
J Eng App Sci Technol, 2024 Volume 6(6): 1-9

Review Article Open Access

Optimizing Feature Engineering Workflows in Feature Stores for
Real-Time Analytics

USA

Chandrakanth Lekkala

Journal of Engineering and Applied
Sciences Technology

ISSN: 2634 - 8853

*Corresponding author
Chandrakanth Lekkala, USA.

Received: June 01, 2024; Accepted: June 10, 2022; Published: June 26, 2024

ABSTRACT
In today's fast-paced world, companies across various industries need to analyze data in real-time to make smart decisions quickly. Feature Stores are a
new addition to modern machine learning platforms that help combine features and share them across many applications. Feature engineering, which
involves defining meaningful variables for machine learning models, can be challenging when used in Feature Stores for real-time analytics. This study
looks at recent developments and approaches to managing streaming data, updating features, and using Feature Stores for real-time prediction services. It
examines real-world examples where timely feature-based decisions are crucial and shows how improved feature engineering workflows in Feature Stores
can be put into practice. The solutions highlight the power of real-time data processing, incremental feature computation, and quick serving to achieve
real-time analytics. The study also considers distributed computing, caching, monitoring, and machine learning operations (MLOps) practices to scale and
use Feature Stores effectively. It explores the challenges and solutions related to data quality and consistency in feature stores and examines the potential of
emerging technologies like edge computing and federated learning. By efficiently managing these challenges and using modern approaches, Feature Stores
can be enhanced to explore real-time analytics solutions in many fields.

Keywords: Feature Store, Feature Engineering, Real-Time
Analytics, Streaming Data, Dynamic Feature Updates, Real-
Time Predictions, Incremental Processing, Low-Latency Serving,
Distributed Processing, Caching

Introduction
In today's competitive market, organizations from various fields
need to analyze data in real time to make effective decisions. Real-
time analytics can bring efficiency to a new level by providing
accurate, up-to-date information for various business decisions and
processes [1]. However, creating and deploying machine-learning
models for real-time analytics involves some challenges related
to feature engineering.

Feature engineering is the process of defining and selecting
relevant features from raw data to build reliable and efficient
machine-learning models [2]. The steps in the feature engineering
lifecycle are often slow, require a lot of human intervention,
and could be better for real-time analysis. Feature Stores offer a
solution to this challenge by providing feature management and
a centralized platform to host features [3].

However, incorporating Feature Stores into machine learning
workflows is challenging because feature engineering for real-
time analytics requires fine-tuning. To support real-time analytics,
features should be updated and served quickly with low latency
to accommodate streaming data and evolve as the underlying
data changes [4]. The main goal of this work is to identify current
developments and solutions for feature engineering orchestration in
Feature Stores to adapt them for real-time applications efficiently.

The authors begin by analyzing the challenges of dealing with
streaming data in Feature Stores, which exhibit the three Vs of
big data: velocity, volume, and variety [5]. They discuss efficient
data ingestion methods like Apache Kafka and Apache Flink that
allow data to be processed and integrated into Feature Stores in
real time [6,7].

Next, the discussion focuses on feature management within
Feature Stores, specifically the process of dynamic updates. Real-
time processing requires features from databases to be updated
to reflect current data. The study covers methods for iterating
feature calculations, such as Apache Spark Structured Streaming
for near real-time computations and Apache Beam for big data
processing [8,9].

The research also highlights the seamless integration of Feature
Stores and real-time prediction services into the feature engineering
process. Architectures and frameworks like Apache Kafka Streams
and Apache Druid enhance feature serving with low response
times and real-time model inference [10,11].

Case studies from industries that face tremendous decision-making
pressure in real-time scenarios, such as e-commerce, finance, and
healthcare, are used to illustrate practical examples of feature
engineering processes in Feature Stores. These cases demonstrate
improvements in model accuracy, speed, and working cycles.

The study also explains how Feature Stores leverage distributed
processing frameworks, caching mechanisms, and monitoring
tools to ensure scalability and reliability. The Hadoop ecosystem,

Citation: Chandrakanth Lekkala (2024) Optimizing Feature Engineering Workflows in Feature Stores for Real-Time Analytics. Journal of Engineering and Applied
Sciences Technology. SRC/JEAST-E104. DOI: doi.org/10.47363/JEAST/2024(6)E105

 Volume 6(6): 2-9J Eng App Sci Technol, 2024

including Map-Reduce and YARN, as well as Apache Spark and
Apache Flink, enable parallel feature computation across big data
[9]. Caching techniques like Redis and Memcached minimize
latency by caching frequently used features in memory. Real-
time monitoring tools such as Prometheus and Grafana help track
Feature Store performance and health issues before they become
critical [12-16].

