
J Eng App Sci Technol, 2023 Volume 5(4): 1-5

Review Article Open Access

Optimizing RAG with Hybrid Search and Contextual Chunking

USA

Ashish Bansal

Journal of Engineering and Applied
Sciences Technology

ISSN: 2634 - 8853

*Corresponding author
Ashish Bansal, USA.

Received: August 07, 2023; Accepted: August 14, 2023; Published: August 28, 2023

Keywords: RAG, Retrievers, Semantic Search, Dense In-Dex,
Vector Search, Hybrid Search, Sparse Embeddings

Introduction
Generative AI is taking the world by storm. However, one of the
first challenges organizations face in deploying large lan- guage
models (LLMs) in their corporate environment is how to make
LLMs understand their proprietary enterprise data. However,
many of them ran into similar problems while try- ing to integrate
generative AI into enterprise environments, like privacy breaches,
lack of relevance, and a need for better personalization in the
results they received.

To address this, most have concluded that the answer lies in
retrieval augmented generation (RAG). Retrieval aug- mented
generation (RAG) is the leading technique for en- hancing
LLMs with enterprise data. For example, to ensure chatbots that
are powered by LLMs are responding with accurate, relevant
responses, companies use RAG to give LLMs domain-specific
knowledge drawn from user manu- als or support documents.

RAG separates knowledge retrieval from the genera- tion process
via external discovery systems like enterprise search. This enables
LLMs and the responses they provide to be grounded in real,
external enterprise knowledge that can be readily surfaced, traced,
and referenced.

RAG represents an approach to text generation that is based not
only on patterns learned during training but also on dynamically
retrieved external knowledge. This method combines the creative
flair of generative models with the encyclopedic recall of a search
engine. The efficacy of the RAG system relies fundamentally on
two components: the Retriever (R) and the Generator (G), the

latter representing the size and type of LLM.
The language model can easily craft sentences, but it might not
always have all the facts. This is where the Re- triever (R) steps
in, quickly sifting through vast amounts of documents to find
relevant information that can be used to inform and enrich the
language model’s output. Think of the retriever as a researcher
part of the AI, which feeds the con- textually grounded text to
generate knowledgeable answers to Generator (G). Without the
retriever, RAG would be like a well-spoken individual who
delivers irrelevant information. Retrieval-Augmented Generation
(RAG) is revolutioniz- ing traditional search engines and AI
methodologies for in- formation retrieval. However, standard RAG
systems em- ploying simple semantic search often lack efficiency
and precision when dealing with extensive data repositories. Hy-
brid search, on the other hand, combines the strengths of different
search methods, unlocking new levels of efficiency and accuracy.
Hybrid search is flexible and can be adapted to tackle a wider
range of information needs.

Hybrid search can also be paired with semantic rerank- ing (to
reorder outcomes) to further enhance performance. Combining
hybrid search with reranking holds immense po- tential for
various applications, including natural language processing
tasks like question answering and text summa- rization, even for
implementation at a large-scale.

Hybrid Search
In current Retrieval-Augmented Generation (RAG) systems, word
embeddings are used to represent data in the vector database, and
vector similarity search is commonly used for searching through
them. For LLMs and RAG systems, em- beddings - because they
capture semantic relationships between words - are generally
preferred over keyword-based representations like Bag-of-words

ABSTRACT
Large pre-trained language models have been shown to store factual knowledge in their parameters, and achieve state- of-the-art results when fine-tuned
on down- stream NLP tasks. However, their ability to access and precisely manip- ulate knowledge is still limited, and hence on knowledge- intensive tasks,
their performance lags behind task-specific architectures. Additionally, providing provenance for their decisions and updating their world knowledge remain
open research problems. Pre- trained models with a differentiable access mechanism to explicit non-parametric memory have so far been only investigated
for extractive downstream tasks. Retrieval-Augmented Generation (RAG) is a prevalent ap- proach to infuse a private knowledge base of documents with
Large Language Models (LLM) to build Generative Q&A(Question-Answering) systems. However, RAG accu- racy becomes increasingly challenging as
the corpus of docu- ments scales up,with Retrievers playing an outsized role in the overall RAG accuracy by extracting the most relevant document from
the corpus to provide context to the LLM. In this paper, we propose different ways to optimize the re- treivals, Reciprocal Rank Fusion, Reranking and
dynamic chunking schemes.

