
J Biosen and Bioelec Res, 2024

Open Access

Journal of Biosensors and Bioelectronics
Research

ISSN: 2976-7466

Volume 2(6): 1-10

Review Article

Self-Locking Domino Logic Pipelines: Application in RISC-V
Architectures in FPGA

Chair of Reliable Circuits and Systems Friedrich-Alexander-University Erlangen-Nuremberg Paul-Gordan-Str. 5, 91052 Erlangen, Germany

Florian Deeg*, Xingzhou Chen and Sebastian M Sattler

*Corresponding author
Florian Deeg, Chair of Reliable Circuits and Systems Friedrich-Alexander-University Erlangen-Nuremberg Paul-Gordan-Str. 5, 91052 Erlangen,
Germany.

Received: October 21, 2024; Accepted: October 25, 2024; Published: November 04, 2024

Keywords: Domino Logic, Asynchronous Design, Self-Locking,
Risc-V, GALS, FPGA

Introduction
Synchronous circuits represent the pinnacle of circuit design
innovation. Nevertheless, asynchronous circuits are becoming
increasingly significant in the field of circuit design, offering a
multitude of advantages over their synchronous counterparts.
These include enhanced performance, reduced power consumption,
increased modularity, the absence of a single point of failure,
and the elimination of clock skew, among others. For further
information, please refer to [1]. Furthermore, asynchronous
circuits demonstrate enhanced resilience to fluctuations in supply
voltage and temperature. In asynchronous designs, local faults
are often constrained to the affected area, thereby enhancing
fault tolerance. Moreover, they generate less electromagnetic
interference and are therefore more suitable for applications in
which electromagnetic compatibility is a significant consideration
[2]. However, there are also some disadvantages to this approach,
including the necessity for more complex design methods and
an associated lack of design tools. FPGAs are a special type of
hardware component distinguished by their high performance,
flexibility, and energy efficiency. In contrast to conventional
integrated circuits, which are pre-programmed for a specific

function, FPGAs can be reconfigured after manufacture to under-
take new tasks or optimize performance. This feature renders
them an optimal platform for the development of demanding
applications that require high computing power, low latency,
and customizability. For a considerable period, the market for
processors was divided between two architectures: x86 and
ARM, which are mainly used in mobile devices. In recent years,
however, a new contender has emerged, offering a novel approach
in the form of RISC-V. RISC-V is a license-free instruction set
architecture (ISA) that originated at the University of California,
Berkeley [3]. In contrast to the x86 architecture, which has evolved
over time and is characterized by a high degree of complexity, the
RISC-V architecture was developed from scratch. The principle of
simplicity was given precedence. The objective of this simplicity
is twofold: firstly, to reduce the cost of hardware, and secondly, to
enhance flexibility. RISC-V is becoming an increasingly significant
player in the field of processors [4]. A significant advantage is that
it is not subject to licensing restrictions. This allows a multitude of
companies and research groups to develop and utilize processors
based on RISC-V. This has resulted in the emergence of a diverse
range of RISC-V processors, which are employed in a multitude
of applications. The spectrum encompasses a range of devices,
from those designed for energy efficiency in the Internet of Things
(IoT) to high-performance computers. The simplicity, flexibility,

ABSTRACT
This paper presents the design and implementation of a self-locking domino logic pipeline controller for a RISC-V processor implemented on an FPGA.
The emphasis is on asynchronous circuit design, which offers advantages such as enhanced resilience to supply voltage fluctuations, optimized power
efficiency, and the elimination of clock-related issues such as skew and single-point failures. By leveraging the asynchronous Globally Asynchronous
Locally Synchronous (GALS) systems and domino logic, the controller ensures hazard-free operation while maintaining race-free processing. The
asynchronous approach, integrated into a 32- bit RISC-V processor, allows for flexible and energy-efficient operation, thereby demonstrating its potential
for performance-critical applications. This paper high- lights the contrasts between the asynchronous design and the traditional synchronous multicycle
processor, demonstrating the benefits of asynchronous systems in terms of power consumption and performance. A significant contribution of this
design is the pipeline’s completion detection mechanism, which ensures that each processing stage locks until valid results are obtained, thereby markedly
enhancing system stability. Furthermore, the paper investigates the parallelization of domino gates and introduces an asynchronous Arithmetic Logic
Unit (ALU), which further optimizes performance through self-locking mechanisms. The power, performance, and area (PPA) analysis of the design
demonstrates considerable improvements in throughput (up to 10%) and reduced latency per instruction in comparison to its synchronous counterpart,
while maintaining moderate resource utilization on an FPGA. The results indicate that asynchronous domino logic pipelines may offer a promising
approach for achieving energy-efficient and high-performance processors in future computing architectures.

Citation: Florian Deeg, Xingzhou Chen, Sebastian M Sattler (2024) Self-Locking Domino Logic Pipelines: Application in RISC-V Architectures in FPGA. Journal of
Biosensors and Bioelectronics Research. SRC/JBBER-135. DOI: doi.org/10.47363/JBBER/2024(2)126

J Biosen and Bioelec Res, 2024 Volume 2(6): 2-10

and license-free nature of RISC-V make it an attractive option for
many developers. Other positive aspects of RISC-V include its
energy efficiency, scalability, and security, as the basic architecture
of RISC-V is so simple and offers little scope for attack.

