Journal of Physical Mathematics \& its Applications

On Resolvability of Graphs Associated with Vector Spaces

Gopinath $S^{1 *}$, Mageshwaran K^{2} and Kalaimurugan G^{3}
${ }^{1}$ Department of Mathematics, Koneru Lakshmaiah Education Foundation, Vaddeshwaram, India
${ }^{2}$ Department of Mathematics, Rajalakshmi Engineering College, Chennai, Tamil Nadu, India
${ }^{3}$ Department of Mathematics, Thiruvalluvar University, Vellore, Tamil Nadu, India

Abstract

Let \mathbb{V} be a n-dimensional vector space over the field F with a basis $\mathfrak{B}=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$. In this paper, we obtain the resolving parameters like metric dimension and partition dimension of graphs associated with vector space. Also, found the values of metric-locating-domination number, locating-domination number, and bipartite decomposition of kind of graph associated with vector space.

*Corresponding author

Gopinath S, Department of Mathematics, Koneru Lakshmaiah Education Foundation, Vaddeshwaram, 522502 (AP), India.
Received: January 23, 2024; Accepted: January 25, 2024; Published: March 07, 2024

Keywords: Vector Space, Finite Dimensional, Resolving Set, Metric Dimension, Partition Dimension, Nonzero Component Union Graph, Linear Dependence

2000 Mathematics Subject Classification: 05C10, 05C25, 05C75

Introduction

Let \mathbb{F} be a finite dimensional vector space over the field \mathbb{F} with with $\mathfrak{B}=\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ as a basis. Any vector $v \in \mathbb{V}$ can be expressed uniquely as a linear combination $v=a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots+a_{n} \alpha_{n}$ where $a_{i} \in \mathbb{F}$ and the same is denoted by $v=\left(a_{1}, a_{2}, \ldots a_{n}\right)$. The skeleton of $v \in \mathbb{V} \backslash\{0\}$ with respect to \mathfrak{B} is defined as $S_{\mathfrak{B}}(v)=\left\{\alpha_{i}: a_{i} \neq 0, i=1,2, \ldots, n\right\}$

The non-zero component union graph $\Gamma\left(\mathbb{V}_{\mathfrak{B}}\right)$ of \mathbb{V} respect to \mathfrak{B} is the simple graph with vertex $\operatorname{set} V=\mathbb{V} \backslash 0$ and two distinct nonzero vectors $u, v \in V$ are adjacent if and only if $S_{\mathfrak{3}}(u) \cup S_{\mathfrak{3}}(v)=\mathfrak{B} \mathrm{g}$. This graph is introduced and studied by A Das in [1], in [2] the author's found the Topological indices of non-zero component union graph and in [3] The author's produce the result related to the genus of non-zero component union graphs of vector spaces. Also, he constructed nonzero component graph of finite dimensional vector space in [4] and resolving properties of nonzero component graph are obtained by U Ali in [5].

S Maity and AK Bhuniya was defined and studied the linear dependent graph of vector space, whose vertex set is \mathbb{V} and edge set is defined as two vertices are adjacent if and only if they are linearly dependent [6]. The linear dependent graph of vector space is denoted $\operatorname{by\Gamma }(\mathbb{V})$.In [6], the completeness, diameter, independent number, clique number, chromatic, Eulerian, vertex connectivity and edge connectivity of linear dependent graph of vector space are studied.

A graph $G=(V, E)$ be a simple graph with non-empty vertex set V and edge set E. The number of elements in V is called order of G and the number of elements in E is called the size of G. A graph