Citation: Ashish Bansal (2023) Optimizing RAG with Hybrid Search and Contextual Chunking. Journal of Engineering and Applied Sciences Technology.
SRC/JEAST-E114. DOI: doi.org/10.47363/JEAST/2023(5)E114

J Eng App Sci Technol, 2023 Volume 5(4): 2-5

(BoW) approaches.

Figure 1: BM25 Algorithm

Figure 2: idfequation

But each of vector similarity search and keyword search has its
own strengths and weaknesses. Vector similarity search is good,
for example, at dealing with queries that contain typos, which
usually don’t change the overall intent of the sentence. However,
vector similarity search is not as good at precise matching on
keywords, abbreviations, and names, which can get lost in vector
embeddings along with the surrounding words. Here, keyword
search performs bet- ter.

Therefore, combining semantic search with traditional keyword-
based search (hybrid) proves beneficial in over- coming these
limitations and yielding better results. By in- tegrating the strengths
of both search algorithms, hybrid search enhances the relevance
of returned search results, al- lowing for a comprehensive search
over both document con- tent and underlying meaning in RAG
applications. We com- bines vector and keyword search methods.
In this context, we used the widely utilized BM25 algorithm as
part of the keyword search component. BM25 relies on lexical
match- ing, scoring documents based on query term frequency
and document length normalization.

The BM25 Algorithm
We can see a few common components like qi, IDF(qi), f(qi,D),
k1, b, and something about field lengths. Here’s what each of
these is all about:
•	 qi is the ith query term.
•	 For example, if I search for “top,” there’s only 1 query term, so

q0 is “top”. If I search for “top mate” in English, Elasticsearch
will see the whitespace and tokenize this as 2 terms: q0 will be
“top” and q1 will be “mate”. These query terms are plugged
into the other bits of the equation and all of it is summed up.

•	 IDF(gi) is the inverse document frequency of the ith query
term. The IDF component of our formula mea- sures how
often a term occurs in all of the documents and “penalizes”
terms that are common. The actual formula Lucene/BM25
uses for this part is:Where docCount is the total number of
doc- uments that have a value for the field in the shard (across
shards, if you’re using search_type=fs_query_then_fetch
and f(qi) is the number of documents which contain the ith
query term.

•	 We see that the length of the field is divided by the av- erage

field length in the denominator as fieldLen/avg- FieldLen.
We can think of this as how long a document is relative
to the average document length. If a document is longer
than average, the denominator gets bigger (decreasing the
score) and if it’s shorter than average, the denomi- nator gets
smaller (increasing the score). Note that the implementation
of field length in Elasticsearch is based on number of terms
(vs something else like character length). This is exactly as
described in the original BM25 paper, though we do have a

special flag (discount over- laps) to handle synonyms specially
if you so desire. The way to think about this is that the more
terms in the docu- ment — at least ones not matching the
query — the lower the score for the document. Again, this
makes intuitive sense: if a document is 300 pages long and
mentions my name once, it’s less likely to have as much
to do with me as a short tweet which mentions me once.
Vector search represents documents as dense embed- dings,
indexing them in a vector space. Queries are em- bedded
into the same space and relevant documents are found by
semantic similarity between the query and doc- ument vectors
rather than exact term matching. The two techniques can be
combined, with BM25 providing lexi- cal matching signals
and vector search providing seman- tic matching.

