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Introduction
Serratia, a genus of Gram-negative bacteria, are known for their 
diverse biological activities, including antimicrobial agents, 
enzyme inhibitors, anti-tumor agents, immunotherapeutic agents, 
and plant growth stimulators [1-5]. They produce valuable organic 
compounds such as organic acids, biosurfactants, vitamins, lipids, 
pheromones, pigments, amino acids, cholesterol-lowing agents, 
symbiosis, receptor antagonists and agonists, biofuel, and food 
additives [3,6,7]. These metabolites are produced during the 
late growth phase (idiophase) of the microorganism when the 
exhaustion of a key nutrient source narrows growth [8]. 

Serratia species can grow on solid media at temperatures ranging 
from 20°C to 37°C and in liquid media at 5°C to 40°C with 
optimum pH values of 5 - 9. Some strains of Serratia have an 
extremely species-specific secretion system (type VI) also known 
as T6SS which enables the production of broad-spectrum bioactive 
compounds. This system helps the production of antibacterial 
toxins and self-protecting bacteriophage-contained proteins 
that add to virulence against competitors [9]. The production 
of bioactive secondary metabolites in Serratia is ascribable to 
Quorum Sensing (QS) [10]. There are various studies about the 
antimicrobial metabolites of Serratia marcescens, for example, 
the culture supernatant of Serratia marcescens 2170 has potent 

cytotoxic activity against cancer cell lines [11]. There have 
been reports of Serratia sp. strains ATCC 39006 producing 
broad-spectrum β-lactam antibiotic carbapenem and release of 
haemolysin by S. marcescens strain 274 and strain 39006 [12].

Secondary metabolites are classified into five classes, namely 
alkaloids, terpenoids and steroids, fatty acid-derived substances 
and polyketides, enzyme cofactors and nonribosomal polypeptides 
[13]. The alkaloids are amine groups, and the terpenoids and steroids 
are biologically synthesized from isopentenyl diphosphate. The 
fatty acid-derived substances and polyketides are biosynthesized 
from acyl precursors such as acetyl CoA, methylmalonyl CoA and 
propionyl CoA while the nonribosomal polypeptides are amino 
acid derivatives synthesized without direct RNA transcription. The 
nonprotein low-molecular enzyme components are the enzyme 
cofactors [14].

Secondary metabolites are controlled by peculiar regulatory 
mechanisms such as induction, carbon catabolic regulation, and 
feedback regulation [15]. They are not essential for the vegetative 
growth of producing organisms but are considered differentiation 
compounds conferring adaptive roles, such as acting as a defense 
weapon against other microorganisms, signaling molecules in 
ecological interaction, symbiosis, metal transport, competition, 
bioremediation, reproductive agent, and interference in spore 
formation and germination [13]. These bioactive metabolite 
compounds act as valuable resources for biotechnological 
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Serratia marcescens produces secondary metabolites, which are bioactive chemicals generated during its non-essential metabolic activities. These 
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subtilis (42.00±2.65 mm) and Proteus vulgaris (32.67±1.15 mm), and least with Pseudomonas aeruginosa (10.00±2.00 mm) at 400 mg metabolite 
concentration. The antibacterial effect decreased with a decrease in the concentration of the metabolite. The results show that Serratia marcescens 
exhibits potential as an antibacterial agent within the pharmaceutical and food sectors.
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applications, specifically for pharmaceuticals, nutraceuticals, 
and cosmetic industries.

This study aimed to profile the constituents of the secondary 
metabolites of Serratia marcescens and assess their antibacterial 
activity against clinical pathogens. 