G is said to be complete if any pair of distinct vertices is adjacent in G. we denote the complete graph of order n by K_{n}. One point union of n copies of a graph G is defined as all the vertices in n copies of graph G is adjacent to new vertex and it is denoted by G^{n} A graph G is bipartite if the vertex V can be partitioned into two disjoint subsets with no pair of vertices in one subset is adjacent. A star graph is a bipartite graph with any one of the partitions containing a single vertex and the same is called as the center of the star graph. A graph G is connected if there exists a path between every pair of distinct vertices in G. The degree of the vertex $v \in V$, denoted by $d(v)$, is the number of edges in G which are incident with v A graph G is said to be r-regular if the degree of all the vertices in G is r. The diameter of a connected graph is supreme of shortest distance between vertices in G and is denoted by diam (G). The girth of G is defined as length of the shortest cycle in G and is denoted by $\operatorname{gr}(G)$ If G contains no cycles then, $\operatorname{gr}(G)=\infty$. A walk in a graph G is a finite non-null sequence
$W=v_{0} e_{1} v_{1} e_{2} \ldots e_{k} v_{k}$, whose terms are alternatively vertices and edges, such that, for $1 \leq i \leq k$ and ends of e_{i} are $v_{i}-1$ and v_{i}. The walk W is said to be a trial if the edges e_{1}, \ldots, e_{k} of the walk W are distinct. Further if vertices $v_{0}, v_{1}, \ldots, v_{k}$ are also distinct, then W is called a path. The distance between two vertices $u, v \in V$ is the length of a shortest path between them and it is denoted by $d(u, v)$ Given a vertex u in a graph G, the open neighborhood of u in G is the set $\{v \in V \mid d(u, v)=1\}$ and it is denoted by $N(u)$. The closed neighborhood of u in G denoted by $N[u]$ is the $\operatorname{set}\{v \in V \mid d(u, v)=1\} \cup u$. For two vertices u and v in a graph G, denoted by $\mathrm{N}[\mathrm{u}]$ is the set $\{v \in V \mid d(u, v)=1\} \cup u$. For two vertices u and v in a graph G, denoted by $N[u]$ is the set $\{v \in V \mid d(u, v)=1\} \cup u$. For two vertices u and v in a graph G, define $u \equiv v$ if $N[u]=N[v]$ or $N[u]=N[v]$. Equivalently, $u \equiv v$ if and only if $N(u) \backslash\{u\}=N(v) \backslash\{u\}$. The relation \equiv is an equivalence relation (see[10]). If $u \equiv v$, then u and v are called twins. The set of vertices is called a twin-set if any two of its vertices are twins.

A set $W \subset V$ is a resolving set if for each pair of distinct vertices $u, v \in V$ there is a vertex $w \in W$ such that $d(u, w) \neq d(v, w)$. A resolving set containing a minimum number of vertices is called a minimum
resolving set or a basis for G. The cardinality of a minimum resolving set is called the resolving number or dimension of G and is denoted by $\operatorname{diam}(\mathrm{G})$. A resolving set W is said to be a star resolving set if it induces a star, and a path resolving set if it induces a path. The minimum cardinality of these sets is called the star resolving number and path resolving number its denoted respectively by $\operatorname{sr}(G)$ and $\operatorname{pr}(G)$ A subset $T \in V$ and a vertex v of G, the distance $d(v, T)$ between v and T is defined as
$d(v, T)=\min \{d(v, x) \mid x \in T\}$. For an ordered k-partition
$\Pi=\left\{T_{1}, T_{2}, \ldots, T_{K}\right\}$ of V and a vertex $v \in V$, the representation of v with respect to Π is defined as k-vectors $r(v \mid \Pi)=\left(d\left(v, T_{1}\right), d\left(v, T_{2}\right), \ldots, d\left(v, T_{k}\right)\right)$. The partition $п$ is called a resolving partition if the k-vectors $r(v \backslash \Pi), v \in V$, are distinct. The minimum k for which there is a resolving k-partition of V is the partition dimension $p d(G)$ of G.

