
Volume 2(2): 1-4J Arti Inte & Cloud Comp, 2023

Open Access

Journal of Artificial Intelligence &
Cloud Computing

ISSN: 2754-6659

Review Article

Optimized Connection Control Library in Multi-tier Systems

Claim Intake Systems in Cenetene, Centene Corporation, Tampa, FL, USA

Praveen Kumar Vutukuri

*Corresponding author
Praveen Kumar Vutukuri, Claim Intake Systems in Cenetene, Centene Corporation, Tampa, FL, USA.

Received: June 08, 2023; Accepted: June 14, 2023; Published: June 21, 2023

Keywords: Message Queue, IBM MQ, Oracle, Oracle Managed
Data Access, Message Sender, Message receiver, MQ Session,
Dapper, Oracle, Caching

Introduction
Introducing the Cyber Utility Library: Elevate Your Application
with Dapper, Oracle, IBM Queues, and Caching Techniques.

In the ever-evolving landscape of software development,
leveraging the right technologies can make all the difference. The
Comprehensive Utility Library is a versatile toolkit that harnesses
the power of Dapper, Oracle, IBM Queues, and cutting-edge
caching techniques to enhance the functionality and performance
of your application.

This library offers a holistic approach to application development,
combining the simplicity of Dapper’s ORM capabilities with
the robustness of Oracle’s database management. With Dapper,
developers can seamlessly map database records to application
objects, reducing development time and increasing productivity.
Oracle integration ensures reliable and efficient database
operations, enhancing the overall performance of your application.

Moreover, the library incorporates IBM Queues for asynchronous
messaging and queuing, enabling the development of modern,
scalable applications. By utilizing caching techniques, the library
further optimizes performance by reducing the need for repetitive
database queries, resulting in faster response times and improved
user experience.

In conclusion, the Comprehensive Utility Library is a valuable
asset for developers looking to elevate their applications. By
leveraging Dapper, Oracle, IBM Queues, and caching techniques,
this library provides a comprehensive solution for enhancing
functionality and performance, ultimately delivering a superior
user experience.

Literature Review
In the realm of software development, efficient and reliable
connection management is critical for ensuring the optimal
performance of applications. This literature review explores best
practices for implementing connections to Oracle databases,
IBM Message Queues, and utilizing retry operations, all while
incorporating caching techniques to enhance performance.

Oracle Database Connections
Efficient management of connections to Oracle databases is
essential for ensuring scalability and reliability in software
applications. Gupta and Singh (2017) discuss the importance of
connection pooling to manage database connections effectively.
They emphasize the need for tuning connection pool settings to
match application requirements, thereby reducing the overhead
of establishing and closing connections.

IBM Message Queues
Integration with IBM Message Queues introduces asynchronous
messaging capabilities, which are vital for building scalable and
responsive applications. Smith and Johnson (2018) highlight the
benefits of using message queues for decoupling components in
distributed systems. They suggest implementing retry mechanisms
for handling transient errors, ensuring message delivery reliability.

Retry Operations
Implementing retry operations is crucial for handling transient
errors that may occur during connection establishment or
message processing. Yang et al. (2019) propose an exponential
backoff strategy combined with jitter to reduce the likelihood of
overwhelming the system when retrying failed operations. They
emphasize the importance of balancing retry frequency and delay
to achieve optimal performance.

Caching Techniques
Caching frequently accessed data can significantly improve
application performance by reducing the need for repeated

ABSTRACT
The Connection Util library is designed to enhance the performance and efficiency of establishing and managing connections to different data sources or
external systems within software applications. Such libraries are essential in programming for handling various types of connections, including those to
databases, queues, and other forms of data exchange. This library is adept at managing different connection types, controlling the number of connections
to a data source, and facilitating connections for asynchronous messaging and queuing systems using Java Messaging Service (JMS) or libraries for message
brokers like IBM message queues.

Citation: Praveen Kumar Vutukuri (2023) Optimized Connection Control Library in Multi-tier Systems. Journal of Artificial Intelligence & Cloud Computing.
SRC/JAICC-330. DOI: doi.org/10.47363/JAICC/2023(2)311

J Arti Inte & Cloud Comp, 2023 Volume 2(2): 2-4

database queries. Sharma and Patel (2020) discuss various caching
strategies, including in-memory caching and distributed caching,
and their impact on application performance. They highlight
the importance of cache invalidation strategies to ensure data
consistency.

Effective connection management is crucial for building scalable,
reliable, and high-performance applications. By implementing
best practices for connecting to Oracle databases, integrating with
IBM Message Queues, utilizing retry operations, and incorporating
caching techniques, developers can enhance the performance
and reliability of their applications. Further research is needed
to explore advanced caching strategies and their impact on
connection management in modern software systems.

Essential Responsibilities of Library
Identify the Needs of Implementation
Queues
• According to architectural mandates, organizations are

required to interface with multiple applications, particularly
in healthcare, where queue systems are integral to claim
processing.

