Journal of Physical Mathematics & its Applications

Review Article

Open d Access

On Resolvability of Graphs Associated with Vector Spaces

Gopinath S1*, Mageshwaran K2 and Kalaimurugan G3

¹Department of Mathematics, Koneru Lakshmaiah Education Foundation, Vaddeshwaram, India

²Department of Mathematics, Rajalakshmi Engineering College, Chennai, Tamil Nadu, India

³Department of Mathematics, Thiruvalluvar University, Vellore, Tamil Nadu, India

ABSTRACT

Let \mathbb{V} be a *n*-dimensional vector space over the field F with a basis $\mathfrak{B} = \{\alpha_1, \alpha_2, ..., \alpha_n\}$. In this paper, we obtain the resolving parameters like metric dimension and partition dimension of graphs associated with vector space. Also, found the values of metric-locating-domination number, locating-domination number, and bipartite decomposition of kind of graph associated with vector space.

*Corresponding author

Gopinath S, Department of Mathematics, Koneru Lakshmaiah Education Foundation, Vaddeshwaram, 522502 (AP), India.

Received: January 23, 2024; Accepted: January 25, 2024; Published: March 07, 2024

Keywords: Vector Space, Finite Dimensional, Resolving Set, Metric Dimension, Partition Dimension, Nonzero Component Union Graph, Linear Dependence

2000 Mathematics Subject Classification: 05C10, 05C25, 05C75

Introduction

Let \mathbb{F} be a finite dimensional vector space over the field \mathbb{F} with with $\mathfrak{B} = \alpha_1, \alpha_2, ..., \alpha_n$ as a basis. Any vector $v \in \mathbb{V}$ can be expressed uniquely as a linear combination $v = a_1\alpha_1 + a_2\alpha_2 + ... + a_n\alpha_n$ where $a_i \in \mathbb{F}$ and the same is denoted by $v = (a_1, a_2, ..., a_n)$. The skeleton of $v \in \mathbb{V} \setminus \{0\}$ with respect to \mathfrak{B} is defined as $S_{\mathfrak{B}}(v) = \{\alpha_i : a_i \neq 0, i = 1, 2, ..., n\}$

The non-zero component union graph $\Gamma(\mathbb{V}_{\mathfrak{B}}) of \mathbb{V}$ respect to \mathfrak{B} is the simple graph with vertex set $V = \mathbb{V} \setminus 0$ and two distinct non-zero vectors $u, v \in V$ are adjacent if and only if $S_{\mathfrak{B}}(u) \cup S_{\mathfrak{B}}(v) = \mathfrak{B}$ g. This graph is introduced and studied by A Das in [1], in [2] the author's found the Topological indices of non-zero component union graph and in [3] The author's produce the result related to the genus of non-zero component union graphs of vector spaces. Also, he constructed nonzero component graph of finite dimensional vector space in [4] and resolving properties of nonzero component graph are obtained by U Ali in [5].

S Maity and AK Bhuniya was defined and studied the linear dependent graph of vector space, whose vertex set is \mathbb{V} and edge set is defined as two vertices are adjacent if and only if they are linearly dependent [6]. The linear dependent graph of vector space is denoted by $\Gamma(\mathbb{V})$.In [6], the completeness, diameter, independent number, clique number, chromatic, Eulerian, vertex connectivity and edge connectivity of linear dependent graph of vector space are studied.

A graph G = (V, E) be a simple graph with non-empty vertex set Vand edge set E. The number of elements in V is called order of Gand the number of elements in E is called the size of G. A graph G is said to be complete if any pair of distinct vertices is adjacent in G. we denote the complete graph of order n by K_n . One point union of n copies of a graph G is defined as all the vertices in *n* copies of graph G is adjacent to new vertex and it is denoted by G^n A graph G is bipartite if the vertex V can be partitioned into two disjoint subsets with no pair of vertices in one subset is adjacent. A star graph is a bipartite graph with any one of the partitions containing a single vertex and the same is called as the center of the star graph. A graph G is connected if there exists a path between every pair of distinct vertices in G. The degree of the vertex $v \in V$, denoted by d(v), is the number of edges in G which are incident with v A graph G is said to be r-regular if the degree of all the vertices in G is r. The diameter of a connected graph is supreme of shortest distance between vertices in G and is denoted by diam(G). The girth of G is defined as length of the shortest cycle in G and is denoted by gr(G) If G contains no cycles then, $gr(G) = \infty$. A walk in a graph G is a finite non-null sequence