Materials and Methods
Sample Collection
A total of 45 soil samples were collected from different farmlands, 
gardens, and flower beds around Nnamdi Azikiwe University, 
Awka. The Nnamdi Azikiwe University Awka campus is located 
on the Enugu-Onitsha Expressway in Awka, Anambra, Nigeria. 
The university is located in Southeast Nigeria, precisely between 
latitude 6.245° to 6.283° N and longitude 7.115° to 7.121° E. 
Replicate samples were obtained by random sampling at the 
sites at a depth of 5 cm from the surface using a sterile auger. 
The samples were labelled according to the sites of collection. 
The samples were then transported in sterile zip-lock polyethene 
bags in ice packs to the Department of Applied Microbiology and 
Brewing Laboratory. 

Isolation of Serratia marcescens
One gram of each soil sample was introduced into 10 mL of 
distilled water. The suspension was serially diluted 10-fold, and 
100μl of each soil suspension was placed on Glucose Yeast extract 
Calcium carbonate (GYC) medium for the isolation of Serratia 
species, composed of 5% glucose, 1.0% yeast extract, 2.0 % 
calcium carbonate and 1.5% agar, pH 5.94. The inoculated plates 
were incubated at 30ᵒC for 24 hours. Developed colonies were 
subcultured on sterile GYC agar plates and further stored on 
nutrient agar slant at 40C [16].

Identification of Serratia marcescens
Several biochemical tests and 16S rRNA sequencing were 
performed for the identification of the isolates. The biochemical 
tests carried out were gram reaction, catalase test, oxidase test, 
sugar fermentation test, methyl red test, and Voges-Proskauer test.

Catalase Test
The 24-hour-old culture of the test isolate was smeared onto a 
grease-free slide using a sterile inoculating loop. A small amount 
(2 - 3 drops) of hydrogen peroxide solution was applied to the 
smear. The presence of gas bubbles on the surface of the slide 
indicated a positive result [17]. 

Oxidase Test
A solution of 0.1 g of oxidase reagent was prepared by dissolving 
it in 1 ml of sterile water. A sterile filter paper was immersed in 
the solution using sterile forceps and then left to dry. A small 
amount of the 24-hour-old culture of the isolate was applied onto 
the filter paper. The formation of purple colour signifies a positive 
oxidase test [17].

Sugar Fermentation	  
The sugars tested were lactose, glucose, sucrose, mannitol, 
galactose, D-xylose and myo-inositol. A loopful of the 24-hour-
old culture of the test isolate was inoculated into a sterile sugar 
solution containing 1% sugar solution, 1% peptone water and 
bromothymol blue indicator in a test tube containing an inverted 
Durham tube. The tube was incubated for 24 hours, the colour 
change from blue to yellow indicated positive sugar fermentation, 
and the presence of bubbles at the tip of the Durham tube indicated 
gas production [17].

Methyl Red Test
A 24-hour-old culture of the test isolate will be inoculated into 
5 mL of glucose–phosphate peptone water and incubated for 24 
hours at 37°C. Thereafter, 3 drops of methyl red indicator will 
be added to the culture broth. The production of a reddish color 
upon adding the indicator will signify a positive result, while a 
yellowish color will denote a negative result [17].

Voges-Prosakeur Test
 A 24 hr old culture of the test isolate will be inoculated into 5 mL 
of glucose–phosphate peptone water and incubated for 24 hours at 
37°C. Thereafter, 5 drops of potassium hydroxide (KOH) will be 
added. The tubes will be shaken at intervals to ensure maximum 
aeration. The development of red color within 30 Sec and 60 Sec 
will indicate a positive Voges-Proskauer result, while the absence 
of red color will show a negative VP result [17]. 

