suspect screening. In the MS/MS spectrum of this homologous 
series, a neutral loss of 108 Da, equivalent to the loss of (CO2)2HF, 
was observed. Additionally, fragments [C3F5]− was detected in the 
spectrum (Fig S12). PFGdiA was detected in nearly half of the 
samples (DF=0.46), and its maximum concentration was semi-
quantitatively determined to be 1.5 ng/L. PFdiOA homologues 
(C9- C15) were found in airborne particulate matter and serum 
samples in China [14,15]. At present, PFdiOA has not been 
reported in drinking water. Currently, specific studies on the 
toxicity of PFdiOA are relatively scarce, and more research is 
needed to determine its effects on health and the environment.

H-PFCAs and H-PFSAs: We tentatively identified 3 
H-PFCAs(C4-C6) and 1H-PFSAs (C4) through suspect screening. 
The structures of H-PFCAs were identified using the predominant 
fragments [M−CO2−HF]−, which indicate neutral losses of CO2 
and HF. The identification of H-PFSAs structures was based 
on the characteristic fragments of m/z 79.95736 [SO3]−, m/z 
82.96085 [SO2F]−, m/z 98.95577 [SO3F]−, as well as fragments 
[CnF2n-1]−(Fig S2,S3,S5,S6).

Among the four compounds, HPFLSA_i n=4 had the highest 
detection frequency and concentration (DF=0.87, max=7.42ng/L), 
followed	by HPFLCA_in=4(DF=0.87, max=0.03ng/L), HPFLCA_i 
n=5(DF=0.77, max=0.01ng/L), HPFLCA_i n=6(DF=0.20, 
max=0.01ng/L). At present, H-PFCAs and H-PFSAs have been 
detected in various environmental media, including land landfill 
leachate, rainwater, surface water and airborne particulate matter 
[10,13,14,44].

PFECAs: A total of 3 PFECAs(C3,4,6) were identified in our 
study. HFPO-DA were confirmed by authentic standards (level 
1a), and other 2 PFECAs were identified as level 2a. For this 
homologue series, neutral loss of CO2 (m/z 43.98983) and 
fragments [CnF2n+1O]− were observed in the MS/MS spectrum (Fig 
S1). For these compounds, HFPO-DA had the highest detection 
frequency and concentration (DF=0.79, max=3.20ng/L), followed 
by PFMOAA (DF=0.10, max=0.43ng/L), PFMPA (DF=0.04, 
max=0.81ng/L). HFPO-DA has been extensively utilized as 
a replacement for PFOA in various applications, including as 
processing aid in fluoropolymer production and precursor for 
the synthesis of other fluorochemical compounds[45,46]. A study 
compared the developmental toxicity of HFPO-DA and PFOA 
found that they had different effects on zebrafish embryonic 
development, indicating distinct modes of action. Additionally, 
HFPO-DA exposure specifically affected lipid metabolism, the 
HPT axis, and neurodevelopment, suggested that HFPO-DA may 
not be a safe alternative to PFOA [45]. 

FTSAs: Two FTSAs, 6:2 FTSA and 4:2 FTSA, were identified 
through target screening. The characteristic fragments of this 
homologue series were m/z 79.95736 [SO3]

−, m/z 82.96085 [SO2F]- 
and [M-HF]- were observed in the MS/MS spectrum (Fig S8). 6:2 

FTSA was detected in approximately 80% of the water samples, 
with the highest concentration reaching 8.17ng/L. 4:2 FTSA had a 
detection frequency of 0.2 and a maximum concentration of 0.75 
ng/L. 6:2 FTSA, as a replacement for PFOS, has been found to 
cause immunotoxicity in zebrafish embryos and hepatotoxicity in 
male mice according to studies [47,48]. These findings highlight 
the need for further investigation into the safety of 6:2 FTSA. 