 $W = v_0 e_1 v_1 e_2 \dots e_k v_k$, whose terms are alternatively vertices and edges, such that, for $1 \le i \le k$ and ends of e_i are v_i-1 and v_i . The walk W is said to be a trial if the edges e_1, \dots, e_k of the walk W are distinct. Further if vertices v_0, v_1, \dots, v_k are also distinct, then W is called a path. The distance between two vertices $u, v \in V$ is the length of a shortest path between them and it is denoted by d(u, v) Given a vertex u in a graph G, the open neighborhood of u in G is the set { $v \in V | d(u, v) = 1$ } and it is denoted by N(u). The closed neighborhood of u in G denoted by N[u]is the set{ $v \in V | d(u, v) = 1$ } $\cup u$. For two vertices u and v in a graph G, denoted by N[u] is the set { $v \in V | d(u, v) = 1$ } $\cup u$. For two vertices u and v in a graph G, denoted by N[u] is the set { $v \in V | d(u, v) = 1$ } $\cup u$. For two vertices u and v in a graph G, define $u \equiv v$ if N[u] = N[v] or N[u] = N[v]. Equivalently, $u \equiv v$ if and only if $N(u) \setminus \{u\} = N(v) \setminus \{u\}$. The relation \equiv is an equivalence relation (see[10]). If $u \equiv v$, then u and v are called twins. The set of vertices is called a twin-set if any two of its vertices are twins.

A set $W \subset V$ is a resolving set if for each pair of distinct vertices $u, v \in V$ there is a vertex $w \in W$ such that $d(u, w) \neq d(v, w)$. A resolving set containing a minimum number of vertices is called a minimum

Citation: Gopinath S, Mageshwaran K, Kalaimurugan G (2024) On Resolvability of Graphs Associated with Vector Spaces. Journal of Physical Mathematics & its Applications. SRC/JPMA-115. DOI: doi.org/10.47363/JPMA/2024(2)111

resolving set or a basis for *G*. The cardinality of a minimum resolving set is called the resolving number or dimension of *G* and is denoted by *diam* (G). A resolving set *W* is said to be a star resolving set if it induces a star, and a path resolving set if it induces a path. The minimum cardinality of these sets is called the star resolving number and path resolving number its denoted respectively by sr(G) and pr(G) A subset $T \in V$ and a vertex *v* of *G*, the distance d(v, T) between *v* and *T* is defined as

 $d(v, T) = min\{d(v, x) | x \in T\}$. For an ordered k-partition

 $\Pi = \{T_1, T_2, ..., T_k\} \text{ of } V \text{ and a vertex } v \in V, \text{ the representation of } v \text{ with respect to } \Pi \text{ is defined as } k \text{-vectors } r(v \mid \Pi) = (d(v, T_1), d(v, T_2), ..., d(v, T_i)).$ The partition Π is called a resolving partition if the k-vectors $r(v \mid \Pi), v \in V$, are distinct. The minimum k for which there is a resolving k-partition of V is the partition dimension pd(G) of G.

A subset *D* of *V* is called dominating set if any vertex in $V \setminus D$ is adjacent with at least one vertex in *D*. The minimum cardinality of *D* is called domination number and it is denoted by $\gamma(G)$ The observation rules are as follows

1. Any vertex that is incident to an edge is observed.

2. Any edge joining two vertices is observed.

3. If a vertex is incident to a total of k > 1 edges and if k - 1 of these edges are observed

Then all k of these edges is observed. A set S to be a power dominating set of a graph if every vertex and every edge in the system is observed by the set S. The power domination number $\gamma_p(G)$ of a graph G is the minimum cardinality of a power dominating set of graphs G. A set of vertices of G is called a metric-locating-dominating set for G if it is resolving and dominating. The metric-locating-dominating number, denoted by mld_G is the minimum cardinality of a metric-locating-dominating set of G. a metric-location-dominating set L is called locatingdominating set if $N(u) \cap L \neq N(v) \cap L$ for every two vertices $v, u \in V \setminus L$ The locating-domination number, denoted by ldG, is

the minimum cardinality of a locating-dominating set of G. a graph G is said to be embedded in a surface S if G can be drawn in S such that edges intersect only at vertices of G. The genus of graph G is denoted by g (G), is the minimum integer n such that the graph can be embedded in S_n , where S_n denotes the sphere with n handles. For undefined terms in graph theory, we refer [7].