16S rRNA Sequencing
The genomic DNA (16S rRNA) was isolated using the ZR 
bacterial DNA miniprep kit from Zymo Research. The DNA 
was subjected to polymerase chain reaction (PCR) amplification 
using Taq 2X Master Mix obtained from New England Biolabs 
(M0270). The primers utilized were the forward primer (27F: 
AGAGTTTGATCMTGGCTCAG) and the reverse primer (1525R: 
AAGGAGGTGWTCCARCCGCA). The cycling conditions for 
amplifying the 16S rRNA were as follows: initial denaturation at 
94˚C for 5 minutes, followed by 36 cycles of denaturation at 94˚C 
for 30 seconds, annealing at 56˚C for 30 seconds, and elongation 
at 72˚C for 45 seconds. Afterwards, do a last elongation step 
at a temperature of 72˚C for 7 minutes, and then maintain the 
temperature at 10˚C. The DNA was subjected to electrophoresis 
on an agarose gel and observed using a UV transilluminator. 
The amplified fragments underwent sequencing using a Genetic 
Analyzer 3130xl sequencer from Applied Biosystems, following 
the instructions provided by the manufacturer. The sequencing kit 
utilized was the BigDye Terminator v3.1 cycle sequencing kit. The 
genetic study was conducted using Bio-Edit software and MEGA 
X. The evolutionary history was determined using the Neighbor-
joining method, and the evolutionary distances were calculated 
using the maximum Composite Likelihood approach [18,19].

Secondary Metabolite Production by Submerged Fermentation
A loopful of Serratia marcescens was introduced into 10 ml sterile 
distilled water in a test tube and standardized by referring to 0.5 
Mc Farland standard. This served as the seed inoculum.

A submerged fermentation method was adopted for the release 
of metabolites by Serratia marcescens. De Man Rogosa and 
Sharpe (MRS) broth medium supplemented with finger millet was 
used as the fermentation medium. A 50 ml sterile fermentation 
medium in a 100 ml Erlenmeyer flask was inoculated with 1 ml 
of seed inoculum (1.2 × 106 cells/ml). The inoculated flasks were 
incubated for 14 days at 30 °C in a rotary shaker at 150 rpm. 
The experiment was carried out in triplicate and an uninoculated 
flask served as control. At the end of the incubation period, 30 
ml of sterile distilled water was added to the flasks and followed 
by agitation for 5 minutes at 150 rpm. The fermentation broth 
was then allowed to stand for 24 hours at 25 0C and the content 
was centrifuged at 10,000 X g for 15 mins. The supernatant was 
separated using a pre-weighed Whatman No 1 filter paper, air-
dried, weighed and used for further studies [20].

Recovery of the Antibacterial Metabolite
Ten grams of the filtrate was introduced in 10 ml of distilled 
water in a flask and subjected to solvent extraction to recover 
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antibacterial metabolites in pure form. Ethyl acetate served as 
the solvent and was added to the suspension in a ratio of 1:1 v/v. 
The mixtures were kept for 15 minutes under periodic shaking. 
The ethyl acetate phase and aqueous phase were hoarded and 
concentrated by evaporation to near dryness in an oven. 

Structural Profiling of the Secondary Metabolite
Gas chromatography-mass spectroscopy was employed to identify 
the various compounds present in the secondary metabolite. A 
volume of one microliter of the extracted metabolite solution was 
introduced into a GC-MS instrument (Agilent Technology 5890) 
equipped with a split detector and Mass Spectrometer Detector. 
Helium was employed as the carrier gas with a consistent flow 
rate of 1 ml/min and an injection volume of 1 μl. The injector 
temperature was set at 250˚C, while the ion-source temperature 
was maintained at 280˚C. The overall duration of the GC process 
was 90.67 minutes. The identification of peaks was achieved by 
a combination of referencing their mass spectra and utilizing the 
NIST08 mass spectral database [21].