A subset D of V is called dominating set if any vertex in $\mathrm{V} \backslash \mathrm{D}$ is adjacent with at least one vertex in D. The minimum cardinality of D is called domination number and it is denoted by $\gamma(G)$ The observation rules are as follows

1. Any vertex that is incident to an edge is observed.
2. Any edge joining two vertices is observed.
3. If a vertex is incident to a total of $k>1$ edges and if $k-1$ of these edges are observed

Then all k of these edges is observed. A set S to be a power dominating set of a graph if every vertex and every edge in the system is observed by the set S . The power domination number $\gamma_{p}(G)$ of a graph G is the minimum cardinality of a power dominating set of graphs G. A set of vertices of G is called a metric-locating-dominating set for G if it is resolving and dominating. The metric-locating-dominating number, denoted by $m l d_{G}$, is the minimum cardinality of a metric-locating-dominating set of G. a metric-location-dominating set L is called locatingdominating set if $N(u) \cap L \neq N(v) \cap L$ for every two vertices $v, u \in V \backslash L$. The locating-domination number, denoted by $l d G$, is
the minimum cardinality of a locating-dominating set of G. a graph G is said to be embedded in a surface S if G can be drawn in S such that edges intersect only at vertices of G. The genus of graph G is denoted by $\mathrm{g}(G)$, is the minimum integer n such that the graph can be embedded in S_{n}, where S_{n} denotes the sphere with n handles. For undefined terms in graph theory, we refer [7].

We list out certain existing results which will be referred in this paper.

Theorem 1.1

([1, Theorem 4.2]) Let \mathbb{V} be an n-dimensional vector space over a finite field \mathbb{F} with q elements. Then $\Gamma\left(\mathbb{V}_{\mathfrak{z}}\right)$ is complete if and only if \mathbb{V} is one-dimensional and $|\mathbb{F}|=2$.

Lemma 1.2

([8, PP. 341]) Suppose u, v are twins in a connected graph Γ and W resolves Γ. Then, u or v is in W. Moreover, if $u \in W$ and $v \notin W$, then $(W \backslash\{u\}) \cup\{v\}$ also resolves Γ.

Lemma 1.3

([9, Lemma 2.2.]) Let Π be resolving partition of the vertex set V and $u, v \in V$.if $d(u, w)=d(v, w)$ for all $v \in V\{u, v\}$, then u and v belong to different classes of Π.

Theorem 1.4

([6, Theorem 2.4]) The domination number of $\Gamma(\mathbb{V})$ is 1 .

Lemma 1.5
$\left(\left[10\right.\right.$, Theorem 6.38]) $g\left(k_{n}\right)=\left\lceil\frac{(n-3)(n-4)}{12}\right\rceil$ if $\mathrm{n} \geq 3$. In particular $g\left(K_{n}\right)=1$ if $n=5,6,7$.

Lemma 1.6

([11, Lemma 1]) if G_{1}, G_{2} and G are connected graphs such that $G=G_{1} \cup G_{2}=v(a$ vertex of $G)$, then $g(G) \leqq g\left(G_{1}\right)+g\left(G_{2}\right)$

Lemma 1.7

([11, Lemma 2]) if is a connected graph having a subgraph G_{1} and a block G_{2} such that $G=G_{1} \cup G_{2}=V($ a vertex of $G)$, then

$g(G) \geqq g\left(G_{1}\right)+g\left(G_{2}\right)$.

Metric Dimension of $\boldsymbol{\Gamma}\left(\mathbb{V}_{\mathrm{B}}\right)$

In this section, we found the values of resolving number, metric-locating-domination number, locating-domination number of non-zero component union graph vector space $\Gamma\left(\mathbb{V}_{\mathfrak{B}}\right)$

Lemma 2.1: The equivalence relations \equiv are \cong same in $\Gamma\left(\mathbb{V}_{\mathfrak{B}}\right)$.