•	 We see a variable b which shows up in the denominator
and that it’s multiplied by the ratio of the field length we
just discussed. If b is bigger, the effects of the length of the
document compared to the average length are more amplified.
To see this, you can imagine if you set b to 0, the effect of the
length ratio would be completely nulli- fied and the length of
the document would have no bear- ing on the score.

•	 Finally, we see two components of the score which show up
in both the numerator and the denominator: k1 and f(qi,D).

•	 f(qi,D) is “how many times does the ith query term oc- cur
in document D

•	 k1 is a variable which helps determine term frequency
saturation characteristics. That is, it limits how much a single
query term can affect the score of a given docu- ment. It does
this through approaching an asymptote.

A higher/lower k1 value means that the slope of “tf() of BM25”
curve changes. This has the effect of changing how “terms
occurring extra times add extra score.” An interpre- tation of k1
is that for documents of the average length, it is the value of the
term frequency that gives a score of half the maximum score for
the considered term. The curve of the impact of tf on the score
grows quickly when tf() k1 and slower and slower when tf() > k1.

Dense and Sparse Vectors
Benefits of using Hybrid search:

Precision: Keyword search enables exact matches to the query,
leaving no room for ambiguity.

Figure 3: Hybrid Search Implementation

Context: Semantic search allows algorithms to under- stand the
intent of the query. If no keywords are matched, the semantic
search will step in to analyze the context and meaning behind
the query, ensuring that relevant re- sults are still provided and
covering any gaps in keyword- based matching.

Relevance: Both techniques complement each other and improve
relevance for unseen queries.

That being said, keyword search is not as good as vec- tor
similarity search at fetching relevant results based on se- mantic
relationships or meaning, which are only available via word
embeddings. For example, a keyword search will relate the words

Citation: Ashish Bansal (2023) Optimizing RAG with Hybrid Search and Contextual Chunking. Journal of Engineering and Applied Sciences Technology.
SRC/JEAST-E114. DOI: doi.org/10.47363/JEAST/2023(5)E114

J Eng App Sci Technol, 2023 Volume 5(4): 3-5

“the river bank” and “the Bank of America” even though there is
no actual semantic connection between the terms - a difference
to which vector similarity search is sensitive. Keyword search
would, therefore, benefit from vector search, but the prevailing
approach is not to combine them but rather to implement them
separately using distinct methodologies.

In hybrid search -a keyword-sensitive semantic search ap- proach,
we combine vector search and keyword search algo- rithms to
take advantage of their respective strengths while mitigating
their respective limitations. Let’s take a look at the components
that make up the ar- chitecture of hybrid search. Hybrid search
combines keyword-based and vector search techniques by fusing
their search results and reranking them. Keyword-based search
in the context of hybrid search often uses a representation called
sparse embeddings, which is why it is also referred to as sparse
vector search.Sparse embeddings can be generated with different
algorithms. The most commonly used algorithm for sparse
embeddings is BM25 (Best match 25), which builds upon the
TF-IDF (Term Frequency-Inverse Document Frequency) approach
and refines it. BM25 is expalined in the above section.

Sparse embeddings are vectors with mostly zero values with only
a few non-zero values, as shown below.

[0, 0, 0, 12, 23, 0, 0, 0] Vector search Vector search is a modern
search technique that has emerged with the advances in ML.
Modern ML al- gorithms, such as Transformers, can generate a
numerical representation of data objects in various modalities (text,
im- ages, etc.) called vector embeddings. These vector embeddings
are usually densely packed with information and mostly comprised
of non-zero values (dense vectors), as shown below. This is why
vector search is also known as dense vector search.

Figure 4: Keyword vs Vector vs Hybrid search

[0.634, 0.234, 0.867, 0.042, 0.249, 0.093, 0.029, 0.123, 0.234,]
A search query is embedded into the same vector space as the
data objects. Then, its vector embedding is used to cal- culate the
closest data objects based on a specified similarity metric, such as
cosine distance. The returned search results list the closest data
objects ranked by their similarity to the search query.