Structure of the Paper
A brief review of the literature is presented to distinguish this paper
from others in the field. The following section presents the circuit
structure, which comprises the self-locking pulse circuit, the dual-
rail domino logic circuit, and the entire pipeline with completion
detection and its realization in the FPGA. Subsequently, an existing
synchronous multicycle RISC-V processor is introduced, after
which a control automaton for this Turing-complete processor is
realized as a domino logic pipeline. The pipeline is demonstrated
as a means of controlling a GALS system, which can be divided
into subcircuits at will in order to achieve the highest possible
speed and safety. The subsequent chapter presents the results and
offers a comparison with synchronous automata. Subsequently,
we will present a blueprint for a completely asynchronous central
processing unit (CPU). In conclusion, the potential for future work
in this area is discussed.

Related Work
In their study, presented a method for optimizing the clocking
process in self-resetting domino pipelines [5, 6]. This method
employs the use of soft synchronizers and roadblocks to facilitate
time borrowing, thereby maximizing throughput and eliminating
latch overhead. The authors introduced a high-performance
clocking methodology for self-resetting domino pipelines that
optimizes the clock rate through time borrowing and robust
handling of clock skew while eliminating latch overhead. However,
their approach does not sufficiently simplify the complex clocking
and synchronization management, nor does it provide a robust
precharge management system. Furthermore, it does not provide
a streamlined implementation and testing methodology.

In the studies a method for optimizing the clocking process in
self-resetting domino pipelines was presented [5, 6]. This approach
employs soft synchronizers and roadblocks to facilitate time
borrowing, thereby maximizing through- put and eliminating latch
overhead. The authors introduced a high-performance clocking
methodology that optimizes the clock rate through time borrowing
and robust handling of clock skew while removing latch overhead.
However, their approach does not adequately simplify the complex
management of clocking and synchronization, nor does it provide
a robust precharge management system. Additionally, it lacks a
streamlined implementation and testing methodology.

In a high-speed add-compare-select unit for Viterbi decoders
using locally self-resetting CMOS was proposed [7]. This design
achieves significantly higher data rates in comparison to static and
domino CMOS designs. However, it is associated with increased
power consumption and design complexity due to the necessity
of careful device sizing and additional components.

In contrast, the authors of introduced a dual keeper structure
and delay logic gates to enhance the performance and noise
margin of domino logic gates, ensuring high-speed switching
and robustness to noise and timing variations [8]. However, their
approach introduces additional design complexity and does not
sufficiently address scalability issues.

In their work they developed a new type of logic gate with input
disable functionality for use in rapid and power-efficient arithmetic

operations [9]. They demonstrated the application of these gates
in a 16-bit parallel adder. However, their work primarily focuses
on the development of new arithmetic circuits and does not
extensively validate the logic in broader applications or address
the issue of implementation complexity.

In two novel synchronization approaches for clockless pipelining
of coarse grain datapaths using self-resetting stage logic were
proposed as a means of achieving high throughput. However,
these approaches are not scalable and are associated with increased
implementation complexity [10]. In their seminal work they
introduced the Self-Resetting Logic with Gate Diffusion Input
technique, which enables the creation of low-power, high-speed
logic circuits [11]. They demonstrated the effectiveness of this
technique through the design and simulation of various adders.
However, their approach results in an increased number of
transistors and a more complex design.

In their study a method for designing high-throughput and ultra-low-
power asynchronous domino logic pipelines based on a constructed
critical data path was presented [12]. However, their approach does
not fully address the challenges of design automation, placement,
routing optimization, and timing verification. The implementation
of low-power and high-performance asynchronous dual-rail
interconnect using domino logic gates in 16-nm technology was
proposed in [13]. The integration of self-locking mechanisms or the
detailed implementation of a complete RISC-V pipeline controller
remains an open issue. In a novel framework for automating the
design of asynchronous logic control in AMS electronics was
discussed, integrating formal verification and specialized analog-
to-asynchronous interface components for handling non-persistent
signals [14]. However, this framework does not comprehensively
address the challenges of design automation and efficient handling
of non-persistent signals within FPGA implementations.

In their study the authors presented a methodology for implementing
asynchronous phase-decoupled circuits using traditional electronic
design automation (EDA) tools. The authors demonstrated the
implementation of an asynchronous RISC-V processor on the
Xilinx ZCU102 FPGA, achieving a threefold improvement in
dynamic power efficiency compared to its synchronous counter-
part while maintaining similar resource utilization [15]. This
approach illustrates the potential of asynchronous design
in reducing power consumption for IoT and neuromorphic
applications, despite the challenges in commercial tool support.
This work builds upon the findings presented in [16, 17].

Self-Locking Domino Logic
This section presents the structure and realization of the self-locking
domino logic in the FPGA. The delay-insensitive domino logic
was selected to minimize constraints in the design process while
maintaining hazard-free and race-free operations. This approach
contrasts with one-step designs where complex algorithms are
employed to construct the automaton without clocking [18]. The
programming in the FPGA occurs at the lowest level of abstraction
to ensure that the structure is built in the same way, without the
software attempting to optimize the structure. This is because the
synchronous optimization process is used to build the structure.
The asynchronous design cannot be simulated, so it must be built
in accordance with the structure and verified with tests. This is to
ensure that any known error models are excluded. The structural
comparison of domino logic on the FPGA was conducted in [17].
This section will subsequently discuss the individual realizations
in the FPGA at the low level.