We list out certain existing results which will be referred in this paper.

Theorem 1.1

([1, Theorem 4.2]) Let \mathbb{V} be an *n* – dimensional vector space over a finite field \mathbb{F} with q elements. Then $\Gamma(\mathbb{V}_{\mathfrak{B}})$ is complete if and only if \mathbb{V} is one-dimensional and $|\mathbb{F}|=2$.

Lemma 1.2

([8, PP. 341]) Suppose u, v are twins in a connected graph Γ and W resolves Γ . Then, u or v is in W. Moreover, if $u \in W$ and $v \notin W$, then $(W \setminus \{u\}) \cup \{v\}$ also resolves Γ .

Lemma 1.3

([9, Lemma 2.2.]) Let Π be resolving partition of the vertex set V and $u, v \in V$. *if* d(u, w) = d(v, w) for all $v \in V\{u, v\}$, then u and v belong to different classes of Π .

Theorem 1.4

([6, Theorem 2.4]) The domination number of $\Gamma(\mathbb{V})$ is 1.

Lemma 1.5

([10, Theorem 6.38]) $g(k_n) = \left\lceil \frac{(n-3)(n-4)}{12} \right\rceil$ if $n \ge 3$. In particular $g(K_n) = 1$ if n = 5, 6, 7.

Lemma 1.6

([11, Lemma 1]) if G_1, G_2 and G are connected graphs such that $G = G_1 \cup G_2 = v$ (*a vertex of G*), then $g(G) \le g(G_1) + g(G_2)$

Lemma 1.7

([11, Lemma 2]) if is a connected graph having a subgraph G_1 and a block G_2 such that $G = G_1 \cup G_2 = V(a \text{ vertex of } G)$, then $g(G) \ge g(G_1) + g(G_2)$.

Metric Dimension of $\Gamma(\mathbb{V}_{B})$

In this section, we found the values of resolving number, metriclocating-domination number, locating-domination number of non-zero component union graph vector space $\Gamma(\mathbb{V}_{\infty})$

Lemma 2.1: The equivalence relations = are \cong same in $\Gamma(\mathbb{V}_{\mathfrak{P}})$.

Proof

Let $u, v \in \mathbb{V}_{\mathfrak{B}}$ with $u \cong v$. Then, $S_u = S_v$. Hence any vertex *w* is adjacent to *u* in $\Gamma(\mathbb{V}_{\mathfrak{B}})$ if and only if *w* is adjacent to *v*. Since,

 $S_u \cup S_w = S_v \cup S_w = \mathfrak{B}$. Conversely, Let $u \equiv v$. Then,

 $N(u) \setminus \{v\} = N(v) \setminus \{u\}$. We have to show that Suppose, we assume that $S_u \neq S_v$, exit some $\alpha_i \in S_u$ with $\alpha_i \in S_v$. Now consider the vertex *w* with $S_w = \mathfrak{B} \setminus S_u$. *If*_{*w*} = consider the vertex *w* with S_w is adjacent to *u* but not *v*. Otherwise, *w* is adjacent to *u* but not *v*. The above two cases we get contradiction. Hence $S_u = S_v$.

Lemma 2.2

Let \mathbb{V} be an $n \ge 2$ dimensional vector space over the field \mathbb{F} of order 2 with the basis $\mathfrak{B} = \{\alpha_1, \alpha_2, ..., \alpha_n\}$ and $X = \{v_i : 1 \le i \le n\}$ where $S_{(v_i)} = \mathfrak{B} \setminus \{\alpha_i\}$. Then $X \setminus \{v_k\}$ is contained in any resolving set of $\Gamma(\mathbb{V}_{\mathfrak{B}})$. Also $X \setminus \{v_k\}$ is not a resolving set.