Fusion of Keyword-Based and Vector Search Results
•	 Weighting-based fusion
Both the keyword-based search and the vector search re- turn a
separate set of results, usually a list of search re- sults sorted by
their calculated relevance. These separate sets of search results
must be combined. There are many different strategies to combine

the ranked results of two lists into one single ranking, as outlined
in a paper by Benham and Culpepper [1].

Generally speaking, the search results are usually first scored.
These scores can be calculated based on a spec- ified metric, such
as cosine distance, or simply just the rank in the search results list.

Then, the calculated scores are weighted with a parame- ter alpha,
which dictates each algorithm’s weighting and impacts the results
re-ranking.
hybrid_score = (1- alpha) * sparse_score + alpha * dense_score
Usually, alpha takes a value between 0 and 1, with
•	 alpha = 1: Pure vector search
•	 alpha = 0: Pure keyword search
Below, you can see a minimal example of the fusion be- tween
keyword and vector search with scoring based on the rank and
an alpha = 0.5

Below, you can see a minimal example of the fusion be- tween
keyword and vector search with scoring based on the rank and
an alpha = 0.5

A RAG pipeline has many knobs you can tune to improve its
performance. One of these knobs is to improve the relevance of
the retrieved context that is then fed into the LLM because if the
retrieved context is not relevant for answering a given question,
the LLM won’t be able to generate a relevant answer either.

Depending on your context type and query, you have to determine
which of the three search techniques is most beneficial for your
RAG application. Thus, the parameter alpha, which controls the
weighting between keyword- based and semantic search, can be
viewed as a hyperpa- rameter that needs to be tuned

•	 Rank fusion
Rank fusion algorithms, particularly Reciprocal Rank Fusion
(RRF), provided a promising alterna- tive.Reciprocal Rank
Fusion (RRF), a simple method for combining the document
rankings from multiple IR systems, consistently yields better
results than any individual system, and better results than the
standard method Condorcet Fuse. This result is demonstrated by
using RRF to combine the results of several TREC experiments,
and to build a meta-learner that ranks the LETOR 3 dataset better
than any previously reported method. Here’s how most rank fusion
algorithms work:
•	 Rank assignment: Each document from the individual

ranked lists is assigned a score based on its rank posi- tion.
Typically, the score is the reciprocal of its rank (i.e., 1/rank).
For example, a document ranked first gets a score of 1, the
second gets 0.5, the third gets 0.33, and so on.

•	 Score summation: The scores from all ranked lists are
summed for each document. Documents appearing in multiple
lists accumulate higher combined scores.

•	 Final ranking: Documents are re-ranked based on their
combined scores, producing a final ranked list that in- tegrates
the rankings from all individual search en- gines.

Chunking
Chunking is an essential preprocessing step when preparing data
for RAG for a number of reasons.
While the embedding model imposes a hard maximum limit on
the number of tokens it can embed, that doesn’t mean your chunks
need to reach that length. It simply means they can’t exceed it. In
fact, utilizing the maximum length for each chunk, such as 6200

Citation: Ashish Bansal (2023) Optimizing RAG with Hybrid Search and Contextual Chunking. Journal of Engineering and Applied Sciences Technology.
SRC/JEAST-E114. DOI: doi.org/10.47363/JEAST/2023(5)E114

J Eng App Sci Technol, 2023 Volume 5(4): 4-5

words (8K tokens), may be excessive in many scenarios. There
are several compelling reasons to opt for smaller chunks.

Common Approaches to Chunking
•	 Character splitting:
The very basic way to split a large document into smaller chunks
is to divide the text into N-character sized chunks. Often in this
case, you would also specify a certain num- ber of characters that
should overlap between consec- utive chunks. This somewhat
reduces the likelihood of sentences or ideas being abruptly cut
off at the boundary between two adjacent chunks. However, as
you can imag- ine, even with overlap, a fixed character count per
chunk, coupled with a fixed overlap window, will inevitably lead
to disruptions in the flow of information, mixing of dis- parate
topics, and even sentences being split in the mid- dle of a word.
The character splitting approach has abso- lutely no regard for
document structure.