Citation: Florian Deeg, Xingzhou Chen, Sebastian M Sattler (2024) Self-Locking Domino Logic Pipelines: Application in RISC-V Architectures in FPGA. Journal of
Biosensors and Bioelectronics Research. SRC/JBBER-135. DOI: doi.org/10.47363/JBBER/2024(2)126

J Biosen and Bioelec Res, 2024 Volume 2(6): 3-10

Globally Asynchronous Locally Synchronous (GALS)
GALS is a design methodology for electronic circuits. It addresses
the challenge of ensuring safe and reliable data transfer between
independent clock domains within a system. A GALS system
breaks down the circuit into independent blocks, each with its
own local clock. These blocks communicate with each other
asynchronously using handshaking protocols [19]. This allows for
flexibility because blocks can operate at different speeds based
on their needs, and scalability because the system can be easily
expanded without worrying about the global clock. Furthermore,
the GALS methodology results in reduced power consumption,
as only active blocks are clocked, thereby increasing the system’s
power efficiency.

Asynchronous Handshake Protocol: An asynchronous
handshake protocol represents the communication agreement
between two or more entities, allowing them to exchange data
without the necessity of a common clock [20]. This is in contrast
to synchronous protocols, which rely on the timing of a common
clock to regulate communication. In contrast to synchronous
protocols, which rely on the timing of a common clock to regulate
communication, asynchronous handshake protocols employ a pair
of signals to regulate data transmission. The initial signal is used
to initiate the transmission of data (REQ), while the subsequent
signal is utilized to confirm the successful completion of the
data transmission (ACK). Firstly, the four-phase protocol, as
outlined in, is elucidated through the lens of a hypothetical goods
purchase, see Figure 1 [1]. The process commences with the
opening of the channel by B, who then makes an offer by setting
acknowledgement (ack) to a low value. Subsequently, the customer
(A) wishes to place an order and does so by setting the request
(req) parameter to a high value. Following this, the supplier (B)
generates the invoice. The delivery process then commences with
the shipment of the goods and the setting of the ack parameter
to a high value. The customer (A) then receives the goods and
resets the request parameter to a low value. The supplier (B)
then creates the receipt. Once the supplier (B) has received the
payment, it acknowledges the process, thereby allowing a new
order process to begin.

Figure 1: 4-Phase Handshaking Protocol time

Pulse Circuit
The objective of self-locking is to facilitate the system’s re-
accessibility subsequent to a single traversal of the circuit branches
and their subsequent establishment in a valid state. The Lookup
table (LUT) structure input pulse circuit, which serves to lock
the input, can be observed in Figure 2, its table in Table I, and
the signal flow graph in Figure 3. The equation for Q is listed in

Figure 2: Pulse Circuit for Self-locking and Duty Cycle

Table I: Truth Table of Pulse Circuit
Δ(Q) Y Q Comment

0 0 1 Switch
0 1 1 Switch
1 0 1 Hold
1 1 0 Switch

Figure 3: Signal Flow Graph of Pulse Circuit

Equation 1:

 (1)
 (2)

The digital timing diagram can be found in Figure 4. The self-
resetting input pulse circuit is utilized for self-locking, whereby the
input is directly locked following an initial pulse req. Subsequently,
a precharge phase for the domino logic is initiated by the circuit’s
self-resetting feedback, which subsequently disables the input.
The propagation delay, denoted as τ∆, of the self-reset circuit
determines the length of the precharge phase. It is thus imperative
to guarantee that the precharge phase is sufficiently prolonged to
ensure that all internal nodes are pulled to VDD. Once this has
been achieved, the dual-rail domino logic (DRDL) gates have
no disjunctive outputs and subsequently trigger the evaluation
phase after the system has self-reset, which occurs after a delay
of τ∆. Subsequently, the rising edge of dc initiates the transfer
of states and input signals to a D-FF at the input, where they are
stabilized until the next evaluation phase. The circuit thus blocks
the input, generates a duty cycle, and ensures stable signals during
the evaluation step. Once the subsequent block is complete, it will

Citation: Florian Deeg, Xingzhou Chen, Sebastian M Sattler (2024) Self-Locking Domino Logic Pipelines: Application in RISC-V Architectures in FPGA. Journal of
Biosensors and Bioelectronics Research. SRC/JBBER-135. DOI: doi.org/10.47363/JBBER/2024(2)126

J Biosen and Bioelec Res, 2024 Volume 2(6): 4-10

set an enable signal to 1 (ACK) and unlock the input once more.

Domino Logic
The domino logic family is an asynchronous logic family based on
the principle of the domino effect, as described in [21]. The domino
effect describes the sequence of events that occurs when one
domino falls and causes the subsequent domino in the sequence
to fall as well. In domino logic, these effects are employed for the
transmission of data through a switching network. The general
mode of operation of a domino logic gate can be divided into two
phases: precharge and evaluate. A domino gate represents the
fundamental unit of construction in domino logic. It is composed
of two transistor circuits, one for the pull-up phase and one for
the pull-down phase, which are integrated into a single unit. For
an illustrative example, see Figure 5, which depicts an AND2
single-rail domino gate with a keeper on transistor level (TL).