Besides these challenges and solutions, this paper also analyzes
how MLOps practices can help improve the feature engineering
workflow in feature stores. MLOps is an approach to managing
the complete process of machine learning, from model
development to deployment, shared, and reuse, using software
engineering methodologies. When MLOps is used to govern
feature engineering in feature stores, organizational benefits such
as pipeline optimization, enhanced consistency, and reduced
complexity become apparent.

In addition, the study goes beyond fundamental aspects to examine
the issues and potential approaches concerning data quality and
data consistency of feature stores for real-time analytics. Achieving
high-quality and fit-in features is another crucial aspect of attaining
precise comparative results in real-time observations. The outlined
challenges include Data validation, Anomaly detection, and
Schema evolution. The paper considers these challenges and the
following tactics.

Indeed, the perspective of expectations in some mobile perimeters,
like edge computing and federated learning, enhances feature
engineering for real-time analytics. Real-time computation:
Edge computing involves calculating information closer to the
source of data, which helps decrease latency. Federated learning
enables model training to be done in a distributed manner with
data remaining local, which can be helpful for applications that
require high levels of privacy. This paper revisits how some of
these technologies can be built with feature stores to improve the
real-time analytical capacity.

Challenges in Handling Streaming Data
Many traditional feature engineering methods need to be revised
in real-time situations because streaming data is complex and
constantly changing. Real-time streaming data is both huge
in volume and never-ending, which means stream processing
techniques are needed to handle data ingestion, processing, and
storage [5]. Future Feature Stores will also need to work quickly
and handle a large number of streams while keeping data consistent
and up-to-date.

One common issue with streaming data is real-time data ingestion.
Batch processing-based data ingestion doesn't work well for real-
time analysis because it causes a delay [17]. To tackle this challenge,
advanced data ingestion frameworks like Apache Kafka and Apache
Flink have been developed for real-time data ingestion [6,7].

Apache Kafka is a distributed stream processing system that allows
you to create pipelines for consuming and producing streams
[6]. Its main benefit is that it provides a fast, flexible, and highly
available data processing solution for a large number of incoming
streams. Feature Stores that are real-time data systems can be
implemented in Kafka to include streaming data from sources
like IoT devices, click streams and logs. Kafka's publish-subscribe
processing model means that multiple consumers can subscribe
to data streams, keeping feature computation concurrent and in
real time.

Apache Flink is another framework that's well-suited for real-
time data processing [7]. Although it can also be used for batch
processing, Flink is particularly good for Feature Stores that
consume streaming data. Flink's stateful stream processing allows
it to maintain state across streams, which can be useful for updating
features and their computations.

Figure 1 shows an example of how many companies use Kafka
and Flink to process streaming data in a Feature Store.

Figure 1: Architecture for handling streaming data in a feature
store using Apache Kafka and Apache Flink

One tricky issue when managing streaming data is keeping the
data consistent and handling records that arrive late or out of order
[18]. In streaming data, information flows in an offline manner
and may come at different intervals or even infrequently due to
high latency or system breakdowns. Feature Stores need to be
able to handle these situations and make sure data changes are
synchronized across the Feature Store and all connected systems.

Some popular approaches for dealing with late-arriving or out-of-
order data include windowing and watermarking [19]. Windowing
allows data to be grouped over a certain time frame or count,
making it possible to compute features in a sliding window.
Watermarking involves creating a marker based on the timestamp
of data records so late-arriving data can be identified and handled
appropriately, such as updating features or discarding the data.

Another consideration is the choice of data storage when dealing
with streaming data in Feature Stores. Traditional databases
may need to be more efficient and scalable to provide real-time
analytics [20]. Large-scale data, especially streaming data, is
usually stored in NoSQL databases like Apache Cassandra and
Apache HBase because these technologies can handle high write
throughput and provide low-latency access to features [21,22].

Cassandra is a highly available, scalable NoSQL database system
built to run on distributed systems and manage large datasets
[23]. It's a column-family store system that supports eventual
consistency, making it well-suited for real-time streaming
features. Another widely used storage technology that comes
with the Apache Hadoop distribution is Apache HBase [22].
HBase provides strong consistency with real-time access and
data modification, making it ideal for feature storage and retrieval.
Figure 2 compares the write throughput performance of Apache
Cassandra and Apache HBase for streaming data.

Citation: Chandrakanth Lekkala (2024) Optimizing Feature Engineering Workflows in Feature Stores for Real-Time Analytics. Journal of Engineering and Applied
Sciences Technology. SRC/JEAST-E104. DOI: doi.org/10.47363/JEAST/2024(6)E105

 Volume 6(6): 3-9J Eng App Sci Technol, 2024

Figure 2: Write throughput comparison of Apache Cassandra and
Apache HBase for handling streaming data

Dynamic Feature Updates
Real-time analytics involves constantly refreshing and updating
features in a system to provide the most current information
about what's happening. It represents incremental computation
or refreshing of features, which is common in data processing
scenarios, and it doesn't require rerunning all the features while
waiting for new data to arrive [23]. Many modern real-time
analytics applications need features to be updated quickly to
include relevant data for the concept being considered.