Proof

Let $u, v \in \mathbb{V}_{\mathfrak{B}}$ with $u \cong v$. Then, $S_{u}=S_{v}$. Hence any vertex w is adjacent to u in $\Gamma\left(\mathbb{V}_{\mathfrak{B}}\right)$ if and only if w is adjacent to v. Since,
$S_{u} \cup S_{w}=S_{v} \cup S_{w}=\mathfrak{B}$. Conversely, Let $u \equiv v$. Then,
$N(u) \backslash\{v\}=N(v) \backslash\{u\}$. We have to show that Suppose, we assume that $S_{u} \neq S_{v}$, exit some $\alpha_{i} \in S_{u}$ with $\alpha_{i} \in S_{v}$. Now consider the vertex w with $S_{w}=\mathfrak{B} \backslash S_{u}$. Ifw $=$ consider the vertex w with S_{w} is adjacent to u but not v. Otherwise, w is adjacent to u but not v. The above two cases we get contradiction. Hence $S_{u}=S_{v}$.

Lemma 2.2

Let \mathbb{V} be an $n \geq 2$ dimensional vector space over the field \mathbb{F} of order 2 with the basis $\mathfrak{B}=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$ and $X=\left\{v_{i}: 1 \leq i \leq n\right\}$ where $S_{(v,)}=\mathfrak{B} \backslash\left\{\alpha_{i}\right\}$. Then $X \backslash\left\{v_{k}\right\}$ is contained in any resolving set of $\Gamma\left(\mathbb{V}_{\mathfrak{B}}\right)$. Also $X \backslash\left\{v_{k}\right\}$ is not a resolving set.

Proof

For $\mathrm{q}=2$, a twin-set C_{v} is of length 1 for every element of \mathbb{V} Let W is resolving set of $\Gamma(\quad) X=\{v \leq i \leq n\}$ where
$S_{(i i)}=\mathfrak{B} \backslash\left\{\alpha_{i}\right\}$ and v be the vertex whose skeleton is $S_{v}=\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$, i.e. $v=\alpha_{1}+\alpha_{2}+\ldots+\alpha_{n}$. Suppose any two elements v_{i} and v_{j} in X is not in W. Then $\left(\alpha_{i}, \alpha_{j}\right)$ has no resolving element in W. Since, $\left(\alpha_{i}, \alpha_{j}\right)$ is resolved by either v_{i} or v_{j} and $\mathrm{N}\left(\alpha_{i}\right)=v_{i}$. Which is a contradiction. Hence $X \backslash\left\{v_{k}\right\}$ is contained in any resolving set. Also $X \backslash\left\{v_{k}\right\}$ is not a resolving set, since there is no resolving element of
$\left(v, v_{k}\right)$ in $X \backslash\left\{v_{k}\right\}$ for some $v_{k} \in X$

Theorem 2.3

Let n, q be integers. Let \mathbb{V} be an n dimensional vector space over the field \mathbb{F} with q elements. We have the following

1. If $\mathrm{n}=1$ then $\operatorname{dim}_{\mathrm{r}\left(\mathrm{V}_{\mathbf{z}}\right)}=q-1$.
2. If $q=2$ and $n \geq 2$, then $\operatorname{dim}_{\mathrm{r}\left(\mathrm{v}_{\mathrm{g}}\right)}=n$.
3. If $q>2$ and $n \geq 2$ then $\operatorname{dim}_{\mathrm{r}\left(\mathrm{v}_{3}\right)}=\sum_{k=1}^{n}\binom{n}{k}((q-1) k-1)$.