Figure 4: Digital Timing Diagram

In the precharge phase, the inner node is charged to VDD, and the
logic state after the inverter is 0. Upon transitioning to the evaluate
phase, namely when the duty cycle switches from 0 to 1, the node
is pulled to ground (GND) when the pull-down is active (i.e., when
the equation is fulfilled) and logic 1 is present at the output. It is
now possible to connect Domino logic gates in series and have
them propagate through the pipeline. In light of the recognition of
the domino logic inherent to the FPGA, a cursory examination of
the structural viability of the aforementioned logic is warranted.
To this end, the logic has been mapped to a multiplexer (MUX)
structure of pass transistors, which realizes a LUT, as shown in
Figure 6 [22].

Figure 5: Single Rail Domino Logic on Transistor Level

Figure 6: Single-Rail Domino Logic mapped to LUT3

As the lower path for dc = 0 is to charge the inverter, all assignments
are mapped to 1. The structure was not drawn to include this path
for simplicity; only the connection to VDD is included. The node
situated prior to the NMOS, which is regulated by dc, can only be
charged to VDD or remain in a high-impedance state and retain
the charge. Accordingly, this simplification accurately reflects the
structure. Furthermore, the node X can be pulled solely over AB
to GND, indicating that the top path is the sole one capable of
triggering the transition from 1 to 0. Consequently, the top path
loads from 0 to 1 (precharge), and the bottom path discharges
from 1 to 0 (evaluate). By implementing this simplification and
demonstrating solely the paths for the transitions, we achieve the
structure depicted in Figure 6 with the exception that the transistor
for Evaluate is closer to the output, as shown in Figure 7.

Figure 7: Transitions of SRDL mapped to LUT3

Citation: Florian Deeg, Xingzhou Chen, Sebastian M Sattler (2024) Self-Locking Domino Logic Pipelines: Application in RISC-V Architectures in FPGA. Journal of
Biosensors and Bioelectronics Research. SRC/JBBER-135. DOI: doi.org/10.47363/JBBER/2024(2)126

J Biosen and Bioelec Res, 2024 Volume 2(6): 5-10

The structure can be replicated by exchanging the control inputs
of the LUT. Domino logic can now be used for asynchronous
handshaking and offers the aforementioned advantages of
asynchronous circuits over traditional synchronous logic families.
To achieve the objective of recognizing the transition through the
gate, DRDL gates are employed, as illustrated in Figure 8.

Figure 8: Dual Rail Domino Logic

These have an output designated as F, as well as a complementary
output, which is represented by the symbol F. The same
fundamental principle is applicable here: the precharge phase is
first, followed by the evaluation phase. In the PC phase, both inner
nodes are pulled to VDD, the outputs are equivalent in their output
value of logical 0, and then in the evaluation phase, one output
becomes 1, while the other remains 0 due to the disjointness. This
allows for the direct recognition of whether the domino gate has
finished switching or not by linking both complementary outputs
with an exclusive or (XOR). The dual-rail circuit thus provides a
means of determining whether the circuit is in a valid state (i.e.,
the switched state) or an invalid state (i.e., the switching process
is still underway). This information is always available, allowing
the user to ascertain whether the circuit is currently occupied or
ready for new data.

Pipeline with Completion Detection
It is now possible to construct a series of Domino gates in such a
way that a pipeline is created, which is then operated in a sequential
manner. This is in contrast to the usual operation of a pipeline,
which is pipelined. This is accomplished by assigning a distinct
state for each transfer of a “1,” that is, for each domino effect to
the subsequent stage. Nevertheless, the use of real pipelining is
also applicable in conjunction with the requisite holding elements
between stages. Nevertheless, this approach would be infeasible
for the processing of instructions and the multicycle processor
under consideration. The serial composition is performed by
establishing the dominoes from the initial stage, designated as
f0, to the final stage, identified as fn-1, to form the function f =
fn-1. The composition of the serial pipeline is defined as follows:

Firstly, all domino gates are subjected to a preliminary charge,
the purpose of which is to energize the internal nodes to a voltage
of VDD and set the outputs to a value of 0. The evaluation phase
then pulls each DRDL gate in a path to 0, thus producing a 1 at
one output of F and F. Upon achieving complementarity between
all DRDL gates, the system is deemed complete and the input is
thereby unlocked. The input pulse thus serves as a request signal
and the en signal as an acknowledgment, thereby implementing
an asynchronous handshaking protocol. In the pipeline circuit, it
is sufficient to check only the last stage for disjunctivity, as the
last stage can only switch as soon as the previous one has done so.
However, a comprehensive analysis of all stages for disjointness

has been conducted, whereby an XOR operation has been applied
to each stage and the results rounded to ensure that each individual
gate has switched and thus enhance safety.

Low-Level Primitives Design
The realization of our circuits is accomplished through the use of
the Arty A7 Artix-7 FPGA Development Board, which is provided
by Digilent and contains an FPGA manufactured by Xilinx Inc.
The FPGA is programmed with the Vivado Design Suite (VDS)
at the lowest possible level in order to precisely define how the
structures are generated within the FPGA (what you see is what
you get). The primitive libraries from ARTIX-7 are utilized for this
objective [23]. Two commands have emerged as pivotal: firstly, the
ability to incorporate combinatorial loops into the constraints, and
secondly, the “don’t touch” commands to prevent the VDS from
modifying any settings. The design is currently still completed
manually, but it will be automated in the future. The logical design
is based on LUTs. These LUTs are typically multiplexers that
switch exactly one path to the output, depending on the input
assignment. They are constructed in the shelf from NMOS pass
transistors or transmission gates [22]. These low-level primitives
can now be initialized as shown in the code snippet of listing 1.