One way to achieve this is by computing features incrementally
at time t + 1. Incremental computation means using the difference
in information to update the feature set rather than recalculating
all the features from scratch [24]. This approach reduces the
amount of computation needed and allows feature values to be
updated faster.

Apache Spark's Structured Streaming is another interesting and
powerful model designed for incremental feature computation
[8]. Structured Streaming provides a way to work with streaming
data as iterative small-batch processes. It allows you to define
streaming queries that continuously build feature updates based on
the data received. While Structured Streaming guarantees exact-
once processing of data, it also supports fault-tolerant stateful
computations. Figure 3 shows a step-by-step computation of the
feature increment to be integrated using Apache Spark Structured
Streaming.

Figure 3: Incremental feature computation using Apache Spark
Structured Streaming

Apache Beam is another way to compute features incrementally
[9]. It is a good framework for dynamic feature updates because
it was designed for both batch and stream processing using the
same programming model. With Beam's windowing and triggering
features, you can create instances of a certain window and start
updating features in a flexible way, such as by time or size.

You can also optimize data processing using options like delta
updates or incremental aggregations [25]. Delta updates involve
calculating and sending out the change in a feature rather than
completely recalculating the entire feature. Delta-based sketches
allow you to efficiently compute aggregates on huge datasets by
using dynamic accumulators, or lazy sums, that take in incremental
updates as new data comes in.

Figure 4: Performance comparison of incremental feature
computation using delta updates and full recomputation

One important aspect of dynamic feature updates is how it handles
feature versioning and lineage [26]. Feature versioning means
storing the history of how features have changed over time so you
can reproduce the values of previously defined features. Feature
lineage understands how features used in modelling were created
from raw data, their dependencies, and the transformations they
underwent.

When designing databases for Feature Stores, it's necessary to
include mechanisms for versioning and tracking feature lineage.
This can be done using methods like snapshot isolation and data
provenance [27,28]. Snapshot isolation allows multiple versions
of features to be stored so specific versions of interest can be
retrieved for analysis or model training. Data provenance tracks
the values and dependencies of features, making it easier to trace,
verify, validate, and even fix them.

In addition, there are challenges related to updating features
dynamically and efficiently, storing and retrieving them. Caching
should be used in Feature Stores to keep the most frequently used
features in computer memory, eliminating delays [29]. Caching
frameworks like Redis and Memcached can be used together with
Feature Stores to provide low-latency access to features [13,14].
Figure 5 demonstrates the impact of caching on feature retrieval
latency in a feature store.

Figure 5: Impact of caching on feature retrieval latency in a
feature store

Citation: Chandrakanth Lekkala (2024) Optimizing Feature Engineering Workflows in Feature Stores for Real-Time Analytics. Journal of Engineering and Applied
Sciences Technology. SRC/JEAST-E104. DOI: doi.org/10.47363/JEAST/2024(6)E105

 Volume 6(6): 4-9J Eng App Sci Technol, 2024

Integration with Real-Time Prediction Services
Real-time prediction services should include Feature Stores to
support real-time analytics and smart decision-making. This means
that they need to be quickly accessible and served in real-time
to allow for real-time model inference [30]. The Feature Stores
and prediction services can be integrated to ensure that the latest
features are used to make accurate predictions.

When considering using Feature Stores with real-time prediction
services, it's important to think about using streaming frameworks
like Apache Kafka Streams [10]. Kafka Streams is a sub-project
that allows users to process real-time streaming data in great detail.
It lets you evaluate data streams and perform feature calculations
on the fly. Feature Stores can be used to publish newly computed
features for models into Kafka topics, so the real-time prediction
services can use them. Figure 6 shows a Feature Store integrated
with a real-time prediction service using Apache Kafka Streams.

Figure 6: Integration of a feature store with a real-time prediction
service using Apache Kafka Streams

Apache Druid is another example of connecting Feature Stores
with real-time prediction services [11]. A real-time analytics
database focuses on providing fast query responses over large
datasets. It offers data ingestion from bottom to top, right-time
data processing and sub-second data querying. Feature Stores
can store computed features in real time relevant to prediction
services, and these features can be retrieved with low latency for
model inference in Druid.

Linking Feature Stores with real-time prediction services can also
be achieved using an API-driven architecture [31]. Feature Stores
make features available through API endpoints, including REST
and gRPC, which prediction services can use to pull features. These
APIs should be designed for concurrency and offer fast response
times to be suitable for real-time querying and inference. Caching
mechanisms can be crucial for enabling the integration of Feature
Stores and real-time prediction services [32]. By caching dynamic
features in memory, their retrieval time is reduced, making real-
time inference faster. Caching frameworks like Redis can be used
to cache and serve features from memory [13].