Cl-PFESAs: We identified one Cl-PFESAs (C8) by authentic 
standards in water samples. Structures of 6:2 Cl-PFESA was 
confirmed by fragments m/z 79.95736 [SO3]

-, m/z 82.96085 
[SO2F]- and [C6ClF12O]- (Fig S10). 6:2 Cl-PFESA was detected 
in 5 water samples (DF=0.1), with the highest concentration 
reaching 0.18 ng/L. 6:2 Cl-PFESA, as a substitute for PFOS, is 
widely used in multiple fields as a common fluorinated surfactant. 
Previous toxicological studies have indicated that 6:2 Cl-PFESA 
exhibits hepatotoxicity and endocrine toxicity, and its toxicity may 
be comparable to or even greater than that of PFOS [16,17,49]. 

H-PFESAs: One H-PFESA (C4) was confirmed by suspect 
screening and assigned to level 2a. The characteristic fragments 
of 2:2 PFESA were m/z 79.95736 [SO3]

−, m/z 82.96085 [SO2F]−

[C2F3O]- [C2HF4O]- (Fig S13). HPFESA_i n=4 had a detection 
frequency of 0.12 and a maximum concentration of 0.75 ng/L.

PFSMs: One PFSM(C6) was identified by suspect screening. 
4 characteristic fragments, including m/z 79.95736 [SO3]

−, m/z 
82.96085 [SO2F]−, [C4H9]

-, [C4HF9NO2S]–, were observed in the 
MS/MS spectrum of FBSAA and assigned to level 2b (Fig S7). 
PFSMs have many derivatives. It derivatives and homologues 
were previously detected in wastewater, landfill leachate, and 
surface water [12,13,50]. FBSAA was detected in approximately 
24% of the water samples, with the highest concentration reaching 
5.11ng/L.

HNTf2: The HNTf2 was identified by suspect screening and 
assigned to level 2b. Structures of HNTf2 were confirmed by 
3 fragments m/z 79.95736 [SO3]

-, m/z 82.96085 [SO2F]- and 
[CF3SO2N]- (Fig S4). It was detected in surface water in Beijing, 
drinking water and landfill leachate in Shanghai [12,13,24]. 
This compound was widely used as reagents, efficient catalysts 
or additives in numerous reactions and was categorized as a 
dangerous chemical of Category 3 due to relatively notable acute 
toxicity in administered rats [12,51].

HNTf2 had the highest concentration among all emerging PFAS, 
with a detection frequency of 0.87 and a maximum concentration 
of 15.02 ng/L. However, there is a lack of comprehensive studies 
on their toxicity.

In our study, there are three limitations: (1) we only used Oasis 
WAX cartridge to extract PFAS in water samples, and some PFASs 
not retained by Oasis WAX cartridge could not be analysed. 
(2) For mass spectrometry analysis, we only selected the ESI(-) 
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ionization mode, which may result in our results only including 
anionic PFAS and zwitterionic PFAS. (3) during the pre-treatment 
process, we found that some PFAS with 14-16 carbon atoms had 
low recovery rates (<10%), likely due to significant adsorption 
on the tube walls caused by their low polarity, which could affect 
the detection of certain long-chain PFAS.

Contamination Profiles Analysis
PFASs in drink water could originate from different pathways. 
To further identify the potential sources of PFAS contamination 
in drinking water from Yangtze River Delta, we collected data 
on the concentrations and types of PFASs in the Yangtze River, 
the Huangpu River, and surface waters adjacent to potential 
industrial emissions around Yangtze River Delta to conduct profile 
analysis[36, 37]. The PCA results indicated that the profiles of 
our drinking water samples were completely separated from that 
of the surface water near Shanghai airport, fluorochemical plants, 
and metal plating factories, suggesting significant differences in 
profiles. In contrast, the profiles of our drinking water samples 
were overlapping with that of the surface water from the Yangtze 
River and the Huangpu River (Figure 2). This suggested that the 
main source of PFASs contamination in drinking water from 
Yangtze River Delta is more likely to be from upstream discharges 
into the Yangtze River rather than local industrial emissions. 

