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ABSTRACT
L. D. Landau described the quantum liquids He3 and He4 at low temperature (below 3K) by applying the quasi particle approach called the quasi particles 
(elementary excitations) as “rotons”. We discuss in this paper how these physical materials may be candidates for building the processor of a quantum 
computer of type based on the quantum set theory of G. Takeuti.

Introduction
Gaisi Takeuti showed that set theory based on von Neumann´s 
quantum logic (on the lattice of all closed linear subspaces of 
a Hilbert space) satisfies the generalization of the ZFC axioms 
(Zermelo, Frenkel plus Axiom of Choice) of set theory [1,2]. 
Therefore, a reasonable mathematics can be derived from this set 
theory but a much richer mathematics, a “gigantic” mathematics 
by the words of Takeuti. He named quantum set theory this type 
of set theory.

We discussed computing in the framework of this quantum set 
theory in the paper [3]. We concluded that a) Computing based 
on quantum set theory offers a more general framework than the 
one based on the notion of the quantum bit, and as a corollary, 
b) it could and should offer a computing machinery exceeding 
the capacity of the computers we are using in these decades. The 
main points in this study are as follow: 

• We investigated the elementary propositional systems of local 
field theories in the paper [4] and found that these propositions 
can not only take the values 0 and 1 but they have (infinitely 
many) third values, too, the so called true-false values [4-6]. 
Thus, in the case of systems with infinitely many degrees of 
freedom, von Neumann´s line of thoughts steps beyond the 
mathematics based on the two valued logic.

• The representations of the elementary propositional systems 
were looked for and the solutions of the commutation relations 
were studied on these representations. For this reason we 
had to turn to the extension of the basic tools of the theory 
of Hilbert spaces, to the theory of Hilbert A-modules HA, 
where A is the C⃰-algebra of operators in the Hilbert-space 
L2(R3). Then it was found that the extended form of the von 
Neumann´s theorem holds true on these representations [7,8]. 
We call the representation space HA as the local state space of 
the quantized system. We note that a local field theory consists 
generally of an infinite collection of (identical) systems of 
finitely many degrees of freedom connected in space [7,8].

• 1) This alternative solution of quantized fields with 
infinitely many degrees of freedom reproduces the physical 
implications of the conventional theory, legitimating in 
this way the alternative approach, 2) It uses (based on) the 
"gigantic"mathematics derivable from the quantum set theory 
of Takeuti [1,7-10].

• One can find the illustration of the geometrical structure 
of the system´s local state space both in references [7, p. 
1059] and [8, p. 198]. It shows that one may think of this 
structure as a „non commutative” Hilbert bundle. Therefore 
the conclusion is that the local states of the system [consisting 
of an infinite collection of (identical) quantum systems of 
finitely many degrees of freedom connected in space] are 
sections of the bundle. The time evolution of these local 
states is governed, instead of the global/total Hamiltonian, 
by the local Hamiltonian of the system according to the eq. 
(30) in ref. [7] or to the eq.s (5.8a) and (5.8b) in ref. [8]. This 
geometrical structure and time evaluation equations implies 
that the different alternatives [for the individual members 
of the infinite collection of (identical) quantum systems of 
finitely many degrees of freedom connected in space] given 
by an initial value of the evolution equation described by 
a section of the “non commutative” Hilbert bundle can be 
computed in parallel [3].

In the paper we discussed further on this theoretical possibility 
by using an explicit example of a rigid body of cuboid form [11]. 
The universe V(L) of Takeuti was determined. A set of real numbers 
in this universe was explicitly described including a set of binary 
numbers. Thus we arrived at the foundations of von Neumann’s 
theory of computing in terms of ordinary binary numbers. Then 
we concluded that this extension of computing to the universe 
V(L) provides a sound, mathematically well defined theory of 
quantum computing.

Now we discuss this theoretical possibility further on by studying 
its mathematical apparatus in a specific case of local field theory 
in the second section, the solution of the eigenvalue problem 
for the free field approximation in the third section and finally 
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the possible application of the results in computing in the fourth 
section.
The Mathematical Apparatuses
Let we study the theoretical method of solving a specific 
field theoretical example, in the framework of the alternative 
quantization, for the illustrative case of N real classically 
relativistic scalar fields of Lagrangian density,

L(t,x) = [1/2∑α=1
N(∂μϕα∂

μϕα – mα
2ϕα

2) – V(ϕ1, 

…, ϕN)](t,x), (t,x)∈M4, (2.1)

Where M4 is the Minkowski space. This system consists of an 
infinite collection of identical classical anharmonic oscillators of 
N degrees of freedom connected in space. Then the corresponding 
quantum field theory (QFT) should consist of an infinite collection 
of identical quantum anharmonic oscillators of N degrees of 
freedom connected in space. 