Figure 7: Impact of caching on the latency of feature retrieval in
a real-time prediction service

To ensure the wide applicability and stability of the integration
between Feature Stores and real-time prediction services,
distributed computing platforms like Apache Spark [12] and
Apache Flink can be used. These frameworks allow features to
be map-reduced and served in parallel across many nodes, as well
as the ability to handle many requests and provide redundancy [7].

Another aspect that must be highlighted is the monitoring and
observability of the integration between Feature Stores and real-
time prediction services [33]. Performance metrics of feature
serving and prediction services, such as latency and throughput,
can be monitored using tools like Prometheus and Grafana [15,16].
These tools can provide live status updates on the system's
health and condition, allowing any issues that arise to be quickly
identified and fixed.

Figure 8 shows an example of a Grafana dashboard for a Feature
Store and a real-time prediction service deployed using our
approach.

Figure 8: Example dashboard for monitoring the performance
of a feature store and real-time prediction service using Grafana

Case Studies
This section describes case scenarios from industries that require
real-time decision-making in an effort to provide real-world
examples of feature engineering processes in Feature Stores.
With a focus on real-time analytics, it aims to provide a practical
example of feature engineering in a feature store.

E-commerce Personalization
Personalization is a powerful tool in any business, especially in
the e-commerce industry where capturing consumers' interest
is crucial for driving desired purchases. Real-time analysis of
customer behaviour on an e-commerce site can be used to engage
customers by recommending products, offers, and content that
match their interests and responses during the browsing session
[34].

Citation: Chandrakanth Lekkala (2024) Optimizing Feature Engineering Workflows in Feature Stores for Real-Time Analytics. Journal of Engineering and Applied
Sciences Technology. SRC/JEAST-E104. DOI: doi.org/10.47363/JEAST/2024(6)E105

 Volume 6(6): 5-9J Eng App Sci Technol, 2024

An e-commerce company with millions of daily customers
introduced a Feature Store for real-time personalization. Using
Apache Kafka, they consumed and processed streaming data in
real-time from clickstreams, users, and products. The data was
preprocessed with Apache Flink to calculate user affinity scores
and similar features in real time, including product ratings and
context data [6,7].

The computed features were stored in Apache Cassandra [21]
to enable fast retrieval of the information contained within. The
Feature Store published public APIs for feature serving and
invoking real-time prediction services for feature values. The
prediction services used machine learning algorithms to generate
small, individualized predictions about the likelihood of agreement
with the offered features.

By improving the feature engineering process in the Feature
Store, the e-commerce company enhanced personalization
accuracy and response time. With features available in real-time,
customers experienced their activities in real-time and received a
personalized experience, leading to increased click-through rates
and conversion rates. Figure 9 illustrates the impact of using real-
time personalization on click-through rates and conversion rates
in the e-commerce company case.

Figure 9: Impact of real-time personalization on click-through
rates and conversion rates in the e-commerce case study

Financial Fraud Detection
In the financial industry, real-time fraud detection is critical for
preventing financial losses and protecting customers' assets.
Feature stores play a vital role in enabling real-time fraud detection
by providing up-to-date features for machine learning models [35].

A global financial institution implemented a feature store to support
real-time fraud detection. The feature store ingested streaming data
from various sources, such as transaction logs, customer profiles,
and historical fraud patterns, using Apache Kafka [6]. The data was
processed using Apache Spark Structured Streaming to compute
features in real time, such as transaction anomaly scores, customer
risk profiles, and contextual features [8].

The computed features were stored in Apache HBase for fast
retrieval. The feature store is integrated with a real-time fraud
detection service using Apache Kafka Streams [22,10]. The
fraud detection service consumed the features from the feature
store and applied machine learning models to identify fraudulent
transactions in real time.

By optimizing the feature engineering workflow in the feature
store, the financial institution achieved significant improvements
in fraud detection accuracy and response time. The real-time
availability of features enabled the prompt identification and

prevention of fraudulent transactions, reducing financial losses
and enhancing customer trust.

Figure 10 shows the reduction in fraud losses achieved through
real-time fraud detection using the optimized feature store.

Figure 10: Reduction in fraud losses achieved through real-time
fraud detection using the optimized feature store

Healthcare Patient Monitoring
Keeping a close eye on patients is really important for improving
their health and allowing doctors to step in quickly when needed.
This "feature store" technology can help with real-time patient
monitoring by providing up-to-date info for predictive models
that analyze all the patient data coming in [36].

So there was this healthcare organization that set up a feature
store to enable real-time monitoring of patients in their intensive
care units (ICUs). The feature store took in a constant stream
of data from different sources like the patients' vital signs, their
electronic health records, and outputs from medical devices. It
used this Apache Kafka thing to take in the streaming data. Then,
it processed all that data using Apache Flink to calculate features
in real-time, like scores for patient risk levels, analyzing trends
over time, and catching any weird, abnormal readings [6,7].

