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Introduction
Overlapping coefficients are used to determine similarity between 
two populations. If we want to make comparative inferences about 
two populations, we will look at what are called measures of 
similarity or measures of dissimilarity. In fact, when we discuss 
this type of measure, we should pay attention to the overlapping 
(OVL) coefficients. Therefore, OVL coefficients are measure 
of agreement or similarity between two probability statistical 
distributions.

There are five main measures of OVL, which are: Matusita (ρ), 
Morisita  (λ) , Pianka (PI), Kullback –Leibler (KL) and Weitzman 
(∆) coefficients. They are defined as follows: 
Assuming f1(x) and f2 (x) are continuous probability density 
functions, the five OVL coefficients are:

1. Matusita coefficient (1955):

2. Morsita coefficient (1959 ):

3. Pianka coefficient (Chaubey et al., 2008):

4. Kullback-Leibler coefficient (Dhaker et al., 2019) 

5. Weitzman coefficient (1970):

The Weitzman coefficient ∆ is a widely used and more clearly 
defined than the other coefficients, which represents the area of 
intersection between two probability density functions [1-3]. Our 
interest in this paper is only the Weitzman coefficient ∆. The main 
objective is to estimate ∆ assuming two Weibull distributions 
and without using any restrictions on the parameters of these 
distributions. If the value of any of the above five coefficients is 
1 (i.e. OVL=1) then f1 (x) = f2 (x).  If OVL=0, then the supports of 
the two densities f1 (x) and f2 (x) have no interior points.

Overlap measures are applied in different areas like, genetic 
ecology income reliability analysis and goodness of fit test [4-9].
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Weibull Distribution and OVL Coefficients
The Weibull distribution is a continuous probability density 
function. This distribution attracted the interest of statisticians 
due to its advantages such as its flexibility to model data sets in 
many fields of applied statistics, like, lifetime data, economics 
and business administration data, engineering studies data and 
wind power data [10,11]. Let X  be a continuous random variable 
that follows a Weibull distribution with a scale parameter α and 
a shape parameter β then the pdf of X is, 

This will be denoted by X ~ We(α,β). Some well-known 
statistical distributions are special cases of We(α,β), including 
the exponential distribution, which is obtained if β=1, and the 
Rayleigh distribution, which is obtained if β = 2  and α=√2σ [30]. 
Let X~W(α1,β1) and Y~W(α2, β2) where X and Y are independent 
random variables. Assume that β1 = β2 = 1, the OVL coefficients λ, 
ρ and ∆  were studied by who also studied the effect of sampling 
plan on these OVL coefficients. Under the assumption, β1= β2 = β, 
the coefficients λ, ρ and ∆  were studied by while the coefficients 
PI and KL were studied by [12-15]. Finally, without using any 
assumptions on the parameters of Weibull distributions, were 
concerned with the coefficients λ and ρ, while the study by Eidous 
and focused on the coefficient ∆. In the last both studies, the 
numerical integration approximation method was used to study 
the various coefficients [16,17]. 

There are researches that have studied OVL coefficients under 
statistical distributions other than Weibull distributions. considered 
the case of normal distributions [18-21]. 

Helu and investigated the OVL coefficients of Lomax distributions 
with different sampling procedures. Parametric methods for 
estimating the confidence interval for Δ have been studied by Wang 
and who also proposed methods for estimating the confidence 
interval for Δ undera variety of distributions, including the normal 
distribution [22,23].

There are also some nonparametric studies that were concerned 
with studying OVL coefficients, which can be found in the 
literature. These studies do not assume any specific statistical 
distributions for the phenomenon under study. See for example, 
Schmid and [24-28]. 

Main Results
Let X1,X2,…, Xn1  be a random sample from W(α1,β1), and let 
Y1,Y2,…,Yn2 be another random sample from W(α2,β2), where the 
two samples are independent. If β1= β2= β, let  ᾶ, α, and β are the 
maximum likelihood estimators (MLEs) of α ,  α, β respectively. 
If there is no restriction about the distribution’s parameters, let 
α1, α2, β1 and β 2 are the MLEs of α1,α2, β1and β2 [29].