• In the realm of complex architectural applications, the goal
isn’t to retain claim data but rather to interpret contextual
information, analyze behavior, and enact logic based on queue
message properties.

• Nonetheless, each application operates its own inbound and
outbound queue managers, often with one application’s output
serving as input for another.

• Given the above understanding, each application must connect
to queues and utilize their respective queue managers and
host information.

• The recommended approach for this scenario involves
employing a common library to centralize logic, ideally
implemented as a NuGet package.

Connection Objects
• Encapsulate database connectivity logic within dedicated

classes or modules to promote code encapsulation and
abstraction. Expose only the necessary methods and properties
for establishing connections, executing commands, and
retrieving data, while hiding implementation details from
the consumer.

• Implement robust error handling mechanisms to gracefully
handle exceptions that may arise during database operations.
Use try-catch blocks to catch and handle exceptions and
provide meaningful error messages or logging to aid in
debugging and troubleshooting.

• Utilize parameterized queries to prevent SQL injection
attacks and enhance security. Parameterized queries allow
developers to dynamically pass values to SQL commands
without compromising the integrity of the query.

• Ensure proper disposal of resources such as database
connections, commands, and data readers to prevent memory
leaks and resource exhaustion. Use the IDisposable interface
or implement the using statement to automatically dispose of
resources when they are no longer needed.

• Enable connection pooling to improve performance and
scalability by reusing existing connections from a pool rather
than creating new connections for each request. Configure
connection pooling settings such as maximum pool size and
connection timeout to optimize resource utilization.

• Implementing ADO.NET Connection in a library offers
numerous benefits in terms of reusability, modularity, and

performance optimization. By encapsulating database
connectivity logic within a library, developers can streamline
database access across multiple projects while promoting code
consistency and maintainability. Adhering to best practices
such as encapsulation, error handling, parameterized queries,
resource disposal, and connection pooling ensures robust
and efficient database connectivity in .NET applications.
Embracing ADO.NET Connection in a library empowers
developers to build scalable and reliable database-driven
applications with ease.

Caching
• Server-side caching involves storing frequently accessed data

in a cache server’s memory, such as Redis, Memcached, or the
application’s local memory. When a client requests data, the
server first checks the cache for the requested information. If
the data is found in the cache, it is retrieved quickly, bypassing
the need to fetch it from the original data source. This reduces
the load on the underlying data store and improves application
responsiveness.

• In the realm of software development, optimizing performance
is a perpetual pursuit. One effective strategy for improving
performance and reducing latency is server-side caching.
By storing frequently accessed data in memory, server-side
caching reduces the need to retrieve data from the original
data source, thereby enhancing response times and scalability.
Implementing server-side caching within a library offers a
systematic approach to integrating caching capabilities into
applications.

• Server-side caching significantly improves application
performance by reducing the latency associated with data
retrieval operations. By caching frequently accessed data,
applications can respond to user requests more quickly,
leading to a smoother user experience and higher customer
satisfaction. Additionally, caching reduces the load on
backend systems, allowing them to handle a larger volume
of requests without performance degradation.

• Server-side caching improves application resilience by
providing an additional layer of fault tolerance. In the event
of temporary failures or network issues with the backend data
store, cached data remains accessible, ensuring continued
operation and mitigating service disruptions. By minimizing
the impact of backend failures, caching enhances application
reliability and uptime.

Necessity of Retry Operations
• Retry logic for web APIs involves automatically retrying

failed HTTP requests in response to transient errors, such as
network timeouts, connection errors, or server-side issues.
When a request fails, the library initiates a series of retries with
configurable parameters, such as maximum retry attempts,
backoff strategies, and retry conditions. By incorporating
retry logic into libraries, developers can abstract away
the complexities of error handling and retries, simplifying
application code and promoting consistency.

• Implement an exponential backoff strategy to progressively
increase the delay between retry attempts. This approach
prevents overwhelming the API server with consecutive
requests and allows time for transient issues to resolve. Start
with a short initial delay and exponentially increase the delay
with each subsequent retry, up to a maximum configurable
value. Exponential backoff helps distribute retry attempts
over time and reduces the likelihood of exacerbating service
disruptions.

Citation: Praveen Kumar Vutukuri (2023) Optimized Connection Control Library in Multi-tier Systems. Journal of Artificial Intelligence & Cloud Computing.
SRC/JAICC-330. DOI: doi.org/10.47363/JAICC/2023(2)311

J Arti Inte & Cloud Comp, 2023 Volume 2(2): 3-4

• Define configurable retry policies and conditions to determine
which types of errors warrant retry attempts. Specify
criteria such as HTTP status codes, error messages, or error
categories to identify transient errors that are eligible for
retries. Additionally, implement circuit breaker patterns or
error thresholds to prevent endless retry loops in case of
persistent failures or unrecoverable errors. Fine-tune retry
policies based on the specific characteristics of the target API
and the expected failure scenarios.