•	 Sentence-Level Chunking or Recursive Chunking
Character splitting is a simplistic approach that doesn’t take into
account the structure of a document at all. By relying solely on
a fixed character count, this method of- ten results in sentences
being split mid-way or even mid- word, which is not great.
One way to address this problem is to use a recursive chunking
method that helps to preserve individual sen- tences. With this
method you can specify an ordered list of separators to guide the
splitting process. For example, here are some commonly used
separators:
”\n\n” - Double new line, commonly indicating para- graph breaks
”\n” - Single new line ”.” - Period
” ” - Space
If we apply the separators listed above in their specified order,
the process will go like this. First, recursive chunk- ing will break
down the document at every occurrence of a double new line
(”\n\n”). Then, if these resulting seg- ments still exceed the desired
chunk size, it will further break them down at new lines (”\n”),
and so on.

While this method significantly reduces the likelihood of sentences
being cut off mid-word, it still falls short of capturing the complex
document structure. Documents often contain a variety of elements,
such as paragraphs, section headers, footers, lists, tables, and more,
all of which contribute to their overall organization. However, the
recursive chunking approach outlined above primar- ily considers
paragraphs and sentences, neglecting other structural nuances.

•	 Optimized Chunking
This is the technique where you optimized the chunk with given
contraints of the token size and how the documnet is layout such
as a document can contains table, images and other components.
This can be down by converting the documnet to markdown
format and then chunking based on the headings, sub- headings.
More ways to handle table in dynamic pages where there are huge
tables, to handle this cases the table can chunked into smaller tables
making sure the headers are stored for all the chunks to keep the
semantics of information. This header information is very useful
in correctly identifying in interpreting these tables.

Other piece is to handle the images within a document where
VLM (Vision Language Model) can be utilzed to extract those
information.

Chunking is one of the essential preprocessing steps in any RAG
system. The choices you make when you set it up, will influence
the retrieval quality, and as a consequence, the overall performance
of the system. Here are some consider- ations to keep in mind
when designing the chunking step:
Experiment with different chunk sizes: While large chunks may
contain more context, they also result in coarse representation,
negatively affecting the retrieval precision. Optimal size chunk
depends on the nature of your documents, but aim to optimize for
smaller chunks without losing important context.

token len Vectors success near miss
500-1000 vector search 90(67%) 9(7%)

 500-1000 Hybrid
search(α = 0.5)

99(71%) 0

•	 Utilize smart chunking strategies: Opt for chunking strategies
that allow you to separate text on semantically meaningful
boundaries to avoid interrupting the information flow, or
mixing content.

•	 Evaluate the impact of your chunking choices on the overall
RAG performance: Set up an evaluation set for your specific
use case, and track how your experiments with chunk sizes
and chunking strategies impact the overall per- formance.
Unstructured streamlines chunking experimenta- tion by
allowing you to simply tweak a parameter or two, no matter
the documents’ type.

Results
For any Rag systems, the first part of the answering any question
is the search for the document where the answer ex- ists. To
search the underlying documents we were relying on the sematic
search using the embeddings from ADA model. As we explore
more on the searching capabilities using these embeddings, we
have to remember that vector databases are not the panacea of
search – they are very good at semantic search, but in many cases,
traditional keyword search can yield more relevant results and
increased user satisfaction.

In our experiment, search is based purely on semantic search using
vectors from ADA model. The semantic search helps to bring the
required URL to answer the given query for around 67% of time
(top 5) and semantic search tends to nearly miss the urls for 3%
of queries i.e. URLs exist within near miss window (top 6-10). To
improve the search and get the required URL at top, Hybrid search
was a promis- ing direction to improve the searching capabilities.
We have seen that from this methodology we are able to convert
those near miss to a success in terms for source search. Results
in search results table [1-16].