Proof

For q = 2, a twin-set C_v is of length 1 for every element of \mathbb{V} Let *W* is resolving set of $\Gamma() X = \{v \le i \le n\}$ where

 $S_{(vi)} = \mathfrak{B} \setminus \{\alpha_i\}$ and v be the vertex whose skeleton is $S_v = \alpha_1, \alpha_2, \dots, \alpha_n$,

i.e. $v=\alpha_1+\alpha_2+...+\alpha_n$. Suppose any two elements v_i and v_j in X is not in W. Then (α_i, α_j) has no resolving element in W. Since, (α_i, α_j) is resolved by either v_i or v_j and $N(\alpha_i) = v_i$. Which is a contradiction. Hence $X \setminus \{v_k\}$ is contained in any resolving set. Also $X \setminus \{v_k\}$ is not a resolving set, since there is no resolving element of

 (v, v_k) *inX* $\setminus \{v_k\}$ for some $v_k \in X$

Theorem 2.3

Let n,q be integers. Let \mathbb{V} be an *n* dimensional vector space over the field \mathbb{F} with *q* elements. We have the following

1. If n = 1 then $dim_{\Gamma(\mathbb{V}_{\mathfrak{B}})} = q - 1$.

2. If q=2 and $n \ge 2$, then $\dim_{\Gamma(\mathbb{V}_m)} = n$.

3. If
$$q \ge 2$$
 and $n \ge 2$ then $\dim_{\Gamma(\mathbb{V}_{2})} = \sum_{k=1}^{n} \binom{n}{k} ((q-1)k-1).$

Proof

1). By Theorem 1.1 $\Gamma(\mathbb{V}_{\mathfrak{B}})$ is complete graph of order q-1. Hence, $\dim \Gamma(\mathbb{V}_{\mathfrak{B}}) = q$ -1.

2).For q=2, a twin-set C_v is of length 1 for every element v if \mathbb{V} Let $X = \{v_i : 1 \le i \le n\}$ where $S_{(v_i)} = \mathfrak{B} \setminus \{\alpha_i\}$. Now every two elements from $\Gamma(\mathbb{V}_{\mathfrak{B}})$ is resolved by some $v_k \in X$. By Lemma 2.2 **Citation:** Gopinath S, Mageshwaran K, Kalaimurugan G (2024) On Resolvability of Graphs Associated with Vector Spaces. Journal of Physical Mathematics & its Applications. SRC/JPMA-115. DOI: doi.org/10.47363/JPMA/2024(2)111

 $\dim_{\Gamma(\mathbb{V}_n)} \ge n$. Hence, we conclude that X is minimum resolving

set of $\Gamma(\mathbb{V}_{\mathfrak{B}})$ and $\dim_{\Gamma(\mathbb{V}_{\mathfrak{B}})} = n$.

3). For q>2, a twin-set C_v is of minimum length 2 for every element v of V. By Lemma 1.2, a resolving set must contain all vertices, except one, in every twin set C_v . For fixed $k(1 \le k \le n)$ there are

 $\binom{n}{k}$ distinct twin sets and each twin sets have $(q-1)^k$ elements.

Since *q*-1 choices and *k* places. Hence any resolving set in $\Gamma(\mathbb{V}_{\mathfrak{B}})$

must contain at least $\sum_{k=1}^{n} \binom{n}{k} ((q-1)^{k} - 1)$ elements. By Lemma

1.2 resolving set *W* contains $Y = \{v_i : S_{(vi)} = \mathfrak{B} \setminus \{\alpha_i\}\}$ for some

 $a_i \in \mathbb{F}$. Since, any two vertices with different skeleton is resolved

by some
$$v_i \in Y$$
. Therefore $\dim_{\Gamma(\mathbb{V}_{2k})} = \sum_{k=1}^n \binom{n}{k} ((q-1)k-1).$

Let n,q be integers. Let \mathbb{V} be an *n* dimensional vector space over the field \mathbb{F} with *q* elements. We have the following

1. If n = 1 then $ld_{\Gamma(\mathbb{V}_{\mathfrak{R}})} = q-1$

2. If
$$q = 2$$
 and $n \ge 2$, then ld () n

3. If
$$q > 2$$
 and $n \ge 2$ $ld_{\Gamma(\mathbb{V}_{3})} = \sum_{k=1}^{n} \binom{n}{k} ((q-1)k-1).$

Proof

1). By first part of Theorem 2.3 and Theorem 1.1 we get $ld_{T(V_m)} = q - 1$.