In order to construct dual-rail domino logic circuits, it has been
determined that the LUT6_2 structure will be utilized, as this
configuration enables the

Listing 1: Low-Level LUT6_2 for AND2 DRDL Gate

Generation of two distinct outputs when input 5 is maintained
at a fixed voltage of VDD. Nevertheless, this approach entails a
trade-off in that one input is no longer available for use, and the
number of table entries is reduced from 26 to 25. For designs with
a maximum of five inputs, however, this has no adverse effects.
The LUT is initialized with a hexadecimal number. In this case,
the realized function is F = I4 ∧ I3 ∧ I2 ∧ I1 ∧ I0 for positive P in
F and F = I4 ∨ I3 ∨ I2 ∨ I1 ∨ I0 for the complementary pin F. To
generate the duty cycle for the self-locking input pulse circuit, a
self-resetting LUT structure can be employed, wherein the LUT
is set to one and transitions to a high state on the positive edge
of P. Subsequently, the system resets itself asynchronously after
a duration of τ∆. In lieu of utilizing the fundamental component
of an FDCE, specifically a D-Flipflop with Clock Enable and
Asynchronous Clear, as illustrated in, the corresponding LUT-
based configuration from Figure 2 is employed, see 2 [16].

As placement and routing are fundamental to the safe implementation
of asynchronous design, it is of the utmost importance to place
the LUTs in a manner that precludes the emergence of structural
hazards or functionally unstable feedback loops. In this case, it was
crucial to employ the LUT 6 for the asynchronous self-resetting
pulse circuit, as this represents the fundamental logical element
of the Artix-7 FPGA. Consequently, the inputs are explicitly
defined, thereby facilitating a comprehensive understanding

Citation: Florian Deeg, Xingzhou Chen, Sebastian M Sattler (2024) Self-Locking Domino Logic Pipelines: Application in RISC-V Architectures in FPGA. Journal of
Biosensors and Bioelectronics Research. SRC/JBBER-135. DOI: doi.org/10.47363/JBBER/2024(2)126

J Biosen and Bioelec Res, 2024 Volume 2(6): 6-10

of the design process. Some aspects of the design still require
constraints, including locking the inputs to be utilized, establishing
permissions for combinatorial loops, and implementing do-not-
touch commands (see 3), which prevent the optimization of the
implementation process, as this was optimized for synchronous
design.

Parallelization of Domino Gates
As previously stated, switching can also occur in parallel, rather
than in a cascaded manner. This is due to the fact that the switching
processes are unidirectional and have a clear endpoint, which
is enabled by the disjointed nature of the components and the
self-clocking mechanism. This allows for hazard-free operation.
This is due to the fact that the circuit is only unlocked once all
switching components are disjoint from one another. It is similarly
conceivable to design the ALU in parallel as a dual-rail domino
gate, with the objective of maintaining the minimum processing
delay. This is achieved by communicating with the controller
using the handshake protocol and switching the individual gates
in parallel until they are all disjoint. In this instance, the individual
domino gates are composed in parallel to form the function f = f0(x)
+ f1(x) + ... + fn-2(x) + fn-1(x), where fi(x) is the value of the i-th bit.

Listing 2: Low-Level Self-Resetting Pulse Circuit

Listing 3: Constraints for Asynchronous FPGA Design

Implementation For Risc-V Processor
The architectural design of RISC-V can be divided into two
principal components: the datapath and the control unit. This
paper presents the design of a control unit for a 32-bit Turing-

complete RISC-V architecture. In the RV32 RISC-V architecture,
memory addresses and data words are 32-bit. This represents a
flexible and energy-efficient alternative to the dominant RISC
and Complex Instruction Set Computer (CISC) architectures.
The simplified instruction set at the core of RISC-V is small and
orthogonal, allowing for a thriving ecosystem of innovation.
This approach reduces the hardware requirements and improves
overall performance by eliminating the complexity and overhead
associated with complex instruction sets.

Reduced Instructions Set
The fundamental instructions, comprising a length of 32 bits,
are classified into distinct categories based on the opcode. For
illustrative purposes, Table II depicts the instruction formats that
are Turing complete and are utilized in this work. The opcode
is implemented in the initial seven bits of the instruction, while
the remaining bits vary according to the specific operation.
Arithmetic operations predominantly utilise the R-type format.
The instruction has two source registers (rs1 and rs2) and one
destination register (rd) as operands. The general function of the
instruction is determined by the function field funct3, while the
seven bits in funct7 are used to specify the exact function when
the “funct3” of two instructions are the same. Instructions for
loading operations are formatted according to the L-type format.
This format is identical to that of the I-type. The I-type instruction
format is analogous to the R-type format, with the exception that
the funct7 and rs2 fields, which are present in the R-type format,
are absent in the I-type format. Instead, the 12-bit field imm is
utilized. Store instructions employ the S-type format, wherein the
value in rs2 is stored at the address calculated by imm and rs1.
The B-type format is utilized for branch instructions, wherein
the values in rs1 and rs2 are compared, and the target address
is contained within imm [24]. The jump and link instructions
employ the J-type format, whereby the 20 bits within the imm field
delineate the target address, while the return address is situated
within rd [25].