Proof
1). By Theorem $1.1 \Gamma\left(\mathbb{V}_{\mathfrak{B}}\right)$ is complete graph of order $q-1$. Hence, $\operatorname{dim} \Gamma\left(\mathbb{V}_{\mathfrak{B}}\right)=q-1$.
2). For $q=2$, a twin-set C_{v} is of length 1 for every element v if \mathbb{V} Let $X=\left\{v_{i}: 1 \leq i \leq n\right\}$ where $S_{\left(v_{i}\right)}=\mathfrak{B} \backslash\left\{\alpha_{i}\right\}$. Now every two elements from $\Gamma\left(\mathbb{V}_{\mathfrak{B}}\right)$ is resolved by some $v_{k} \in X$. By Lemma 2.2
$\operatorname{dim}_{\Gamma\left(\mathbb{V}_{\mathfrak{g}}\right)} \geq n$. Hence, we conclude that X is minimum resolving set of $\Gamma\left(\mathbb{V}_{\mathfrak{B}}\right)$ and $\operatorname{dim}_{\Gamma\left(\mathbb{V}_{\mathfrak{B}}\right)}=n$.
3). For $q>2$, a twin-set C_{v} is of minimum length 2 for every element v of \mathbb{V}. By Lemma 1.2, a resolving set must contain all vertices, except one, in every twin set C_{v}. For fixed $k(1 \leq k \leq n)$ there are
$\binom{n}{k}$ distinct twin sets and each twin sets have $(q-1)^{k}$ elements.
Since q - 1 choices and k places. Hence any resolving set in $\Gamma\left(\mathbb{V}_{\mathfrak{B}}\right)$ must contain at least $\sum_{k=1}^{n}\binom{n}{k}\left((q-1)^{k}-1\right)$ elements. By Lemma 1.2 resolving set W contains $Y=\left\{v_{i}: S_{(v i)}=\mathfrak{B} \backslash\left\{\alpha_{i}\right\}\right\}$ for some $a_{j} \in \mathbb{F}$. Since, any two vertices with different skeleton is resolved by some $v_{i} \in Y$. Therefore $\operatorname{dim}_{\mathrm{T}\left(\mathrm{v}_{\mathrm{y})}\right)}=\sum_{k=1}^{n}\binom{n}{k}((q-1) k-1)$.

Let n, q be integers. Let \mathbb{V} be an n dimensional vector space over the field \mathbb{F} with q elements. We have the following

1. If $n=1$ then $l d_{\Gamma\left(v_{\mathbf{x}}\right)}=q-1$
2. If $q=2$ and $n \geq 2$, then $l d$ () n
3. If $q>2$ and $n \geq 2 \quad l d_{\Gamma\left(v_{\mathfrak{z}}\right)}=\sum_{k=1}^{n}\binom{n}{k}((q-1) k-1)$.

Proof

1). By first part of Theorem 2.3 and Theorem 1.1 we get $l d_{\Gamma\left(\mathrm{V}_{\mathfrak{z}}\right)}=q-1$.
2). Let X as defined in the second part of the proof in theorem 2.3 is minimum resolving set and also every element of $\Gamma\left(\mathbb{V}_{\mathfrak{B}}\right)$ is adjacent to at least one element in c. Hence is also a dominating
set so $l d_{\Gamma\left(\mathbb{V}_{\mathfrak{B}}\right)}=n$.
(3). Let as defined in the third part of proof of the theorem 2.3 is dominating set. Since, every element of $\Gamma\left(\mathbb{V}_{\mathfrak{z}}\right)$ is adjacent to at least one element in Y. Hence, $\left(d_{\Gamma\left(\mathbb{V}_{0}\right)}=\sum_{k=1}^{n}\binom{n}{k}((q-1) k-1)\right.$.
By definition of metric dimension, metric-locating-dominating set and locating-dominating set we observe that $\operatorname{dim}_{G} \leq m l d_{G} \leq l d_{G}$. This relation proves the following corollary.

Corollary 2.5

Let n, q be integers. Let \mathbb{V} be an n dimensional vector space over the field \mathbb{F} with q elements. We have the following
(1) If $n=1$, then $m l d_{\Gamma\left(V_{\mathbf{z}}\right)}=q-1$.
(2) If $q-2$ and, then $m l d_{\Gamma\left(V_{\mathfrak{B}}\right)}=n$.
(3) If $\mathrm{q}>2$ and $n>2$, then $m l d_{\Gamma\left(\mathbb{v}_{\mathfrak{s}}\right)}=\sum_{k=1}^{n}\binom{n}{k}((q-1) k-1)$.

Theorem 2.6

Let $\mathrm{n} \geq 3, \mathrm{q} \geq 2$ be integers. Let \mathbb{v} be an n dimensional vector space over the field \mathbb{F} with q elements then,
$p d_{\mathrm{r}\left(\mathrm{V}_{\mathbb{8}}\right)}=n+(q+1) n$.