Really, as it was shown the alternative quantization method 
substitutes the individual members of the system by their quantum 
mechanical counterparts [8]. The local state pace HA is an A-valued 
Hilbert space (Hilbert A-module) of the form L2(RN)⊗A [the tensor 
product of the complex separable Hilbert space L2(RN) and the 
C*-algebra A of bounded operators of L2(R3)]. In this approach 
the quantized system is described coherently because the algebra 
of bounded operators B(HA) = B(H)⊗A of the local state space 
HA is a factor [8-10].

Von Neumann’s basic theorem of quantum mechanics (QM), 
namely that the canonical commutation relations (CCR) have 
a unique solution up to unitary equivalence (cf. yet the basic 
observations of John von Neumann in his first paper about QM), 
has an extended form in this framework: a B-irreducible set of 
unitary operators in the A-valued Hilbert space HA satisfying the 
CCR’s is uniquely determined up to A-unitary equivalence [8,12]. 
In this way this extension of von Neumann’s theorem offers the 
possibility that one formulates QFT in terms of the A-valued 
Hilbert spaces in the same unique way, up to A-unitary equivalence 
as QM is formulated in terms of complex Hilbert spaces up to 
unitary equivalence [13].

The dynamics of the system is described by the unitary map

t →exp (-iHt)

of HA onto itself, where H is the local Hamiltonian of the system 
obtained by replacing the Hamiltonian density of the classical 
system with its operator counterpart one gets by the quantization 
algorithm, i.e.

H = H(ϕ, π, ∂ϕ) =

= 1/2∑α=1
N [πα

2 + (∂ϕα)
2 +mα

2ϕα
2] + V(ϕ1, …, ϕN),

Where the fields ϕα and their canonical momentum densities πα as 
operators in HA satisfy the CCR’s [6, 7]. The classical equations 
of motion become well-defined operator equations in HA and the 
local states (the ray’s Ф of HA, i.e. for all Ф∈Ф we have <Ф|Ф>A 
= 1, where <|>A denotes the A-valued inner product in HA and 1 
is the unity operator of A) are governed by the local Schrödinger 
equation [5, 6] :

iħ∂Ф(t)/∂t = 1/2∑α=1
N[πα

2 +(∂ϕα)
2 +mα

2ϕα
2]Ф(t) + V(ϕ1, …, ϕN)

Ф(t), Ф∈HA                                                                                                       (2.2)
Then one can apply the extension of the perturbation theory of 
QM to solve this equation by using the interaction picture [7]. 
The local Hamiltonian of the free fields is

H0 = 1/2∑α=1
N[πα

2 +(∂ϕα)
2 +mα

2ϕα
2] = 

  = ∑α=1
N (Nα + 1/2)p0

α,                  (2.3)

where p0
α = (p2 + mα

2)1/2, p2 = (-iħ∂)2 = -ħ2∆, ∆ is the Laplace 
operator, and Nα = aα

+aα, aα
+ is the creation while aα is the 

annihilation operator in the local Fock space FA of the free fields 
[8]. As we see p0

α is the energy component of a Klein-Gordon-like 
free particle of mass mα, more precisely its energy operator, i.e. its 
Hamiltonian operator. In this framework the Haag-theorem does 
not block to solve the local Schrödinger equation (2.2) for non-
trivial interactions in the local Fock space FA of the free fields [8].