Conclusion
In this paper we talked about the hybrid search and chunk- ing
that can be utilized to optimize the RAG system, the con- text
of hybrid search as a combination of keyword-based and vector
searches. Hybrid search merges the search results of the separate
search algorithms and re-ranks the search re- sults accordingly.

In hybrid search, the parameter alpha controls the weight- ing
between keyword-based and semantic searches. This pa- rameter
alpha can be viewed as a hyperparameter to tune in RAG pipelines
to improve the accuracy of search results.

Citation: Ashish Bansal (2023) Optimizing RAG with Hybrid Search and Contextual Chunking. Journal of Engineering and Applied Sciences Technology.
SRC/JEAST-E114. DOI: doi.org/10.47363/JEAST/2023(5)E114

J Eng App Sci Technol, 2023 Volume 5(4): 5-5

Copyright: ©2023 Ashish Bansal. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

We proceeded with our hypothesis of Hybrid search can boost
the search capabilities of QA System and we exper- imented with
including sparse embedding and making our search a hybrid search
with getting best of both semantic and keyword search. As well
as with dynamic chunking(discussed above) we were able to get
better chunks which helped in better search and good synthesis
for the RAG systems.

References
1.	 Amati G (2009) BM25 Boston, MA: Springer US 257-260.
2.	 Robertson S, Zaragoza H (2009) The bm25 algorithm,

Foundations and Trends in Information Retrieval.
3.	 Johnson M (2019) Knn algorithms for semantic search. in

Proceedings of the International Conference on Ma- chine
Learning.

4.	 Jeff Johnson, Matthijs Douze, Herve´ Je´gou (2019) Billion-
scale similarity search with gpus. IEEE Transac- tions on Big
Data 7: 535-547.

5.	 Taunk K, De S, Verma S, Swetapadma A (2019) A brief review
of nearest neighbor algorithm for learning and classification,
in 2019 International Conference on In- telligent Computing
and Control Systems (ICCS) 1255-1260.

6.	 Kwiatkowski T, Palomaki J, Redfield O, Collins M, Parikh
A, et al. (2019) Natural questions: a benchmark for question
answering research, Transactions of the Association of
Computa- tional Linguistics.

7.	 Wang LL, Lo K, Chandrasekhar Y, Reas R, Yang J, et al.

(2020) Cord-19: The covid-19 open research dataset. ArXiv.
8.	 Yang Z, Qi P, Zhang S, Bengio Y, Cohen WW, et al. (2018)

Hotpotqa: A dataset for diverse, explainable multi-hop
question answering. arXiv preprint arXiv: 1809.09600.

9.	 Wang Y, Wang L, Li Y, He D, Liu TY (2013) A theo- retical
analysis of ndcg type ranking measures, in Con- ference on
learning theory 25-54.

10.	 Rajpurkar P, Zhang J, Lopyrev K, Liang P (2016) Squad:
100,000+ questions for machine comprehension of text, arXiv
preprint ar Xiv: 1606.05250.

11.	 Reddy S, Chen D, Manning CD (2019) Coqa: A con-
versational question answering challenge. Transactions of
the Association for Computational Linguistics 7: 249-266.

12.	 Siriwardhana S, Weerasekera R, Wen E, Kalu- arachchi
T, Rana R, et al. (2023) Improving the domain adaptation
of retrieval augmented genera- tion (rag) models for open
domain question answering. Transactions of the Association
for Computational Lin- guistics 11: 1-17.

13.	 AWS-Whitepaper (2021) Hybrid machine learning.
14.	 Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dry- den,

Alexandra Peste (2021) Sparsity in deep learn- ing: Pruning
and growth for efficient inference and train- ing in neural
networks. J Mach Learn Res 22.

15.	 Haney D, Gibson D (2023) in Stack Overflow Blog. Ask like
a human: Implementing semantic search on Stack Over- flow.

16.	 https://www.pinecone.io/learn/hybrid-search-intro/.