Proof

By Lemma 1.3 vertices form one twin-set is present in different partition of any resolving partition. The largest twin-set in \mathbb{V} is skeleton of the vertices is \mathfrak{B} and cardinality of the set is $(q+1)^{n}$.
Thus $p d_{\left[\left(V_{s}\right)\right.} \geq(q+1) n$. Consider the partition $\Pi=\left\{\left\{v_{1}\right\},\left\{v_{2}\right\}, \ldots,\left\{v_{n}\right\}, P_{1}, P_{2}, \ldots, P_{(q+1)}\right\}$ where $v_{i}=\sum_{j \neq i} \alpha_{j}$ and each P_{i} contains exactly one vertex v from the twin-set of vertices having the skeleton $\mathfrak{B A l l}$ other vertices of $\Gamma\left(\mathbb{V}_{\mathfrak{B}}\right)$ is distributed using Lemma 1.3. Further, any two vertices from the same class of Π can be resolved by some v_{i}. Thus, Π is a resolving partition and $p d_{\Gamma\left(V_{\mathrm{v}}\right)} \leq n+(q+1) n$. Next, we have to prove that $p d_{\Gamma\left(\mathbb{V}_{\sqrt{3}}\right)} \geq n+(q+1) n$. Let $\Pi=\left\{4, A_{2}, \ldots, A_{n}, P_{1}, P_{2}, \ldots, P_{(q+1)}\right\}$ be resolving partition. $p d_{\left[\left(V_{y}\right)\right.} \geq(q+1) n$, one need to show that $n^{\prime} \geq n$. Suppose any $v_{i} \in P_{j}$ with $1 \leq i \leq n$ and $1 \leq j \leq(q+1)^{n}$. Then there exists one element $u \in P_{j}$ with $S_{u}=\mathfrak{B}$. Now we have $r(u \mid \Pi)=r\left(v_{i} \mid \Pi\right)$ which is a contradiction to fact that Π is resolving partition. Suppose V_{i} and V_{k} are in same partition we get $r\left(v_{i} \mid \Pi\right)=r\left(v_{k} \mid \Pi\right)$ which is a
contradiction. Hence each v_{i} in distinct partition other then P_{j}. Hence $n^{\prime} \geq n$ this proves the theorem.

Decomposition of $\Gamma\left(\mathbb{V}_{\mathbf{B}}\right)$
A decomposition of a graph G is a collection of edge-disjoint subgraphs $H_{1}, H_{2}, \ldots H_{i}$ of G belongs to exactly one H_{i}. For in this section we produce the results related to possible decomposition of $\Gamma\left(\mathbb{V}_{\mathfrak{B}}\right)$.

Theorem 3.1

Let $n \geq 1, q \geq 1$ be integers. Let \mathbb{V} be an n dimensional vector space over the field \mathbb{F} with q elements then, $\Gamma\left(\mathbb{V}_{\mathfrak{z}}\right)$ is decomposed into complete bipartite graphs.

Proof

Consider the partition of V is $V_{i}=\left\{v \in V:\left|S_{v}\right|=i\right\}$ where $1 \leq i \leq n$. Now consider the following three cases,

Case 1

This case we characterize all the edges inside each V_{i} where $1 \leq i \leq n-1$

Subcase i

For $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor$ each element in V_{i} has no edge relation inside V_{i}.

Subcase ii

For $\left\lceil\frac{n}{2}\right\rceil \leq i \leq n-1$, now each V_{i} has $\binom{n}{i}$ twin sets with each twin set have q-1 elements. Elements of each twin set has adjacent to every element in $\binom{i}{n-i}$ twin sets. Hence every twin set form the $\binom{i}{n-i}$ times $K_{(q-1)^{i},(q-1)^{i} .}$. Therefore inside V_{i} is decomposed into $\frac{\binom{n}{i}\binom{i}{n-i}}{2}$ times $K_{(q-1)^{\dot{j}},(q-1)^{\prime} .}$

Case 2

This case we characterize all the edges outside each V_{i} where
$\left\lceil\frac{n}{2}\right\rceil \leq i \leq n-1$. Since there is edge relation between V_{i} for $1 \leq i \leq \frac{n}{2}$.