Determination of Antimicrobial Activity
Clinical organisms, Escherichia coli, Pseudomonas aeruginosa, 
Staphylococcus aureus, Klebsiella  pneumoniae, Proteus vulgaris 
and Bacillus subtilis were sourced from Clinical Diagnostic 
Laboratory NVRI Vom and used to test the antimicrobial 
activity of the antibiotic produced by Serratia marcescens. Filter 
paper disc diffusion technique was employed for the antibiotic 
susceptibility test. A loopful of the 24-hour-old culture of test 
organisms on a nutrient agar plate was standardized in 10 ml 
distilled water contained in a test tube to 0.5 Mc Farland standard. 
One millilitre of the standardised inoculum was spread inoculated 
onto sterile Mueller Hinton agar. The antibiotic disc was prepared 
by impregnating 0.01ml of the extracts onto a filter paper disc 
at varying concentrations of “400 mg, 200 mg, 100 mg, 50 mg, 
25 mg and 12.5 mg.” The discs were placed onto the Mueller 
Hinton culture plate under sterile conditions. Growth inhibitions 
were measured after incubation for 24 h at 25 0C. Antibacterial 
activities were based on the zone of inhibition around the discs. 
The experiment was performed in triplicate and the zone of 
inhibition was recorded as mean±SD [20].

Data Analysis
The analyses were conducted in triplicate, and the findings 
were recorded as mean±SD. The mean and standard deviation 
were calculated using Microsoft Excel 365. The analysis of 
ariance (ANOVA) of the data obtained during the antibacterial 
susceptibility test was done using SPSS version 20.

Results and Discussion
A variety of Serratia marcescens strains have been found in soil, 
freshwater lakes, and the ocean. These findings were reported by 
other researchers [20, 22 - 27]. The primary objective of this study 
was to isolate metabolite-producing Serratia marcescens from the 
local environment. The isolate’s basic biochemical features, as 
evaluated for preliminary identification of S. marcescens (Table 
2), indicate that the organism is motile and positive for catalase 
enzyme production, as well as glucose, mannitol, galactose, 
D-xylose, and myo-inositol fermentation. However, it is negative 
for cytochrome oxidase enzyme production, Voges Proskauer and 
methyl red tests and lactose fermentation.

Table 1: Basic Biochemical Test Result for the Identification 
of Serratia Marcescens
Test Result
Gram reaction Gram-negative rod
Catalase +
Oxidase -
Motility +
Citrate utilization +
Methyl red -
Voges Proskaeur -
Sugar fermentation
Lactose -
Glucose +
Mannitol +
Sucrose +
Galactose +
D-xylose +
Myo-inositol +

Extraction of genomic DNA from the isolate was performed, 
followed by sequencing and alignment using MUSCLE with 
default settings. The BLAST analysis determined that the 
sequences were Serratia marcescens and had a homology of 100% 
with strain KRED (NR_036886.1). The phylogenetic analysis 
revealed that several strains of S. marcescens, including strain 
Gol3 (NCBI accession number MT263018.1), strain P3 (NCBI 
accession number MZ477005.1), strain WES1 (NCBI accession 
number MN960115.1), and strain GMB S5 (NCBI accession 
number OR974900.1), demonstrated a pairwise similarity of 
100%. 

Figure 1: Phylogenetic Tree Showing Evolutionary Relatedness 
of the Isolate to other Strains of S. marcescens.

This work involved the profiling of the chemical components 
of the secondary metabolite using Gas Chromatography-
Mass Spectrometry (GC-MS). The secondary metabolites of 
S. marcescens eluted between 12 and 36 minutes, resulting in 
the recovery of a total of 18 bioactive compounds (Figure 2). 
Compounds of aldehydes, fatty acids, β-Carotene, terpenoids, 
alcohol, and esters are hydrocarbons consisting of carbon rings 
ranging from 8 to 21. The component with the highest relative 
abundance was oleic acid, with a value of 21.9013%. 
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The list of aldehydes in Table 2 include 8-Hexadecenal; 
14-methyl-, (Z)-; 9,17-Octadecadienal, (Z)-; 9-Octadecenal, (Z)-; 
13-Octadecenal, (Z)-, and 9,12-Octadecadienal. 8-Hexadecenal, 
14-methyl-, (Z)-, also referred to as (Z)-14-Methylhexadec-
8-enal, is a fatty aldehyde [28]. It has been documented as a 
primary component of the Scutellaria comosa plant, a medicinal 
herb employed for the traditional treatment of several illnesses 
in Uzbekistan [29,30]. It exhibits antimicrobial activity against 
multiple strains of bacteria and fungi, including Escherichia coli, 
Staphylococcus aureus, Enterococcus faecalis ATCC 29212, 
Pseudomonas aeruginosa, Candida albicans ATCC 90028, 
Candida parapsilosis ATCC 90018, Candida krusei ATCC 6258, 
and Fusarium oxysporum [31,32]. 