2). Let *X* as defined in the second part of the proof in theorem 2.3 is minimum resolving set and also every element of $\Gamma(\mathbb{V}_{\infty})$ is adjacent to at least one element in *c*. Hence is also a dominating

set so $ld_{\Gamma(\mathbb{V}_{\mathfrak{B}})} = n$.

(3). Let as defined in the third part of proof of the theorem 2.3 is dominating set. Since, every element of $\Gamma(\mathbb{V}_{\mathfrak{B}})$ is adjacent to at least one element in *Y*. Hence, $Id_{\Gamma(\mathbb{V}_{\mathfrak{B}})} = \sum_{i=1}^{n} \binom{n}{k} ((q-1)k-1)$.

By definition of metric dimension, metric-locating-dominating set and locating-dominating set we observe that $\dim_G \le mld_G \le ld_G$. This relation proves the following corollary.

Corollary 2.5

Let n,q be integers. Let \mathbb{V} be an *n* dimensional vector space over the field \mathbb{F} with *q* elements. We have the following

(1) If
$$n=1$$
, then $mld_{\Gamma(\mathbb{V}_n)} = q-1$.

(2) If
$$q - 2$$
 and, then $mld_{\Gamma(\mathbb{V}_n)} = n$

(3) If
$$q > 2$$
 and $n > 2$, then $mld_{\Gamma(\mathbb{V}_{2k})} = \sum_{k=1}^{n} \binom{n}{k} ((q-1)k-1).$

Theorem 2.6

Let $n \ge 3$, $q \ge 2$ be integers. Let \mathbb{V} be an *n* dimensional vector space over the field \mathbb{F} with *q* elements then,

 $pd_{\Gamma(\mathbb{V}_{\mathfrak{B}})} = n + (q+1)n.$

Proof

By Lemma 1.3 vertices form one twin-set is present in different partition of any resolving partition. The largest twin-set in v is skeleton of the vertices is \mathfrak{B} and cardinality of the set is $(q+1)^n$. Thus $pd_{r(v_n)} \ge (q+1)n$. Consider the partition $\pi = \{\{v_i\}, \{v_2\}, \dots, \{v_n\}, P_i, P_2, \dots, P_{(q+1)n}\}$ where $v_i = \sum_{j \ne i} \alpha_j$ and each P_i contains exactly one vertex v from the twin-set of vertices having the skeleton 2All other vertices of $\Gamma(\mathbb{V}_m)$ is distributed using Lemma 1.3. Further, any two vertices from the same class of Π can be resolved by some v_i . Thus, Π is a resolving partition and $pd_{\Gamma(\mathbb{V}_{B})} \leq n + (q+1)n$. Next, we have to prove that $pd_{\Gamma(\mathbb{V}_{\mathfrak{B}})} \ge n + (q+1)n$. Let $\Pi = \{A_1, A_2, ..., A_n, P_1, P_2, ..., P_{(q+1)}n\}$ be resolving partition. $pd_{r(\mathbb{V}_n)} \ge (q+1)n$, one need to show that $n' \ge n$. Suppose any $v_i \in P_j$ with $1 \le i \le n$ and $1 \le j \le (q+1)^n$. Then there exists one element $u \in P_i$ with $S_u = \mathfrak{B}$. Now we have $r(u \mid \Pi) = r(v_i \mid \Pi)$ which is a contradiction to fact that Π is resolving partition. Suppose V and V are in same partition we get $r(v_i | \Pi) = r(v_k | \Pi)$ which is a contradiction. Hence each v_i in distinct partition other then P_i . Hence $n' \ge n$ this proves the theorem.

Decomposition of $\Gamma(\mathbb{V}_{\mathbf{B}})$

A decomposition of a graph G is a collection of edge-disjoint subgraphs H_1, H_2, \dots, H_i of G belongs to exactly one H_i . For in this section we produce the results related to possible decomposition of $\Gamma(\mathbb{V}_{p_0})$.

Theorem 3.1

Let $n \ge 1$, $q \ge 1$ be integers. Let \mathbb{V} be an n dimensional vector space over the field \mathbb{F} with q elements then, $\Gamma(\mathbb{V}_{s})$ is decomposed into complete bipartite graphs.

Proof

Consider the partition of *V* is $V_i = \{v \in V : |S_v| = i\}$ where $1 \le i \le n$. Now consider the following three cases,

Case 1

This case we characterize all the edges inside each V_i where $1 \le i \le n-1$

Subcase i

For
$$1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor$$
 each element in V_i has no edge relation inside V_i .