Sub Case i
Suppose n is odd, let $1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil$ each vertex in V_{i} is center of star graph with $\sum_{k=0}^{n-i-1}(q-1)^{i}$ Pendent vertices. Hence, all the

Sub Case ii

Suppose n is even, let $1 \leq i \leq \frac{n}{2}-1$ each vertex in V_{i} is center of star graph with pendent $\sum_{k=0}^{n-i-1}(q-1)^{i}$ vertices. Hence, all the edges outside are decomposed into $\bigcup_{i=\left|\frac{n}{2}\right|}^{n-1}(q-1)^{i} S \sum_{k=1}^{n-i-1}\binom{i}{k}(q-1)^{i}$

Case 3

Let $i=n$ every element in V_{i} is adjacent to all other all elements in \mathbb{V}. Since, all the above cases all the edges are decomposed into union of $(q-1)^{n}$ star graph with each of order $\left(q^{n}-1\right)$.

Hence, $\Gamma\left(\mathbb{V}_{\mathfrak{B}}\right)$ is decomposed into complete bipartite graphs.

Results on $\Gamma(\mathbb{V})$

In this section, we found the structure of $\Gamma(\mathbb{V})$ and genus of linear dependent graph of vector space. Also, we found the power domination number of $\Gamma(\mathbb{V})$.

Theorem 4.1: $\Gamma(\mathbb{V})$ is isomorphic to $K_{q-1}^{q^{n-1}+q^{m-2}+\ldots+1}$

Proof

We observe that 0 is adjacent to all the vertices of $\Gamma(\mathbb{V})$. Each one-dimensional subspace of \mathbb{V} form a complete subgraph of $\Gamma(\mathbb{V})$. Also is in every subspace of \mathbb{V}. Since total number of one-dimensional subspaces of \mathbb{V} is $q^{n-1}+q^{n-2}+\ldots+1$. Therefore $\Gamma(\mathbb{V})$ is one point union of $q^{n-1}+q^{n-2}+\ldots+1$ copies complete graph of order $q-1$. Hence $\Gamma(\mathbb{V})$ is isomorphic to $K_{q-1}^{q^{n-1}+q^{n-2}+\ldots+1}$.

Note that the eccentricity of $0 \in \Gamma(\mathbb{V})$ is 1 and the eccentricity of nonzero element of $\Gamma(\mathbb{V})$ is 2 . By Theorem 4.1 we have the following theorems.

Corollary 4.2: $\Gamma(\mathbb{V})$ is decomposed into star and complete graph.

By the observation 1 in [2] is any graph $G, 1 \leq \gamma_{p}(G) \leq \gamma(G)$ and by Theorem 1.4, we have the following theorem.

Theorem 4.3: Power domination number $\gamma_{p}(\Gamma(\mathbb{V}))$ is 1 .
Theorem 4.4: Radius of the graph $\Gamma(\mathbb{V})$ is 1.
Theorem 4.5: $g(\Gamma(\mathbb{V}))=\left(q^{n-1}+q^{n-2}+\ldots+1\right)\left\lceil\frac{(q-3)(q-4)}{12}\right\rceil$