Synchronous Multicycle CPU
We will now provide a brief introduction to the initial processor
which can be observed in Figure 9 [24]. It is a synchronous
processor that is Turing complete, which signifies its capacity
to calculate all Turing-computable functions. The processor is
realized as a multicycle processor in order to facilitate the design
of different access times for different instructions, thereby enabling
the division of an instruction into discrete individual steps. This
differs from the approach taken with a single-cycle processor,
where the worst-case path for the entire instruction is considered.
Instead, in this case, the worst case for the individual processing
steps is considered. However, the processor employs a Harvard
architecture, which is evident from the fact that it has separate
data and instruction registers in a block random access memory
(BRAM) (i.e., with two different addresses).

Table II: RISC-V Instruction Formats
Type Bits [31:25] Bits [24:20] Bits [19:15] Bits [14:12] Bits [11:7] Opcode[6:0]

R-Type funct7 rs2 rs1 funct3 rd 0110011

I-Type imm[11:0] rs1 funct3 rd 0010011

L-Type imm[11:0] rs1 funct3 rd 0000011

S-Type imm[11:5] rs2 rs1 funct3 imm[4:0] 0100011

B-Type imm[12|10:5] rs2 rs1 funct3 imm[4:1|11] 1100011

J-Type imm[20|10:1|11|19:12] rd 1101111

Citation: Florian Deeg, Xingzhou Chen, Sebastian M Sattler (2024) Self-Locking Domino Logic Pipelines: Application in RISC-V Architectures in FPGA. Journal of
Biosensors and Bioelectronics Research. SRC/JBBER-135. DOI: doi.org/10.47363/JBBER/2024(2)126

J Biosen and Bioelec Res, 2024 Volume 2(6): 7-10

Figure 9: Synchronous CPU and the Synchronous State Transfer
Function

Synchronous Control Unit
The control unit is described in brief below. In order to facilitate
the processing of instructions, an automaton is generated that was
derived from RISC-V and employs the input opcode 6:2 for the
purpose of decoding the individual states. In contrast to [24], a
few additional states were incorporated due to the necessity of
two clock cycles for memory access. Consequently, the multicycle
processor is divided into the following branches: load, store,
r-type, i-type, btype, and jal. The clock cycles are distributed in
order to achieve shorter access times, as illustrated in Figure 10.

Figure 10: Automaton Graph of synchronous Moore Machine

This results in the longest instruction load and the shortest
branch-if-equal (BEQ). A single-cycle processor would now
accommodate the most unfavorable scenario for all instructions,
whereas the multicycle processor would conserve three cycles
for the branch-if-equal (BEQ) instruction. It is evident that the
differing access times of the instructions necessitate the use
of a multicycle processor. Subsequently, the automaton was
constructed as a Moore machine, with each state having a single
output. Subsequently, a synchronous automaton was devised at
the high level, incorporating optimizations derived from VDS.

Design of the Asynchronous Controller
Subsequently, the asynchronous circuit is implemented in the
synchronous RISC-V processor. The asynchronous handshaking
protocol has the potential to markedly improve the processor’s
performance, as it enables the implementation of varying
access times for distinct process steps (e.g., writing memory
is considerably slower than addressing the register file). As
the domino logic is realised as a pipeline, there is also a direct
transfer to pipelines; however, this application is not addressed
further in this paper. In order to facilitate the design of a pipeline
cascade, which is a more complex process in domino logic, a
Mealy automaton will be implemented that can generate different
output values for its states depending on the input signal.

In contrast to the synchronous Moore automaton, which has
predefined pro- cessing times for the various instructions, the
Mealy automaton is clocked externally by REQ and ACK. This
implies that the identical states for dis- parate instructions can have
disparate access times. Consequently, the states are superimposed,
and the edges are retained. Furthermore, self-locking can be
applied to the output function, which negates the necessity for
hazards and other potential issues. This results in a reduction in
hardware requirements in comparison to the Moore Machine. The
individual states were then encoded one-hot to enhance clarity in
the domino output in the z-variables.

The automaton graph for the pipeline can be found in Figure 11
and its structure in Figure 12. The opcode of the BEQ branch is
Edge A, as it requires only three state transitions. Edge B is given
by the R-type, I-type, and JAL branches. Edge C represents the
edge for the Store instruction, while the Load instruction reaches
the final state, represented by the binary sequence [100000].

Figure 11: Automaton Graph Pipeline

Design of an Asynchronous ALU
To more effectively illustrate the advantages of the asynchronous
handshake protocol, we have elected to configure the ALU as
a parallelized, self-locking domino logic, which allows for a
more comprehensive and accurate representation of the protocol’s
functionality. Given the considerable time required to access
the ALU, the self-clocked variant represents a promising
improvement. The following section will serve as a case study in
domino logic, utilizing the AND instruction as a point of analysis.
This approach will elucidate the design process. The initial stage
of the process is the conversion of an asynchronous ALU into a
domino logic structure. The bitwise AND can be implemented
in a straightforward manner by utilizing the AND structure of
a domino gate and combining each position of the 32-bit word
in dual-rail. This can be accomplished entirely in parallel. The
independence of all dual-rail gates indicates whether the ALU has
undergone rounding, allowing the input to be unlocked by setting
the en signal (ACK) to 1. The code snippet for the ALU’s AND
function as DRDL AND2 is provided below for reference. The
resulting structure of the AND for the ALU in self-locking domino
logic is illustrated in Figure 13. Moreover, the input incorporates
a self-locking pulse circuit that generates a duty cycle, thereby
initiating the precharge phase. This is followed by a scan of the
source registers of the ALU multiplexers, after which the input is
unlocked when each of the 32 DRDL gates has disjoint outputs.