9,17-Octadecadienal, (Z) is a naturally occurring compound 
present in endophytic fungus and medicinal plants [33-36]. It has 
antioxidant and antibacterial properties [37]. The fatty aldehyde, 
9-Octadecenal, (Z)-, is officially recognised as a flavoring agent 
by the FAO/WHO, with octadecenyl aldehyde as its record name 
[38]. Notably, the chemical has been isolated as a biologically 
active byproduct from an endophytic fungus, Paecilomyces sp 
(JN227071.1), which has antifungal properties against the disease-
causing Rhizoctonia solani [39].

13-Octadecenal, (Z)-, is a chemical molecule classified as 
an alpha, beta-unsaturated aldehyde. It has been found in the 
leaf extract of Lindera setchuenensis and Bidens pilosa with 
antimicrobial properties and identified as a primary component of 
Citrus bergamia essential oil which has more potent antibacterial 
effects against Staphylococcus aureus ATCC6538 compared to 
Enterobacter ATCC 13048 [40-42]. Promising antibacterial 
efficacy against Staphylococcus aureus, Bacillus cereus, Bacillus 
subtilis, Escherichia coli, Salmonella typhimurium, Pseudomonas 
aeruginosa, Klebsiella pneumonia, and Candida albicans has 
been shown by the recovery of 9,12-Octadecadienal in endophytic 
Aspergillus species. Therapeutic plants such as Annona muricata 
seeds, Jacaranda cuspidifolia leaves and Clitoria ternatea L 
contain it as a bioactive component [43-45]. 

This work has identified 9,12-Octadecadien-1-ol, (Z,Z)-, also 
referred to as octadeca-9,12-dien-1-ol, as a secondary metabolite 
belonging to the alcohol class. This compound was found to be 
the highest detected compound in GC-MS analysis. It is found 
in most plant essential oils and has antibacterial, antioxidant, and 
anti-inflammatory characteristics [46,47]. Previous studies have 
documented it as a secondary metabolite. For example, Krishnaveni 
reported the presence of 9,12-Octadecadienal among the compounds 
recovered in their study [48]. Similarly, Rajput and Bithel observed 
a relative abundance of 0.54% of the compound in the GC-MS 
analysis of Hydnocarpus laurifolia [49]. 9,12-Octadecadien-1-ol, 
(Z,Z)- is a constituent of the endometabolite produced by honeybees, 
as well as from the seeds and seed oil of Millettia pinnata and the 
extract of Hydnocarpus laurifolia (Dennst) [49,50]. An investigation 
demonstrated the antibacterial, antibiofilm, antioxidant, and 
anticancer properties of a seed extract from Pongamia pinnata 
that contains 9,12-octadecadien-1-ol as a primary bioactive 
constituent [51]. Known for its skin conditioning properties, 
isopropyl linoleate is a widely used cosmetic component [52]. 
Significantly, it is reconstituted in an Indian herbal essential oil that 
has potent insecticidal properties against Aedes aegypti and Culex 
quinquefasciatus [53]. 