Application
Let we apply the formalism of the foregoing section to a system 
of Lagrangian (2.1) localized in space to a box of cuboid form 
with side-edges a, b and c. In that case the basic Hilbert space in 
the Takeuti’s approach reduces to the Hilbert space L²([0,a],[0,b], 
[0,c]) of the square integrable functions over the domain of the 
cuboid form. The local Hamiltonian operator of the free fields has 
a diagonal form like equation (2.3) in the corresponding local state 
space HA = FA where of course A is the C⃰-algebra of operators in the 
Hilbert-space L²([0,a],[0,b], [0,c]). It means that its eigenvalues 
are hermitian operators in L²([0,a],[0,b], [0,c]). For example, in 
the lowest energy local state, in the local vacuum state Ф0 when 
the local number operator Nα equals to zero for all α, the hermitian 
eigenvalue operator of the local free field Hamiltonian operator is 

                                   1/2(∑α=1
N p0

α)      (3.1)

Let we diagonalizes p0
α. It means the solutions of the eigenvalue 

equations

    p0
α2ϕn = eα

nϕn,      ϕn∈ L² ([0,a],[0,b],[0,c]) (3.2)

or equivalently

 p0
α2ϕn = eα

n 
2ϕn,      ϕn ∈L²([0,a],[0,b],[0,c])  (3.2)

-ħ2∆ϕn + mα
2 ϕn = eα

n 
2ϕn, (3.3) 

Thus we get the partial differential equations for all α by 
rearrangement

∆ϕn + ħ-2( eα
n 

2 - mα
2 )ϕn = 0,  ϕn∈L²([0,a],[0,b], [0,c])  

(3.4)

For all α the equation (3.4) becomes three one dimensional 
equations having solutions of the form [11]:

ϕ1(x) = A sin k1 x + B cos k1x,      0<x<a,
ϕ2(y) = C sin k2y + D cos k2y,      0<y<b,
ϕ3(z) = F sin k3z + G cos k3z,       0<z<c,

where
(k1)

2 + (k2)
2 + (k3 )

2 = ħ-2 (eα
2 – mα

2 )
and 
ϕ1(x)ϕ2(y)ϕ3(z) = ϕ(x,y,z)
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The wave functions of norm 1 have the form
ϕn1,n2,n3(x,y,z) = (8/abc)1/2sin (n1π/a)x sin (n2 π/b)y sin (n3 π/c)z  
 (3.5)

The square of the eigenvalues of the Klein-Gordon-like particle's 
energy are discrete in the form

(eα
n1,n2,n3)

2 = π2ħ2 (n1 
2/a2 + n2

2/b2 + n3 
2/c2) + mα

2,  n1, n2, n3 = 
1, 2, 3, ..... (3.6)

Then, in the special case when a = b = c, i.e. when the cuboid 
form is a cube, we have

eα
n1,n2,n3 = [π2ħ2 a-2(n1 

2+ n2
2+ n3 

2) + mα
2]1/2, n1, n2, n3 = 1, 2, 3, 

..... (3.6)

As we see the physical system described by the Lagrangian density 
(2.1) and localised it in a cuboid form in space, after quantization, 
has a discrete energy spectra in the first approximation (in the 
free fields approximation). We know such a phenomenon from 
condensed matter physics. Namely the collective behaviour of 
the atoms in the quantum liquids He3 and He4 at low temperature, 
below 3 K, can be described by the quasi-particle approach as it 
was showed by L. D. Landau and we have studied its mathematical 
model in the non-relativistic framework in the paper [11].

Application in Computing
Let we discuss the possibility of applying Takeuti’s quantum 
set theory in computing theory. With the relations, formulas and 
mathematical objects of the foregoing sections we can again 
determine the components of Takeuti's approach. The basic Hilbert 
space is the state space L²([0,a],[0,b], [0,c]) spanned by the 
orthonormal functions in (3.5) which set of functions constitutes 
a basis for this Hilbert space. L is the lattice of all closed linear 
subspaces of L²([0,a],[0,b], [0,c]) (the quantum logic of von 
Neumann [2]). Then the totality of all L-valued functions provides 
the universe V(L) for us [remember: the totality, the set of all 
(0,1)-valued functions (the characteristic functions of the sets in 
classical set theory) gives the universe V in classical set theory] [1]. 

We know that in the “quantum mathematics” based on V(L), the real 
numbers defined by Dedekind’s cuts are self-adjoint operators of 
the basic Hilbert space L²([0,a],[0,b], [0,c]) as it was shown by 
Takeuti in [1]. Therefore the “quantum real numbers” are self-
adjoint operators and the algebra of them is the algebra of these 
operators. The binary numbers are replaced by the “quantum 
binary numbers”, namely in symbols (0, 1) → (0, p(X), 1) [p²(X) 
= p(X), the orthogonal projector of the closed linear subspace X 
of L²([0,a],[0,b], [0,c]), i.e. X is an element of L]. In this way we 
have in symbols:

the machine-made code of a classical program has the form of 
(1, 0, 0, 1, 1, ….),
then 
the machine-made code of a “quantum program” should have the 
form of (p(X), 1, 0, p(Y), p(Z), …, 0, ...).