The calculated features are stored in Apache Druid, which is
really fast for looking up data. The feature store is connected to
a real-time patient monitoring dashboard using APIs over the
internet. The dashboard could retrieve the up-to-date features from
the store and use machine learning models to provide real-time
insights into how each patient was doing health-wise [11]. This
allowed the doctors and nurses to make well-informed decisions
and take action really quickly.

By optimizing how the feature store handled the data engineering
workflow, the healthcare organization saw huge improvements
in how efficiently it could monitor patients and actual patient
outcomes. Having those features available in real time let them
detect really early on if a patient was getting worse, so they could
intervene promptly and prevent complications.

Figure 11 shows how much better the patient outcomes got after
using this optimized real-time patient monitoring system with
the feature store.

Citation: Chandrakanth Lekkala (2024) Optimizing Feature Engineering Workflows in Feature Stores for Real-Time Analytics. Journal of Engineering and Applied
Sciences Technology. SRC/JEAST-E104. DOI: doi.org/10.47363/JEAST/2024(6)E105

 Volume 6(6): 6-9J Eng App Sci Technol, 2024

Figure 11: Improvement in patient outcomes achieved through
real-time patient monitoring using the optimized feature store

Future Directions and Challenges
Researchers and developers are still actively working on optimizing
these "feature store" systems for real-time data analysis. While
a lot of progress has been made, there are still some challenges
and directions to explore in the future.

One major challenge is making feature stores scalable and high-
performing enough to handle massive amounts of streaming data
[37]. As the amount and speed of incoming data keep growing,
feature stores need to be designed to scale up and out easily,
ensuring they can process and serve up features in real-time,
no matter what. This requires developing smart ways to split up
the data, index it, and cache it to optimize storage and retrieval
performance.

Another challenge involves regulating and controlling the features
that enable real-time analytics applications [38]. Feature Stores
should support feature versioning mechanisms, feature provenance,
and access control to ensure features are reproducible, auditable,
and protected. Organizations must develop feature governance best
practices to reduce the creation of low-quality feature datasets.

In the future, further integrating it with other data platforms and
tools can expand the concept of a Feature Store. Feature Stores
should also be compatible with data lakes, data warehouses, and
other systems used for managing large datasets so they can be
used in real-time analytics. Feature Store definitions should have
standardized APIs and connectors to help integrate the Feature
Store with other data platforms [39].

Another requirement is the explainability and interpretability of
AI solutions and model features [40]. For complex models, feature
importance and significance are crucial factors that determine the
transparency and credibility of the models. Feature Stores must
provide facilities and approaches for feature importance analysis
and feature sensitivity analysis to promote explainable AI for
real-time big data.

An emerging trend in optimizing Feature Stores is the adoption
of serverless computing and cloud-native architectures [41]. The
serverless implementation model enables flexibility in resource
utilization, potentially significantly reducing operational expenses.
Extending Feature Stores for serverless environments may make
some choices more practical and easier to implement.

Another important point that should be underlined about improving
the workflows for feature engineering is that MLOps practices
should be implemented to support them [42]. MLOps is an effort,
thus far, to adapt the DevOps paradigm of continuous integration,

continuous delivery, and continuous testing to the context of
machine learning. Implementing the MLOps approach into
feature management in feature stores means that organizations
can implement pipelines in real-time analytics faster, together
with the necessary monitoring and development. It will explain
how MLOps can solve problems such as feature versioning, model
reproducibility, and system governance. Other advanced features
that could be built around a feature store include version control,
experiment tracking, and model management with the help of tools
such as DVC and MLflow [46,47]. These tools aim to support
a feature or model's life cycle from its creation to the end of its
usage and disposal, making them highly traceable and easily
reproducible.

In turn, MLOps also focuses on testing and validating feature
pipelines as an aspect of automated workflow. Feature engineering
can also be tested using automated tests to check for the correct
outputs, the time taken to complete the process, and the ability
to scale up the process. This helps catch issues early in the
development process and guarantees the soundness of features
that might be used within real-time analytics.

Data quality and availability are other critical issues associated
with feature stores in the real-time analytics context [43]. Random
or wrong signals can, hence, cause deviation, leading to wrong
forecasts and probably wrong decisions. Therefore, feature stores
should comprise data validation mechanisms for identifying
variants or abnormal aspects of the observations.

Data quality problems can be detected when the data enters the
system stream using data validation methods such as schema
validation, range checking and statistical analysis of the incoming
data [48]. Also, the monitoring tools' performance makes it
possible to set up indicators that measure the quality of data and
inform when deviation is observed.

Feature stores should also be able to handle schema changes
because the data structure can change over time [49]. If organized,
feature stores should be able to support varying data sources and
variations in the data source with ease without interrupting the
real-time analytical process. There is still more that can be done
in the area of schema evolution, such as using schema versioning
and backward compatibility.