Esters recovered in this investigation include methyl-9,12-
heptadecadienoate (2.02 %), E,E-10,12-Hexadecadien-1-ol 

acetate (5.21 %), Z,Z-10,12-Hexadecadien-1-ol acetate (0.68 %), 
9-Octadecenoic acid (Z)-, 2-hydroxy-1-(hydroxymethyl) ethyl ester 
(0.08 %) and 9-Octadecenoic acid (Z)-, 2,3-dihydroxy-, propyl 
ester (0.10 %) (Table 2). These compounds are frequently present 
in medicinal plants that have demonstrated remarkable antibacterial 
properties. By way of illustration, methyl 9,12-heptadecadienoate 
was isolated from walnut oil, a compound commonly employed 
in pharmaceuticals [54]. Similarly, Z, Z-10,12-Hexadecadien-1-ol 
acetate was detected in the crude extract of Cucurbita moschata 
(pumpkin) seeds and Benincasa hispida [55]. 9-Octadecenoic acid 
(Z)-, 2-hydroxy-1-(hydroxymethyl) ethyl ester was identified as a 
constituent of Abrus precatorius L. with antibacterial, insecticidal, 
antiprotozoal, antiparasitic, anti-inflammatory, antioxidant, and 
immunomodulatory properties [56]. The moiety 9-Octadecenoic 
acid (Z)-, 2,3-dihydroxy-, propyl ester was isolated from the root of 
Rhazya stricta [57] and from the endophytic fungus Cunninghamella 
bigelovii. This compound has potential industrial applications in 
several sectors such as food, biological pharmacy, and chemical 
industry [58]. 

Oleic acid, cis-vaccenic acid, Z-4-Nonadecen-1-ol acetate – and 
9,12-Octadecadienoyl chloride, (Z, Z)- are components of the 
fatty acid group. Oleic acid is an endogenous fatty acid with 
antibacterial properties that is used in several pharmaceutical 
formulations. It has been isolated as a medicinal compound from 
the intracellular extract of Glutamicibacter mysorens [59]. It 
is present in several extracts of biological products which are 
effective against microbial infections such as Moringa oleifera 
Lam. Leaves and seeds, Glycine max oil, Oenothera biennis L, 
and apricot seed oil [60-63]. A study conducted by Pushparaj 
et al. found that oleic acid improved antibiotic action against 
multidrug-resistant Pseudomonas aeruginosa strains [64]. Cis-
vaccenic acid has been shown to exhibit antiviral, antioxidant, 
and anti-inflammatory characteristics. Dembitsky et al. have 
identified it as a prominent fatty acid component of the cellular 
slime mold, Dictyostelium discoideum [65]. This compound can be 
found in the leaves of Moringa oleifera and Solanum khasianum, 
as well as in the bark extract of Quercus leucotrichophora A. 
Camus Z-4-Nonadecen-1-ol acetate was recovered in ethanolic 
extract of fenugreek seed while 9,12-Octadecadienoyl chloride, 
(Z, Z)- was found in Amphora coffeaeformis extract and four 
wild edible macrofungi (Auricularia auricula-judge (Bull.) J. 
Schröt, Pleurotus ostreatus (Jacq. ex Fr.) P. Kumm, Pleurotus 
tuber-regium (Rumph. ex Fr.) and Schizophyllum commune. 
Furthermore, these macrofungi have antibacterial and antioxidant 
characteristics [66-69]. 

Figure 2: GC-MS Chromatogram of the Bioactive Compounds 
Present in the Secondary Metabolite of Serratia marcescens
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Table 2: Bioactive compounds of the metabolite of Serratia marcescens
S/N Retention 

Time (mins)
Compound Relative Abundance 

(%)
Nature Chemical formula

1 5.154 Oleic Acid 21.9013 Fatty acid C18H34O2

2 31.787 9,12-Octadecadienoyl chloride, (Z,Z)- 21.5821 Fatty acid C18H31ClO
3 31.877 9,12-Octadecadien-1-ol, (Z,Z)- 11.9854 Fatty alcohol C18H34O
4 5.352 8-Hexadecenal, 14-methyl-, (Z)- 5.352 Aldehyde C17H32O
5 13.409 E,E-10,12-Hexadecadien-1-ol acetate 5.2143 Fatty ester C18H32O2

6 11.863 9,17-Octadecadienal, (Z)- 4.7361 Fatty aldehydes C18H32O
7 12.752 Isopropyl linoleate 3.0308 Ester C21H38O2