To estimate the Weitzman Coefficient Δ based on these two random 
samples, we first express the coefficient ∆ as follows:

To simplify the notations, let f1 (X) = W(α1,β1) and f2 (X) = W(α2, 
β2). Consider min{f1 (X), f2 (X)}/ f1 (X) as a function of X and 
min{f1 (Y), f2 (Y)}/ f2 (Y) as a function of Y. Now,

and

Also, Δ  can be expressed as follows,

                                and                            then

can be estimated by using the method of moments as given below,

Also,                                                             can be estimated by,

The average of the last two estimators can be considered as the 
third estimator for Δ, which is given by,

Note that if we assume that β1 = β2 = β then                                                            

                                                                 The performances of 
these three estimators are investigated in a preliminary simulation 
study. The results show that the performance of    (last version) 
is more stable than the first two versions. 

Simulations
A simulation study is conducted to compare the performances of 
the proposed estimator Δ ̂ (last version in the previous section) of 
Δ with some existing counterparts that developed in the literature. 
In particular, the nonparametric kernel estimator is considered 
for this purpose, which is denoted by Δ k. It is important to note 
that the kernel estimator is a general estimator, which does not 
require any assumptions about the shape of the underlying sample 
distribution 
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To cover most possible cases in practical applications, the two 
independent samples x1, x2,…,xn1 and y1, y2,…, y n2 are simulated 
from 12 pairs of Weibull distributions. From these pairs, four pairs 
with the same scale parameters (i.e. α1 = α2), four pairs with the 
same shape parameters (i.e. β1 = β2) and four pairs with different 
scale parameters and different shape parameters were selected. 
Although these choices seem arbitrary, the goal was to allow the 
exact overlapping coefficient values to vary from small (near 0) to 
large (near 1). In Tables (1)-(3), the parameter values are shown 
along with the exact value of Δ for each pair. To study the effect 
of sample sizes on the behavior of each estimator, for following 
ample sizes were taken (n1, n2 ) = (10,10),(20,30),(30,30), 
(50,50),(100,200).

Numerical results were calculated based on a thousand iterations 
(R=1000) using Mathematica, Version 7. For each estimator, we 
calculated the Relative Bias (RB), Relative Root Mean Square 
Error (RRMSE) and Efficiency (EFF), which can be defined as 
follows,

and

Note that if Δ is the estimator of Δ and if  Δ  is the value of Δ 
computed based on a sample of iteration  j, j=1,2,…,R=1000 then

and

Note also that the kernel estimator requires specifying two 
quantities, the first is the kernel function, which took the standard 
normal function, and the other quantity is the smoothing parameter, 
which is calculated using the rule,

1.06 S n-1/5

where S is the usual standard deviation for the interested sample. 
It is worth noting here that there are other ways to calculate 
the smoothing parameter [30]. However, we found that the 
performance of the kernel estimator using the above rule is very 
acceptable.

Simulation Results
All computations and outputs of the simulation study are presented 
in Tables (1-3). From these simulation results, we can conclude 
the following:

It is obvious that |RB|s that are associated with the kernel estimator 
Δ ̂_k are large compared with other the proposed estimator, 
especially for small samples sizes. Most RBs values of the kernel 
estimates are negative, which indicates that -on the average- the 
kernel estimates underestimate the true value of the corresponding 
coefficient. It appears that the problem of underestimate is a 
problem associated with the kernel estimates, even in other fields 
such as line transect method  and degradation methods [31-35].

The values |RB|s of the different proposed estimate are much 
smaller than that of the kernel estimate for almost all considered 
cases. 

As the samples sizes increase the RRMSE of the two estimators 
decrease. This is a good sign for the consistency of the estimators 
that considered in this study.

The values of RRMSEs and consequently the values of EFFs for 
the proposed estimate for different cases indicate that it performs 
better than the kernel estimate. 

The proposed estimator Δ performs very well even when the 
data are simulated from pair Weibull distributions with equal 
scale or with equal shape parameter. By taking into account that 
Δ  is developed without any assumption on the shape of pair 
distributions, its performance is acceptable but not as that of the 
proposed one Δ ̂. However, we expect that Δ may be perform 
better than Δ ̂ if the underlying data distribution is not Weibull. 