Figure 2: PCA Analysis of PFAS Profiles in Surface Water from 
Different Sources
 
SW: source water; FW: factory water; TW: tap water samples; 
IA: international airport; Mi: industrial fluorochemical plant, Mp: 
metal plating plant; YR Yangtze River; HPR: Huangpu River;

Among all the 30 identified PFASs, two novel PFAS, 6:2FTSA 
and HNTf2, had been reported in landfill leachate of Shanghai 
[13]. Notably, the concentration of 6:2FTSA reached as high as 
69.2 ng/ml, suggesting that municipal waste management might 
be another significant source of novel PFAS in drinking water 
from Yangtze River Delta.

Prioritization and Risk Assessment of Identified PFASs
To prioritize the identified PFASs and pinpoint those of high 
concern, we utilized a risk-based prioritization approach based 
on the research by Hu et al, with some modifications. Multiple 
hazard attributes were incorporated in our model, including 
persistence, bioaccumulation, ecotoxicological effects, human 
health effects, molecular docking scores, detection frequencies and 
concentrations [12]. By integrating these multi-dimensional data, 
our model provided a comprehensive assessment of the potential 
environmental and health risks associated with the compounds, 
helping to prioritize those requiring immediate attention and 
regulatory action. A total of based on PBT properties and molecular 
docking scores. The ToxPi scores of the 30 identified PFASs 
ranged from 0.09 to 0.85(Figure 3a), with PFDoA having the 

highest score, followed by PFUdA, PFDeA, and PFNA, all of 
which have higherscores than the traditional PFOA and PFOS. 
Generally, PFASs with longer carbon chains tend to have higher 
ToxPi scores. Among all the emerging PFASs, 6:2 Cl-PFESA 
has the highest ToxPi score (0.66), falling between the scores 
of PFOS (0.70) and PFOA (0.63). 6:2 Cl-PFESA, a proposed 
safe alternative for PFOS, may cause liver damage and induce 
lipid metabolism disorders in female mice through the action of 
PPAR-γ. Previous studies documented that the hepatotoxicity of 
PFOS and 6:2 Cl-PFESA appears to be higher than that of PFOA 
Previous studies documented that the hepatotoxicity of PFOS and 
6:2 Cl-PFESA were higher than PFOA [52,53]. This indicated that 
we need to be mindful of the potential health and environmental 
hazards posed by these substitutes.

For persistence, the top 10 PFASs with the highest scores were 
PFDoA, 6:2 Cl-PFESA, PFUdA, PFOS, PFDeA, PFHpS, PFNA, 
6:2 FTSA, PFHxS, PFOA (Table S7). Higher persistence scores 
indicated that these compounds were less biodegradable in the 
environment and might pose long-term risks to environmental and 
human health. There were a total of eight PFASs with persistence 
scores higher than PFOS and PFOA. Notably, the two substitutes for 
PFOS, 6:2 FTSA and 6:2 Cl-PFESA, had high persistence scores. 
Among them, 6:2 Cl-PFESA ranked second in persistence scores, 
even surpassing its predecessor, PFOS. For bioaccumulation, we 
selected logKow and BAF as the key attributes to evaluate the 
accumulation potential and associated risks of compounds within 
organisms. Among all the identified PFASs, the ones with the 
higher bioaccumulation potential were PFDoA, PFUdA, PFDeA, 
PFNA, and 6:2 Cl-PFESA. These compounds exhibited higher 
bioaccumulation than both PFOA and PFOS (Table S7). In terms 
of ecotoxicity, the PFASs with the higher toxicity scores were 
also PFDoA, PFUdA, PFDeA, PFNA, and 6:2 Cl-PFESA. We 
evaluated the human health effects of the compounds from five 
aspects: carcinogenicity, developmental toxicity, mutagenicity, 
skin sensitization, oral LD50 in rats and endocrine toxicity. The 
PFASs with the highest comprehensive score, in order, were 
PFHxS, PFPrS, PFHpS, HPFESA_i n=4, PFOS, 4:2 FTSA, 
HPFLSA_i n=4, PFOA(Table S7). We found 11 PFASs with 
possible carcinogenicity, 2 PFASs with potential developmental 
toxicity and 5 PFASs with potential skin sensitization (Table S6). 
Based on the molecular docking scores with six receptors, the 
compounds with the highest total scores were PFNA, HPFLCA_i 
n=4, HFPO- DA, PFDeA, HPFESA_i n=4, PFOS, and PFOA. 
The results indicated that some emerging PFASs exhibited higher 
affinity to receptors than PFOA and PFOS (Table S7). Additionally, 
we found that some long-chain PFASs, such as PFDoA, PFUdA, 
and PFDeA, had lower docking scores compared to PFNA, likely 
due to limitations imposed by their molecular size.  