8 11.706 Methyl 9,12-heptadecadienoate 2.0179 Methyl esters C18H32O2

9 20.513 13-Octadecenal, (Z)- 1.7119 Fatty aldehyde C18H34O
10 18.869 9-Oxabicyclo[6.1.0]nonane 1.687 Oxabicyclic 

compound
C8H14O

11 30.567 9,12-Octadecadienal 1.4704 Aldehydes C18H32O
12 12.257 9-Octadecenal, (Z)- 0.9368 Aldehyde C18H34O
13 19.072 cis-Vaccenic acid 0.6964 Fatty acid C18H34O2

14 30.710 Z,Z-10,12-Hexadecadien-1-ol acetate 0.6773 Ester C18H32O2

15 34.764 9-Octadecenoic acid (Z)-, 2,3-dihydroxy-, propyl 
ester

0.1015 Ester C21H40O4

16 29.152 9-Oxabicyclo[6.1.0]nonane, cis- 0.0947 Terpenoid C8H14O
17 35.135 9-Octadecenoic acid (Z,Z)-, 2-hydroxy-1-

(hydroxymethyl) ethyl ester
0.0771 Ester C21H38O4

18 34.411 Z-4-Nonadecen-1-ol acetate 0.0632 Fatty acid C21H40O2

Experiments were conducted to evaluate the antibacterial efficacy of the secondary metabolite against Escherichia coli, Pseudomonas 
aeruginosa, Proteus vulgaris, and Bacillus subtilis. As seen in Table 3, all the test organisms exhibited susceptibility to the metabolite 
at the various concentrations examined. However, there were notably greater inhibitory effects observed at 400 mg. These findings 
suggest that the antibacterial efficacy of the metabolite is directly proportional to the concentration. A pictorial depiction of the 
experiment is shown in Figure 3. The susceptibility of the organisms to the metabolite exhibits substantial variation (P < 0.05). 
Antibacterial activity is considered strong when the zone of inhibition is greater than or equal to 20 mm, while moderate and weak 
activity is indicated by zones of inhibition of 10 mm and less than 10 mm, respectively [70]. Therefore, the secondary metabolite of 
S. marcescens in this work exhibited potent antibacterial action against P. vulgaris and B. subtilis at all doses, except for 12.5 mg. 
This result corroborates the report of other researchers. Karayildirim et al. reported the antibacterial activity of Serratia marcescens 
metabolite against Staphylococcus aureus with a 29.4 mm zone of inhibition [71]. The crude extracts of S. marcescens P1 and NP1 
displayed broad-spectrum antimicrobial activity against clinical, food and environmental pathogens, such as multidrug-resistant 
Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus and Cryptococcus neoformans [6]. Serratia marcescens could 
be potentially used as a broad-spectrum therapeutic agent against multidrug-resistant bacterial and fungal pathogens.

Table 3: Antibacterial Susceptibility of Test Organisms to the Secondary Metabolite Showing Zone of Inhibition
Test Organism Zone of Inhibition (mean±SD) in mm

400 mg 200 mg 100 mg 50 mg 25 mg 12.5 mg
Escherichia coli 17.00±2.00 13.67±0.58 12.00±1.73 9.33±2.31 7.33±0.58 5.33±1.15
Pseudomonas 
aeruginosa

10.00±2.00 7.67±0.58 6.67±0.58 6.33±0.58 6.67±1.15 5.67±0.58

Proteus vulgaris 32.67±1.15 30.33±2.52 27.33±0.58 27.33±0.58 21.00±1.73 18.67±1.15
Bacillus subtilis 42.00±2.65 31.67±0.58 29.33±0.58 26.67±1.15 24.67±1.15 18.67±2.08
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Figure 3: Pictorial Representation of the Antibacterial Susceptibility of the Test Organisms
where (A) E. Coli (B) P.aeruginosa (C) P. vulgaris and (D) Bacillus subtilis 
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