In this approach the unity operator 1 of the Hilbert space 
L²([0,a],[0,b], [0,c]) belongs to the true logical value, the zero 
operator 0 belongs to the false logical value, while the projection 
operators p(X), p(Y), p(Z), … to the true-false values, e.g. p(X) is 
true on the subspace X while it is false outside X (on the subspace 
L\X). Clearly the number of the true-false values is infinite.

The local state space HA= L2(RN)⊗A is isomorphic to the countably 
infinite direct sum HA = ∑1

∞ ⊕A of the Hilbert A-module A [8]. 
This means that we can represent HA with infinite column vectors 
with operator entries from A. The local states are represented by 
the rays of norm 1 (the unity operator of A) in HA. The expectation 
value of a local bounded observable F in the local state Ф in HA 
is given by the formula

                Exp F =<Ф|F|Ф>A ∈ A  (4.1)

using the A-valued inner product of HA.

Therefore in this setting the local Hamiltonian of the quantized 
system of Lagrangian (2.1) is a real number valued function in 
this Takeuti’s universe and we can write it in the form

                   H = ∑[n] En P(ϕn) (4.2)

where P(ϕn) is the orthogonal projector of the one dimensional 
subspace of L²([0,a],[0,b], [0,c]) spanned by the ray belonging 
to the eigenstate ϕn in (3.5), while En is also a hermitian element 
of A (or the unbounded extension of A ) from the spectrum of the 
local Hamiltonian (which is a hermitian operator in the A-valued 
Hilbert space HA,) [8]. Therefore it is also of the form

                  En = ∑[m] emP(ϕm) (4.3)

where the (ordinary non-negative) real number em is from the 
spectrum of En (which of course may has not only discrete but 
continuous spectrum, too). Substituting (4.3) in the relation (4.2) 
and taking into account the relations

P(ϕm)P(ϕn) = P2(ϕm)δm,n = P(ϕm) δm,n, δm,n = 1, if m = n and 0 
otherwise,

we get that the local Hamiltonian of the quantized system is a 
hermitian valued function in V(L) with values of form

             H(Ф) = Exp H = ∑[n] enP(ϕn) ∈A  (4.4)

Then one can express the expectation value of the local Hamiltonian 
H as a linear combination of binary number valued functions in 
V(L) having the form

              b = ∑[n] b(n)P(ϕn ), b(n) = 0 or 1, (4.5) 

where P(ϕn ) is the orthogonal projector in L²([0,a],[0,b], [0,c]) 
according to the relation of (4.2). The set of these binary numbers 
is a subset of the set of all binary numbers in V(L) .

Thus we have seen that one can evaluate, in finite linear 
combinations, the evolution of the quantized system of Lagrangian 
(2.1), localised in a cuboid form, in the local Fock space FA of 
the free fields by applying the eigenstates (3.5) of the energy 
operators of the Klein-Gordon-like particles of mass mα, and thus 
in a finite steps of recursions. Therefore one can approach (or 
at least estimate) the real numbers in the universe V(L) by linear 
combinations of “quantum binary numbers” in this Takeuti’s 
universe. Then we can conclude that a physical system having 
eigenstates of form (3.5) can help us to solve the the system’s 
evolution equation of form (2.2) by exciting it and measuring its 
eigenstates and the corresponding eigenvalues while inserting the 
results in the appropriate mathematical relations.
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Therefore the cuboid form of a “well and appropriately tuned up” 
rigid or condensed body, of our example in this paper, may be an 
essential part of the physical implementation of the processor for 
a “quantum computer” of this type [11].

As a closing note we remember again that, as it is well known, 
L. D. Landau described the quantum liquids He3 and He4 at low 
temperature (below 3K) by applying the quasi particle approach, 
outlined in a non-relativistic form and in a relativistic form in this 
paper in the foregoing sections [11]. He called the quasi particles 
(elementary excitations) as “rotons”. Thus these physical materials 
and rotons may be the candidates for building the processor of a 
“quantum computer” of this type. 
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