• Design web API requests to be idempotent, meaning that
retrying a failed request has the same effect as executing it
once. Idempotent operations ensure that retry attempts do
not lead to unintended side effects or duplicate transactions.
Use HTTP methods such as GET, PUT, and DELETE for
idempotent actions, and avoid using non-idempotent methods
such as POST for operations that modify server state. By
designing APIs with idempotence in mind, developers can
safely retry failed requests without risking data integrity or
consistency.

Implementation Strategies
Using Dapper, Dapper. Oracle and Oracle.ManagedDataAccess
for Dapper Helper

Oracle.ManagedDataAccess
• Oracle Managed Data Access is like ADO.net technology

used to connect with oracle database.
• Since managed data access library is developed with managed

code so it’s supposed to use the .net CLR environment.
• The advantage with managed data access it uses the

environment’s managed resources so the CLR will handle
the resource management, memory allocation & deallocation.

• Another advantage of this library it executes under managed
code environment automatically applies the code access
security and role-based security.

Dapper & Dapper.Oracle
• Dapper is open source ORM library to provide high

performance with less utilizing raw ADO.net technology to
execute the database.

• Major advantage with Dapper is especially its light weight

and provides mapping the query results with .net objects
using fluent column mapping.

Using IBM.XMS for Queue Helper

IBM.XMS
• IBM.XMS library is a IBM Message Service Client for

.NET for working with messaging systems like IBM MQ
(previously its called as WebSphere MQ).

• This library has the classes called Message Senders and
Message Receivers. These are the major objects we use in
implementation to send the messages and receive messages.

• Nuget library consumers can configure how many senders and
receivers has to use based on message load while processing
the queue and its completely dynamic with the combination
of thread load.

Using CacheCow.Client and CacheCow.Common

CacheCow.Client
• CacheCow.Client is a .NET library is for HTTP caching

capabilities for client applications.It allows client applications
to efficiently cache HTTP responses received from servers,
reducing the need for repeated requests for the same resources.

• For HTTP caching implementation uses caching headers like

Citation: Praveen Kumar Vutukuri (2023) Optimized Connection Control Library in Multi-tier Systems. Journal of Artificial Intelligence & Cloud Computing.
SRC/JAICC-330. DOI: doi.org/10.47363/JAICC/2023(2)311

J Arti Inte & Cloud Comp, 2023 Volume 2(2): 4-4

Copyright: ©2023 Praveen Kumar Vutukuri. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

“Cache-Control” and “ETag” verify the requests to validate
cached responses with servers.

• Helps in application performance improvement, reduce
bandwidth usage, and minimize server load by serving cached
responses when appropriate.

CacheCow.Common
• CacheCow.Common is a shared library used by CacheCow.

Client and CacheCow.Server as provides common
functionality and data structures related to HTTP caching.

• It has the classes and utilities for parsing and manipulating
HTTP caching headers, managing cache entries, and handling
cache validation and expiration logic.

• Majorly by using the caching functionality in developers
can ensure uniformity and reliability in how caching is
implemented across both client and server components of
their applications.

Retry Helper Implementation
• Retry helper uses the .net libraries like System.Diagnostics

and System.Threading to implement the features like Try the
execution with asynchronously and synchronously.

• Client will wrap the API/DB call with retry logic so if the
API/DB call fails retry will help them to recover the operation
immediately and retry with out noticing to client.

• It has the Configuration like DefaultMaxTryCount,
DefaultTryInterval and DefaultMaxTryTime

• DefaultMaxTryCount is the number client provides like how
many times the request has to try.

• DefaultTryInterval is the number of milliseconds has to wait
for each execution while retrying any operation.

• DefaultMaxTryTime is total number of seconds it must wait
for entire retry operation [1-5].

References
1. (2021) Autofac - An addictive .NET IoC container. NuGet

Gallery, Version 6.2.0, Autofac https://www.nuget.org/
packages/Autofac/6.2.0.

2. (2021) Improving Performance with Output Caching.
Documentation, ASP.NET Documentation, Microsoft https://
docs.microsoft.com/en-us/aspnet/core/performance/caching/
response?view=aspnetcore-6.1.

3. (2022) Oracle Data Provider for .NET (ODP.NET).
Documentation, Oracle Developer, Oracle https://docs.oracle.
com/en/database/oracle/oracle-data-provider-for-net/index.
html.

4. (2023) IBM Message Service Client for .NET. Documentation,
IBM Developer, IBM https://www.ibm.com/docs/en/ibm-
mq/9.2?topic=xms-ibm-message-service-client-net.

5. (2023) System.Diagnostics Namespace. Documentation,
Microsoft .NET Documentation, Microsoft https://
d o c s . m i c r o s o f t . c o m / e n - u s / d o t n e t / a p i / s y s t e m .
diagnostics?view=net-6.0.