Citation: Florian Deeg, Xingzhou Chen, Sebastian M Sattler (2024) Self-Locking Domino Logic Pipelines: Application in RISC-V Architectures in FPGA. Journal of
Biosensors and Bioelectronics Research. SRC/JBBER-135. DOI: doi.org/10.47363/JBBER/2024(2)126

J Biosen and Bioelec Res, 2024 Volume 2(6): 8-10

Figure 12: Structure of realized Pipeline in FPGA

Integration in the CPU
The self-locking machine can now be readily incorporated into
the existing CPU and controlled via the clock, for instance, thus
facilitating its integration into existing systems. While this does
not immediately enhance performance if the other processor
components do not exhibit GALS behavior, it demonstrates the
simplicity of integrating self-timed circuits. Moreover, self-timing
requires fewer flip-flops, which consequently results in reduced
power consumption. To illustrate the advantages of asynchronous
handshaking, the DRDL ALU was also integrated. The controller
oversees the operation of other components in a synchronous
manner, while simultaneously initiating the asynchronous hand-
shaking process with the ALU, thereby accelerating the execution
of instructions that utilize the ALU.

Listing 4: Low-Level 32-Bit DRDL AND

Power Performance and Area (PPA) Results
The PPA analysis of the implemented asynchronous processor
on an FPGA definitively demonstrates its efficiency and viability
for a range of applications. This section presents the findings
from the synthesis, implementation, and simulation processes
using the Vivado Design Suite. The results are presented in three
subsections: power analysis, performance analysis, and area
analysis.

Figure 13: Domino Logic ALU

Power Consumption
The power consumption shares of the individual processors were
obtained from the Vivado Power Analysis Tool, as detailed in
Figure 14.

Figure 14: Power Consumption of the Synhronous vs.
Asynchronous CPU

The total dynamic power consumption of both the asynchronous
and synchronous processors is nearly similar, which can be
attributed to the parallel operation of the asynchronous processor.
Nevertheless, the asynchronous design results in significant
power savings in the clock network, as demonstrated by the
lower proportion of power consumption allocated to clocks in
the asynchronous processor in comparison to the synchronous
one. This underscores the efficacy of the asynchronous processor
in curbing clock-related power consumption, which is a pivotal
aspect of comprehensive power management and energy efficiency.

Performance Analysis
In this section, we evaluate the effectiveness of our asynchronous
CPU design by comparing it with a synchronous CPU. To elucidate
the advantages and potential trade-offs of the asynchronous
CPU design in comparison to its synchronous counterpart, the
SPECint2000 benchmark suite is employed. The SPECint2000
benchmark is a well-established and widely used tool for evaluating
the performance of computer processors. It is maintained by the
Standard Performance Evaluation Corporation (SPEC), which
also develops and maintains the broader SPEC benchmark suite.
SPECint2000 is particularly focused on integer processing. The
benchmark is commonly applied to measure the performance of
CPUs with integer-heavy workloads, providing a comprehensive
assessment through a variety of real-world applications. The
benchmark is composed of approximately 25 % loads, 10% stores,
11% branches, 2% jumps, and 52% R- or I-type ALU instructions
[24]. The diverse range of operations included in the SPECint2000
benchmark renders it an optimal tool for evaluating and comparing
the performance characteristics of different CPU architectures.

Citation: Florian Deeg, Xingzhou Chen, Sebastian M Sattler (2024) Self-Locking Domino Logic Pipelines: Application in RISC-V Architectures in FPGA. Journal of
Biosensors and Bioelectronics Research. SRC/JBBER-135. DOI: doi.org/10.47363/JBBER/2024(2)126

J Biosen and Bioelec Res, 2024 Volume 2(6): 9-10

The synchronous CPU and the designated asynchronous CPU
are applied to run the programs in the SPECint2000 benchmark
set. Ultimately, the throughput and the average latency of every
instruction of both CPUs are observed.

A loop was constructed around the test code with a branch-targeted
indirect jump (BEQ) instruction using a clock frequency of 100
megahertz (MHz), and the throughput of the asynchronous and
synchronous CPUs, as well as the average duration per instruction,
were determined see Table III.

Table III: Performance Metrics
Parameter Asynchronous CPU Synchronous CPU
Throughput (MIPS) 25.64 22.73
Average Latency/
Instruction

39.5 ns 44 ns

The analysis demonstrates that the CPU performance for the
SPECint2000 benchmark increased by approximately 10% as a
result of enabling communication between the control unit and
the ALU through the use of DRDL gates.

Area Analysis
The objective of the area analysis is to evaluate the utilization
of FPGA resources, including LUTs, slice registers, and slices.
The asynchronous design utilized 6.67% of the available LUTs,
indicating a moderate complexity in logic implementation.
Additionally, the design employed 4.85% of the available slice
registers and leveraged 4.63% slices.