Table 1: The RB, RRMSE and EFF of the estimators ∆ , and Δ when the data are simulated from pair Weibull distributions 
with equal scale parameters (α1= α2=1)

∆exact= 0.8678
(β1, β2) = (3,4)

∆exact=0.6774
(β1, β2) = (3,6.2)

(n1,n2)
RB -0.2744 -0.0608 -0.3009 0.0184

RRMSE 0.2967 0.1271 0.3190 0.1228
EFF 1.0000 2.3346 1.0000 2.5976
RB -0.2016 -0.0319 -0.2018 -0.0249

RRMSE 0.2160 0.0753 0.2407 0.1172
EFF 1.0000 2.8661 1.0000 2.0543
RB -0.1086 0.0006 -0.0560 0.0139

RRMSE 0.1122 0.0503 0.0827 0.0608
EFF 1.0000 2.2285 1.0000 1.3587
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∆exact= 0.4880
(β1, β2) = (3, 10.3)

∆exact = 0.2979
(β1,β2 ) = (3,20.4)

(20, 30) RB -0.4367 -0.0795 -0.5952 -0.0374
RRMSE 0.4609 0.1449 0.6324 0.2506

EFF 1.0000 3.1809 1.0000 2.5232
(50, 50) RB -0.3203 -0.0366 -0.5012 -0.0488

RRMSE 0.3418 0.1060 0.5250 0.1264
EFF 1.0000 3.2245 1.0000 4.1518

(100,200) RB -0.0707 0.0138 -0.1991 0.0103
RRMSE 0.1084 0.0796 0.2314 0.0824

EFF 1.0000 1.3620 1.0000 2.8073

Table 2: The RB, RRMSE and EFF of the estimators ∆  and     when the data are simulated from pair Weibull distributions 
with equal scale parameters ( β1= β2  = 3).

∆exact= 0.8012
(α1,α2) = (1,1.2)

∆ exact = 0.5783
(α_1,α_2)=(1,1.5)

(n1,n2)
(20, 30) RB -0.2269 -0.0538 -0.2052 -0.0894

RRMSE 0.2526 0.1264 0.2494 0.1540
EFF 1.0000 1.9990 1.0000 1.6192

(50, 50) RB -0.1382 -0.0449 -0.0874 -0.0301
RRMSE 0.1622 0.1192 0.1543 0.1156

EFF 1.0000 1.3610 1.0000 1.3355
(100,200) RB -0.0723 -0.0109 -0.0420 -0.0201

RRMSE 0.0893 0.0526 0.0956 0.0815
EFF 1.0000 1.6964 1.0000 1.1737

(20, 30) RB -0.1293 -0.0021 -0.2503 -0.0477
RRMSE 0.2810 0.2494 0.5722 0.5193

EFF 1.0000 1.1266 1.0000 1.1020
(50, 50) RB -0.0762 -0.0127 -0.1459 0.0125

RRMSE 0.2004 0.1571 0.4373 0.3976
EFF 1.0000 1.2748 1.0000 1.0998

(100,200) RB -0.0428 -0.0043 -0.0989 -0.0461
RRMSE 0.1013 0.0875 0.3231 0.2938

EFF 1.0000 1.1576 1.0000 1.0997

Table 3: The RB, RRMSE and EFF of the three estimators ∆ , and Δ when the data are simulated from pair Weibull distributions 
with different scale and different shape parameters

∆exact=0.8672 
(α1, α2) = (1,1.2)
(β1, β2 ) = (2,1.8)

∆exact = 0.6243
(α_1,α_2)=(1,1.5)
(β1, β2 ) = (3,1.9)

( n1, n2)
(20, 30) RB -0.2387 -0.1015 -0.1796 -0.0220

RRMSE 0.2728 0.1694 0.2498 0.1408
EFF 1.0000 1.6103 1.0000 1.7732

(50, 50) RB -0.0925 -0.0006 -0.1167 -0.0353
RRMSE 0.1157 0.0673 0.1497 0.1136

EFF 1.0000 1.7187 1.0000 1.3176
(100,200) RB -0.0450 -0.0120 -0.0617 -0.0254

RRMSE 0.0644 0.0583 0.0898 0.0658
EFF 1.0000 1.1049 1.0000 1.3653
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∆exact=0.4370
(α1, α2) = (1,1.8)
(β1, β2 ) = (4,2.1)

∆exact = 1646
(α_1,α_2)=(1,3)
(β_1,β_2 )=(6,2)

(20, 30) RB -0.2465 -0.0254 -0.3618 0.0263
RRMSE 0.3257 0.1981 0.4706 0.3359

EFF 1.0000 1.6443 1.0000 1.4007
(50, 50) RB -0.1510 -0.0271 -0.2848 0.0067

RRMSE 0.2250 0.1668 0.3588 0.2153
EFF 1.0000 1.3488 1.0000 1.6659

(100,200) RB -0.0779 -0.0064 -0.2040 -0.0339
RRMSE 0.1234 0.0802 0.2339 0.1239

EFF 1.0000 1.5384 1.0000 1.8881
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