Based on the measured detection frequency and concentrations, 
we utilized toxpi scores to calculate the RIs, which represented 
a synthesized assessment for prioritizing chemicals based on 
potential health risks. The RIs ranged from 0-0.54 for 30 PFASs 
in water samples (Figure 3b). PFOA had the highest RI, followed 
by PFHxA, PFBS and PFBA. We found that some long- chain 
PFAS, such as PFDoA(Toxpi scores=0.85, DF=0.51,max=0.09 
ng/L), PFUdA(Toxpi scores=0.77, DF=0.57,max=2.25 ng/L), 
exhibited higher ToxPi scores and posed significant environmental 
and health hazards, their RIs were not high when considering 
both detection  frequencies and concentrations. Conversely, 
some short-chain PFAS, such as PFBA (Toxpi scores=0.17, 
DF=0.96, max=44.83ng/L) and PFBS (Toxpi scores=0.33, 
DF=1, max=26.77ng/L), despite had lower ToxPi scores, showed 
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higher health risks due to their higher detection frequencies and 
concentrations (Table S7). To further identify the compounds 
of high concern, we selected the Maximum Contaminant Level 
(MCL) standard set by the EPA for PFOS and PFOA, which is 
4 ng/L, as a reference dose for risk assessment of the identified 
PFASs. A total of 10 high-risk PFASs were identified through 
our method, including 8 legacy PFASs and 2 emerging PFASs. 
Of these, PFOA had the highest RI (RI=0.46), indicating it poses 
the highest risk. PFOA was closely followed by PFHxA, PFBS 
and PFBA, suggesting that we need to be aware of the health risks 
posed by these short-chain PFAS. HNTf2 and 6:2 FTSA were 
the two emerging PFASs with the high risk. In the future, more 
researches on their toxicity are necessary (Figure 3b).

Figure 3: (a)ToxPi scores (b)risk index of 30 PFAS identified and 
quantified in drinking water from Yangtze River Delta

Conclusion
In this study, target and suspect screening analysis using UPLC-
Orbitrap HRMS was implemented to identify the occurrence and 
concentrations of legacy PFASs and novel PFASs in drinking 
water from Yangtze River Delta. A total of 30 PFASs with high 
confidence levels (>3) were identified through both target and 
suspect screening, including 16 legacy PFASs and 14 novel 
PFASs. By utilizing the ToxPi framework and RIs, we evaluated 
and prioritized the risks of identified PFAS in drinking water by 
integrating various data. A total of ten high concerns PFASs were 
identified through our method. Currently, legacy PFASs were 
the largest contributors to PFASs in drinking water of Yangtze 
River Delta, accounting for up to 83% of ΣPFASs, while the 
concentrations of emerging PFAS were relatively low. However, 
with some countries and organizations implementing regulations 
to ban the use of certain legacy PFASs, many companies are 
developing new alternatives of PFASs and producing novel 
PFASs. This could result in increased concentrations of emerging 
PFAS in drinking water in the future. Therefore, more researches 
are essential to comprehensively identify and monitor various 
emerging PFAS in drinking water and evaluate their potential 
health and environmental hazards.
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