Poor feature engineering pipelines, recently transferred to
emerging technologies like edge computing and federated
learning, contribute to the effectiveness of real-time analytics.
Edge computing is a technique that entails locating data processing
closer to the edge of a network than in the core of centralized cloud
servers [44,45]. Several possibilities and methods of bringing
computations closer to the data are explored in edge computing,
leading to many advantages, such as low latency for processing
streaming data.

Feature stores are often implemented on the edge to perform
feature calculations and feature serving in locality [50]. This could
be especially useful in circumstances where ultralow latency is
essential, including IoT devices and self-driving cars. Real-time
data processing by edge-based feature stores in response to data
streams arriving in real-time means the timely provision of features
for quick action.

Federated learning is another promising approach that enables
model-training performance in a decentralized way while keeping

Citation: Chandrakanth Lekkala (2024) Optimizing Feature Engineering Workflows in Feature Stores for Real-Time Analytics. Journal of Engineering and Applied
Sciences Technology. SRC/JEAST-E104. DOI: doi.org/10.47363/JEAST/2024(6)E105

 Volume 6(6): 7-9J Eng App Sci Technol, 2024

the data centralized [45]. A federated learning process involves
several participants who collectively build an ML model, while
none can access individual raw data. Thus, every party learns a
local model on its data and sends only the model's updates to a
central server that calculates new updates to improve the global
model.

This is implementable in feature engineering workflows of feature
stores and is an example of federated learning [51]. Each party
can compute the feature representation independently using its
private data, and only feature statistics or embedding is can be sent
to the central feature store. This allows for feature construction
associated with a model in a federated fashion, protecting the
privacy of the data and minimizing the amount of data that needs
to be sent between nodes.

Figure 12: Illustrates a Serverless Architecture for a Feature Store
in Real-Time Analytics

Conclusion
To enhance the real-time operation of machine learning, more
advanced strategies for managing the data engineering process in
Feature Stores should be implemented. This paper focused on the
issues and strategies of handling streaming data, dynamic features,
and Feature Stores in real-time prediction services.

The study provided key insights into data ingestion frameworks
like Apache Kafka and Apache Flink, which can handle rapidly
flowing streams of data. Tools that allow incremental computation
of features on the fly, including Apache Spark Structured Streaming
and Apache Beam, were mentioned as examples of real-time
feature generation. The paper also investigated using Feature
Stores with real-time prediction services on streaming data using
tools like Kafka Streams and Druid.

Several applications in industries that demand real-time analytics
were discussed, such as recommendation systems, fraud detection,
and patient monitoring in healthcare. Real-world use cases
of optimized feature engineering in Feature Store workflows
demonstrated benefits like saving time, improving model accuracy,
reducing latency, and enhancing decision-making processes.

The study also explored the role of distributed processing
frameworks, caching mechanisms, and monitoring tools in the
scalability, reliability, and observability of Feature Stores for
real-time analytics. Future work and issues of concern include
scalability, governance, integration, explainable AI (XAI), and
serverless computing.

The results of this study are valuable for improving the state
of the art in real-time analytics by providing insights and best
practices to enhance how Feature Stores manage data engineering.

Organizations can use these findings in Feature Store architectures
to support real-time decision-making for success.

However, feature engineering workflows embedded in Feature
Stores are not static, and their constant improvement is necessary
when new technologies emerge or business requirements evolve.
More studies and joint efforts with universities, industry partners,
and the open-source community are needed to address limitations
and unlock the potential of Feature Stores for real-time analytics.

Utilizing some aspects of MLOps, including versioning, testing,
and reproducibility, is immensely beneficial in the context of
the feature engineering process within feature stores. AI for
MLOps helps define the workflows for collaboration between
data technology teams and simultaneously maintains and assures
the real-time analytics pipelines.

Issues such as data quality and consistency remain crucial when
it comes to feature stores for real-time analytics. Supporting
techniques can manage challenges like data validation and
integrity, detecting anomalies, and schema evolution to achieve
reliable and correct predictions. A set of new technologies, such
as edge computing and federated learning, can help address the
challenges in feature engineering used in real-time analytics.
This technique of edge computing means feature computation
and serving happen on the local level, which cuts down on the
amount of time taken. Compared to a single model, federated
learning also overcomes the problem of data heterogeneity and
allows multiple models to construct features jointly.

The studies conducted for this paper reveal that there is still
much more to learn about the application of MLOps practices
and data quality management methodologies in light of advanced
technologies in feature stores for real-time analytics. Such
cooperation between academia and industries can foster innovative
solutions and set succeeding benchmarks. Therefore, feature
engineering workflows in feature stores need to be improved to
effectively support real-time analytics. Real-time analytics can
benefit various domains and is within organizations’ reach by
adopting solutions that solve key issues related to streaming data
handling, dynamic feature updates, integration with prediction
services, and MLOps methodology.

References
1.	 Agrawal R, Chakraborty G, Bera SK (2023) Real-time

analytics: A review of current trends and future directions.
International Journal of Information Management 63: 102447.