Proof

By Theorem 4.1 $\Gamma(\mathbb{V})$ is $K_{q-1}^{q^{n-1}+q^{n-2}+\ldots+1}$. Let $G_{1}=K_{q}$ (elements of \mathbb{V} generated by single element some $v \in \mathbb{V}$) and
$G_{2}=K_{q-1}^{q^{n-1}+q^{n-2}+\ldots+2}$. Hence we get $\Gamma(\mathbb{V})=G_{1} \cup G_{2}$ and $G_{1} \cap G_{2}=\varnothing$ then $g(\Gamma(\mathbb{V})) \leqq g\left(G_{1}\right)+g\left(G_{2}\right)$. By theorem $1.5 g\left(G_{1}\right)=\left\lceil\frac{(q-3)(q-4)}{12}\right\rceil$
and $g(\Gamma(\mathbb{V})) \leqq\left\lceil\frac{(q-3)(q-4)}{12}\right\rceil+g\left(G_{2}\right)$. Now to find $g\left(G_{2}\right)$ Let $H_{1}=K q$ and $H_{2}=K_{q-1}^{\left(q^{n-1}+q^{q-2}+\ldots+1\right)-2}$ Hence we get $G_{2}=H_{1} \cup H_{2}$ and $H_{1} \cap H_{2}=\varnothing$ then $g\left(G_{2}\right) \leqq g\left(H_{1}\right)+g\left(H_{2}\right)$. By Theorem 1.3, $g\left(H_{1}\right)=\left\lceil\frac{(q-3)(q-4)}{12}\right\rceil$ and $g(\Gamma(\mathbb{V})) \leq 2\left[\frac{(q-3)(q-4)}{12}\right]+g\left(H_{2}\right)$. Now find $g(H 2)$ continuing this process up to $q^{n-1}+q^{n-2}+\ldots+1$ we get $g(\Gamma(\mathbb{V})) \leqq\left(q^{n-1}+q^{n-2}+\ldots+1\right) \left\lvert\, \frac{(q-3)(q-4)}{12}\right.$,
Similarly, we can prove $\left.g(\Gamma(\mathbb{V})) \geqq\left(q^{n-1}+q^{n-2}+\ldots+1\right) \left\lvert\, \frac{(q-3)(q-4)}{12}\right.\right]$ by using lemma 1.7. $g(\Gamma(\mathbb{V}))=\left(q^{n-1}+q^{n-2}+\ldots+1\right)\left\lceil\frac{(q-3)(q-4)}{12}\right\rceil$.

References

1. Das A (2016) Non-zero component union graph of a finitedimensional vector space. Linear and Multilinear Algebra 65: 1276-1287.
2. Mageshwaran K, Alessa N, Gopinath S, Loganathan K (2023) Topological Indices of Graphs from Vector Spaces. Mathematics 11: 1-13.
3. Kalaimurugan G, Gopinath S, Tamizh Chelvam T (2021) on the genus of non-zero component union graphs of vector spaces. Hacettepe J Math Stat 50: 1595-1608,
4. A Das (2016) Nonzero Component graph of a finite dimensional vector space. Commu Algebra 44: 3918-3926.
5. Alix U, Bokhary SA, Wahid K, Abbas G (2019) on resolvability of a graph associated to a finite vector space. J Algebra Appl 18: 1-10.
6. Sushobhan Maity, Bhuniya AK (2019) On the spectrum of linear dependence graph of a finite dimensional vector space. Electronic Journal of Graph Theory and Applications 7: 4359.
7. Hernando C, Mora M, Pelaya IM, Seara C, Wood DR (2007) Extremal graph theraphy for metric dimension and diameter. Electron Notes Discrete Math 29: 339-343.
8. Bondy JA, Murty USR (1986) Graph Theory with Applications Elsevier. North Holland Amsterdam. https:// www.iro.umontreal.ca/~hahn/IFT3545/GTWA.pdf .
9. Battle J, Harary F, Kodama Y, Young JWT (1962) Additivity of the genus of a graph. Bull Amer Math Sot 68: 565-568.
10. Chartrand G, Salehi E, Zhang P (2000) The partition dimension of a graph. Aequ math 59: 45-54.
11. Haynes TW, Hedetniemi SM, Hedetniemi ST, Henning MA (2002) Domination in graphs applied to electric power networks. SIAM J Discrete Math 15: 519-529.
12. White AT (1973) Graphs Groups and Surfaces. North-Holland, Amsterdam https://adams.marmot.org/Record/.b17358693.
[^0]
[^0]: Copyright: ©2024 Gopinath S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