Subcase ii

For $\left\lceil \frac{n}{2} \right\rceil \le i \le n-1$, now each V_i has $\binom{n}{i}$ twin sets with each twin set have q-1 elements. Elements of each twin set has adjacent to every element in $\binom{i}{n-i}$ twin sets. Hence every twin set form the

$$\binom{i}{n-i}$$
 times $K_{(q-1)^i, (q-1)^i}$. Therefore inside V_i is decomposed into

$$\frac{\binom{n}{i}\binom{i}{n-i}}{2} \quad \text{times} \ K_{(q-1)^{i}, (q-1)^{i}}.$$

Case 2

This case we characterize all the edges outside each V_i where

$$\left[\frac{n}{2}\right] \le i \le n-1$$
. Since there is edge relation between V_i for $1 \le i \le \frac{n}{2}$

Sub Case i

Suppose *n* is odd, let $1 \le i \le \left\lceil \frac{n}{2} \right\rceil$ each vertex in V_i is center of

star graph with $\sum_{k=0}^{n-i-1} (q-1)^i$ Pendent vertices. Hence, all the edges outside V_i is decomposed into $\bigcup_{i=\left\lceil\frac{n}{2}\right\rceil}^{n-1} (q-1)^i S \sum_{k=1}^{n-i-1} {i \choose k} (q-1)^i$

Sub Case ii

Suppose *n* is even, let $1 \le i \le \frac{n}{2} - 1$ each vertex in V_i is center of star graph with pendent $\sum_{k=0}^{n-i-1} (q-1)^i$ vertices. Hence, all the edges outside are decomposed into $\bigcup_{i=\left[\frac{n}{2}\right]}^{n-1}(q-1)^{i}S\sum_{k=1}^{n-i-1}\binom{i}{k}(q-1)^{i}$

Case 3

Let i = n every element in V is adjacent to all other all elements in \mathbb{V} . Since, all the above cases all the edges are decomposed into union of $(q-1)^n$ star graph with each of order $(q^n-1)^n$

Hence, $\Gamma(\mathbb{V}_{\mathfrak{B}})$ is decomposed into complete bipartite graphs.

Results on $\Gamma(\mathbb{V})$

In this section, we found the structure of $\Gamma(\mathbb{V})$ and genus of linear dependent graph of vector space. Also, we found the power domination number of $\Gamma(\mathbb{V})$.

Theorem 4.1: $\Gamma(\mathbb{V})$ is isomorphic to $K_{q-1}^{q^{n-1}+q^{n-2}+\ldots+1}$

Proof

We observe that 0 is adjacent to all the vertices of $\Gamma(\mathbb{V})$. Each one-dimensional subspace of V form a complete subgraph of $\Gamma(\mathbb{V})$. Also is in every subspace of \mathbb{V} . Since total number of one-dimensional subspaces of \mathbb{V} is $q^{n-1} + q^{n-2} + ... + 1$. Therefore $\Gamma(\mathbb{V})$ is one point union of $q^{n-1} + q^{n-2} + ... + 1$ copies complete graph of order *q*-1. Hence $\Gamma(\mathbb{V})$ is isomorphic to $K_{q-1}^{q^{n-1}+q^{n-2}+\ldots+1}$.

Note that the eccentricity of $0 \in \Gamma(\mathbb{V})$ is 1 and the eccentricity of nonzero element of $\Gamma(\mathbb{V})$ is 2. By Theorem 4.1 we have the following theorems.

Corollary 4.2: $\Gamma(\mathbb{V})$ is decomposed into star and complete graph.

By the observation 1 in [2] is any graph $G_{1} \leq \gamma_{n}(G) \leq \gamma(G)$ and by Theorem 1.4, we have the following theorem.

Theorem 4.3: Power domination number $\gamma_p(\Gamma(\mathbb{V}))$ is 1.

Theorem 4.4: Radius of the graph $\Gamma(\mathbb{V})$ is 1.