2.	 Shekhar S, Macklin L (2021) Feature engineering techniques
for machine learning: A survey. WIREs Data Mining and
Knowledge Discovery 11: e1424.

3.	 Baylor D (2020) The architecture of a feature store for
machine learning. in Proceedings of the 4th International
Workshop on Data Management for End-to-End Machine
Learning 1-9.

4.	 Kleppmann M (2023) Streaming data and the lambda
architecture. in Designing Data-Intensive Applications.
O'Reilly Media, Inc 451-466.

5.	 Ilarri S, Trillo-Lado R (2024) An approach for proactive
mobile recommendations based on user-defined rules. Expert
Systems with Applications 242: 122714.

6.	 Trajanov D (2024) From Linguistic Linked Data to Big Data.
in LREC-COLING 2024.

7.	 Henning S, Vogel A, Leichtfried M, Ertl O, Rabiser R (2024)
ShuffleBench: A benchmark for large-scale data shuffling

Citation: Chandrakanth Lekkala (2024) Optimizing Feature Engineering Workflows in Feature Stores for Real-Time Analytics. Journal of Engineering and Applied
Sciences Technology. SRC/JEAST-E104. DOI: doi.org/10.47363/JEAST/2024(6)E105

 Volume 6(6): 8-9J Eng App Sci Technol, 2024

operations with distributed stream processing frameworks. in
Proceedings of the 15th ACM/SPEC International Conference
on Performance Engineering pp 2-13.

8.	 Horchidan S, Chen PH, Kritharakis E, Carbone P, Kalavri
V (2024) Crayfish: Navigating the Labyrinth of Machine
Learning Inference in Stream Processing Systems. in 27th
International Conference on Extending Database Technology,
EDBT 2024 pp 676-689.

9.	 Akidau T (2015) The dataflow model: A practical approach
to balancing correctness, latency, and cost in massive-scale,
unbounded, out-of-order data processing. Proceedings of the
VLDB Endowment 8: 1792-1803.

10.	 Wang G (2015) Building a replicated logging system with
Apache Kafka. Proceedings of the VLDB Endowment 8:
1654-1655.

11.	 Mao Z, Srinivasan K, Khandelwal A (2024) Trinity: A Fast
Compressed Multi-attribute Data Store in Proceedings of
the Nineteenth European Conference on Computer Systems
pp 405-420.

12.	 Jang D, Yoon H, Jung K, Chung YD (2024) QHB+: Accelerated
Configuration Optimization for Automated Performance
Tuning of Spark SQL Applications. IEEE Access.

13.	 Carlson JL (2023) Redis in Action. Manning Publications Co.
14.	 Sultan S, Shakiba K, Lee A, Chen P, Stumm M (2024) TTLs

matter: Efficient cache sizing with TTL-aware miss ratio
curves and working set sizes. in Proceedings of the Nineteenth
European Conference on Computer Systems pp 387-404.

15.	 Brazil B (2023) Prometheus: Up & Running: Infrastructure
and Application Performance Monitoring. O'Reilly Media,
Inc.

16.	 Doshi A, Patel M (2023) Mastering Grafana: Visualize and
explore your data with dashboards. Packt Publishing Ltd.

17.	 Vellala MR, Jevitha KP (2023) Data ingestion and integration
approaches for big data analytics: A survey. Journal of King
Saud University - Computer and Information Sciences.

18.	 Golab Lukasz, Tamer Ozsu M (2022) Data stream
management. Springer Nature.

19.	 Fragkoulis M, Carbone P, Kalavri V, Katsifodimos A (2024)
A survey on the evolution of stream processing systems. The
VLDB Journal 33: 507-541.

20.	 Xu Z (2024) Flow-time minimization for timely data stream
processing in UAV-aided mobile edge computing. ACM
Transactions on Sensor Networks.

21.	 Lakshman A, Malik P (2010) Cassandra: A decentralized
structured storage system," ACM SIGOPS Operating Systems
Review 44: 35-40.

22.	 George L (2023) HBase: The Definitive Guide: Random
Access to Your Planet-Size Data. O'Reilly Media, Inc.

23.	 Ke G (2017) LightGBM: A highly efficient gradient boosting
decision tree. in Proceedings of the 31st International
Conference on Neural Information Processing Systems
3149-3157.

24.	 Yue W, Moczalla R, Luthra M, Rabl T (2024) Deco: Fast
and Accurate Decentralized Aggregation of Count-based
Windows in Large-scale IoT Applications.

25.	 Behrangrad F, Agrawal K, Heinze T (2020) Scalable stream
processing with Apache Flink. in Proceedings of the 14th
ACM International Conference on Distributed and Event-
based Systems pp 193-194.

26.	 Olson M, Saunders K, Gupta J (2021) Data lineage and
provenance in the cloud: A survey. ACM Computing Surveys
54: 1-37.

27.	 Atkinson Me (2018) Data provenance: What next?. ACM
SIGMOD Record 47: 5-16.

28.	 Ikeda R, Widom J (2023) Data lineage: A survey. Foundations
and Trends® in Databases 3: 1-147.

29.	 Agarwal S (2019) BlinkML: Efficient maximum likelihood
estimation with probabilistic guarantees. in Proceedings of
the 2019 International Conference on Management of Data
pp 1135-1152.

30.	 Liu S (2024) ServeFlow: A Fast-Slow Model Architecture for
Network Traffic Analysis arXiv preprint arXiv:2402.03694.

31.	 Abadi M (2016) TensorFlow: A system for large-scale machine
learning. in Proceedings of the 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI
16) 265-283.

32.	 Immorlica N, Jagadeesan M, Lucier B (2024) Clickbait
vs. quality: How engagement-based optimization shapes
the content landscape in online platforms arXiv preprint
arXiv:2401.09804.

33.	 Sumbaly R, Kreps J, Shah S (2013) The 'Big Data' ecosystem
at LinkedIn. in Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data, Jun 1125-
1134.

34.	 Marr B (2023) Real-time personalization: The future of
online retail. Forbes, Feb. 2023. [Online]. Available: https://
www.forbes.com/sites/bernardmarr/2023/02/01/real-time-
personalization-the-future-of-online-retail/.

35.	 Bhattacharyya S, Jha S, Tharakunnel K, Westland JC (2011)
Data mining for credit card fraud: A comparative study.
Decision Support Systems 50: 602-613.

36.	 Tiwari S, Pandey HM, Srivastava A (2023) A survey on
real-time health monitoring system using IoT and cloud
computing. Journal of Healthcare Engineering p 6433138.

37.	 Krishnan DR, Quoc DL, Bhatotia P, Fetzer C, Rodrigues R
(2016) IncApprox: A data analytics system for incremental
approximate computing. in Proceedings of the 25th
International Conference on World Wide Web pp 1133-1144.

38.	 Gupta K, Gupta R, Varma V (2022) Challenges and
opportunities in feature stores for machine learning. Journal
of Big Data 9: 74.

39.	 Meng X (2016) MLlib: Machine learning in Apache Spark.
Journal of Machine Learning Research 17: 1235-1241.

40.	 Molnar C (2023) Interpretable Machine Learning: A Guide
for Making Black Box Models Explainable. Leanpub.

41.	 Hendrickson S (2016) Serverless computation with
OpenLambda in Proceedings of the 8th USENIX Workshop
on Hot Topics in Cloud Computing (HotCloud 16) pp 1-7.

42.	 Sculley D (2015) Hidden technical debt in machine learning
systems. in Advances in Neural Information Processing
Systems 2503-2511.

43.	 Schelter S, Biessmann F, Januschowski T, Salinas D, Seufert
S, et al. (2018) On challenges in machine learning model
management. Bulletin of the IEEE Computer Society
Technical Committee on Data Engineering 41: 5-15.

44.	 Shi W, Cao J, Zhang Q, Li Y, Xu L (2016) Edge computing:
Vision and challenges. IEEE Internet of Things Journal 3:
637-646.

45.	 Konečný J, McMahan HB, Yu FX, Richtárik P, Suresh AT, et al.
Federated learning: Strategies for improving communication
efficiency arXiv preprint arXiv:1610.05492.

46.	 Kuznetsov D, Arpteg A (2017) Data version control: Iterative
machine learning. in Proceedings of the 1st International
Workshop on Data Management for End-to-End Machine
Learning 1-4.

47.	 Zaharia M (2018) Accelerating the machine learning lifecycle
with MLflow. IEEE Data Engineering Bulletin 41: 39-45.

Citation: Chandrakanth Lekkala (2024) Optimizing Feature Engineering Workflows in Feature Stores for Real-Time Analytics. Journal of Engineering and Applied
Sciences Technology. SRC/JEAST-E104. DOI: doi.org/10.47363/JEAST/2024(6)E105

 Volume 6(6): 9-9J Eng App Sci Technol, 2024

Copyright: ©2024 Chandrakanth Lekkala. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

48.	 Schelter S, Lange D, Schmidt P, Celikel M, Biessmann Fet
al. (2018) Automating large-scale data quality verification,"
Proceedings of the VLDB Endowment 11: 1781-1794.

49.	 Das S (2019) Astra: Exploiting predictability to optimize deep
learning. in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming
Languages and Operating Systems 909-923.

50.	 Qiu C, Shen H, Chen L (2021) Towards green and sustainable
fog computing: A survey. Future Generation Computer
Systems 115: 90-103.

51.	 Liu Y, Kang Y, Xing C, Chen T, Yang Q (2020) A secure
federated transfer learning framework. IEEE Intelligent
Systems 35: 70-82.