Theorem 4.5:
$$g(\Gamma(\mathbb{V})) = (q^{n-1} + q^{n-2} + ... + 1) \left[\frac{(q-3)(q-4)}{12}\right]$$

Proof

By Theorem 4.1 $\Gamma(\mathbb{V})$ is $K_{q-1}^{q^{n-1}+q^{n-2}+\ldots+1}$. Let $G_1 = K_q$ (elements of \mathbb{V} generated by single element some $v \in \mathbb{V}$) and

$$G_2 = K_{q^{-1}}^{q^{n-1}+q^{n-2}+\ldots+2}$$
. Hence we get $\Gamma(\mathbb{V}) = G_1 \cup G_2$ and $G_1 \cap G_2 = \emptyset$

then
$$g(\Gamma(\mathbb{V})) \leq g(G_1) + g(G_2)$$
. By theorem 1.5 $g(G_1) = \left\lceil \frac{(q-3)(q-4)}{12} \right\rceil$

and $g(\Gamma(\mathbb{V})) \leq \left\lceil \frac{(q-3)(q-4)}{12} \right\rceil + g(G_2)$. Now to find $g(G_2)$ Let $H_1 = Kq$ and $H_2 = K_{q-1}^{(q^{n-1}+q^{n-2}+\ldots+1)-2}$ Hence we get $G_2 = H_1 \cup H_2$ and $H_1 \cap H_2 = \emptyset$ then $g(G_2) \le g(H_1) + g(H_2)$. By Theorem 1.3, $g(H_1) = \left\lceil \frac{(q-3)(q-4)}{12} \right\rceil$ and $g(\Gamma(\mathbb{V})) \leq 2 \left\lceil \frac{(q-3)(q-4)}{12} \right\rceil + g(H_2)$. Now find g(H2) continuing this process up to $q^{n-1} + q^{n-2} + \ldots + 1$ we get $g(\Gamma(\mathbb{V})) \leq (q^{n-1} + q^{n-2} + \ldots + 1) \left[\frac{(q-3)(q-4)}{12} \right]$ Similarly, we can prove $g(\Gamma(\mathbb{V})) \ge (q^{n-1} + q^{n-2} + ... + 1) \left\lceil \frac{(q-3)(q-4)}{12} \right\rceil$ by using lemma 1.7. $g(\Gamma(\mathbb{V})) = (q^{n-1} + q^{n-2} + ... + 1) \left[\frac{(q-3)(q-4)}{12}\right]$

References

- Das A (2016) Non-zero component union graph of a finite-1. dimensional vector space. Linear and Multilinear Algebra 65: 1276-1287.
- 2. Mageshwaran K, Alessa N, Gopinath S, Loganathan K (2023) Topological Indices of Graphs from Vector Spaces. Mathematics 11: 1-13.
- Kalaimurugan G, Gopinath S, Tamizh Chelvam T (2021) 3. on the genus of non-zero component union graphs of vector spaces. Hacettepe J Math Stat 50: 1595-1608,
- 4. A Das (2016) Nonzero Component graph of a finite dimensional vector space. Commu Algebra 44: 3918-3926.
- 5. Alix U, Bokhary SA, Wahid K, Abbas G (2019) on resolvability of a graph associated to a finite vector space. J Algebra Appl 18: 1-10.
- Sushobhan Maity, Bhuniya AK (2019) On the spectrum of 6 linear dependence graph of a finite dimensional vector space. Electronic Journal of Graph Theory and Applications 7: 43-59.
- 7. Hernando C, Mora M, Pelaya IM, Seara C, Wood DR (2007) Extremal graph theraphy for metric dimension and diameter. Electron Notes Discrete Math 29: 339-343.
- Bondy JA, Murty USR (1986) Graph Theory with 8. Applications Elsevier. North Holland Amsterdam. https:// www.iro.umontreal.ca/~hahn/IFT3545/GTWA.pdf.
- 9. Battle J, Harary F, Kodama Y, Young JWT (1962) Additivity of the genus of a graph. Bull Amer Math Sot 68: 565-568.
- 10 Chartrand G, Salehi E, Zhang P (2000) The partition dimension of a graph. Aequ math 59: 45-54.
- Haynes TW, Hedetniemi SM, Hedetniemi ST, Henning 11. MA (2002) Domination in graphs applied to electric power networks. SIAM J Discrete Math 15: 519-529.
- 12. White AT (1973) Graphs Groups and Surfaces. North-Holland, Amsterdam https://adams.marmot.org/Record/.b17358693.

Copyright: ©2024 Gopinath S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.