As anticipated, the area utilized exhibited an increase, yet remained
within the anticipated range due to the implementation of DRDL
gates within a single LUT.

Table IV: FPGA Resource Utilization
Resource Type Utilization in (%)

Async
Utilization in (%)

Sync
LUTs 6.67% 6.32%
Slice Registers 4.85% 4.9%
Slices 9.27% 8.9%

Discussion
The PPA results indicate that the asynchronous processor
exhibits substantial potential in terms of performance, which is
of paramount importance for performance-critical applications.
Although there was a slight alteration in power consumption,
the area analysis demonstrates a balanced utilization of FPGA
resources, thereby substantiating the feasibility of implementing
such designs within reasonable silicon area constraints.

Blueprint of an Asynchronous CPU
The straightforward integration resulting from the modularity
of asynchronous circuits allows for the presentation of a
comprehensive blueprint for an asynchronous processor. The
objective is to devise the entire processor in an asynchronous
manner, whereby each circuit component operates with request
and acknowledgment signals, eliminating the necessity for a global
clock for the entire circuit, see Figure 15. It can be observed that
the individual circuit components engage in communication with
the controller through the use of a request and acknowledgement
mechanism, which is represented by the double arrow symbol.
The construction of combinational circuits is achieved through

the utilisation of domino logic, whereas the implementation of
D-FFs is accomplished by employing asynchronous D-latches with
request and acknowledge signals. The memory operates on clock
cycles, wherein the ack signal is set with precision after two cycles
(the data access process necessitates this number of cycles). The
feasibility of a single-cycle processor for this type of processor
is also a potential avenue for future investigation, however, the
current focus is on the development of a pipelined processor.

Figure 15: Asynchronous CPU

Conclusion and Future Work
This work proposes an asynchronous RISC-V CPU design based
on self- locking domino control. The asynchronous approach
offers advantages over traditional synchronous designs in
terms of performance, power consumption, and modularity.
The paper provides a comprehensive account of the design and
implementation of the asynchronous control unit, which employs
domino control on an FPGA development board. The control unit
has been designed to accommodate a Turing-complete 32-bit
RISC-V architecture. A noteworthy feature of the design is the
incorporation of a self-locking mechanism, which guarantees that
the circuit remains engaged until all processing stages have been
completed. This eliminates the necessity for a global clock and
simplifies error- free operation. Furthermore, the paper discusses
the possibility of parallelizing the ALU using domino control to
further improve performance. Subsequently, the paper illustrates
the straightforward integration of the asynchronous control unit
into an existing synchronous CPU, thereby demonstrating the
potential benefits of self-timed circuits. Ultimately, the PPA
analysis of the implemented asynchronous processor on an FPGA
substantiates its considerable potential for diverse applications.

The power analysis indicates that while the total dynamic
power consumption of the asynchronous processor is
comparable to that of the synchronous processor, it achieves
a significant reduction in power consumption within the clock
network. This highlights the effectiveness of the asynchronous
processor in reducing clock-related power consumption, which
is a crucial aspect of comprehensive power management and
energy efficiency. A performance analysis conducted using the
SPECint2000 benchmark suite revealed that the asynchronous
processor exhibited superior performance compared to the syn-
chronous processor. This was demonstrated by a 10% increase
in throughput and a reduction in average latency per instruction.
This performance enhancement is achieved through the utilisation
of handshaking with DRDL gates in the control unit and ALU.
The area analysis indicates that the asynchronous design employs
FPGA resources in a moderate manner, exhibiting a slight increase
in LUT, slice register, and slice utilization in comparison to the
synchronous design. Notwithstanding this increase, the resource
utilization remains within acceptable limits, thereby substantiating

Citation: Florian Deeg, Xingzhou Chen, Sebastian M Sattler (2024) Self-Locking Domino Logic Pipelines: Application in RISC-V Architectures in FPGA. Journal of
Biosensors and Bioelectronics Research. SRC/JBBER-135. DOI: doi.org/10.47363/JBBER/2024(2)126

J Biosen and Bioelec Res, 2024 Volume 2(6): 10-10

Copyright: ©2024 Florian Deeg, et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

the feasibility of implementing the asynchronous processor
within reasonable silicon area constraints. In conclusion, the
asynchronous processor exhibits notable advantages in terms
of power efficiency, performance, and area utilization, thereby
establishing its viability as a potential solution for performance-
critical applications.

References
1. J Sparsø (2021) Asynchronous circuit design - a

tutorial https://www.semanticscholar.org/paper/
Asynchronous-circuit-design-A-tutorial-Spars%C3%B8/
b2c73609b55a79af2c7a8577bb0937598b2c3eda.

2. F Bouesse, N Ninon, G Sicard, M Renaudin, A Boyer,
et al. (2007) Asynchronous logic vs synchronous logic:
Concrete results on electromagnetic emissions and
conducted susceptibility https://www.researchgate.
net/publication/266496771_Asynchronous_logic_Vs_
Synchronous_logic_Concrete_Results_on_Electromagnetic_
Emissions_and_Conducted_Susceptibility.

3. A Waterman (2016) Design of the risc-v instruction set
architecture. https://escholarship.org/uc/item/7zj0b3m7.

4. Rich Collins (2024) How the RISC-V ISA offers greater
design freedom and flexibility. Tech Talk 1-15.

5. A Dooply, K Yun (1999) Optimal clocking and enhanced
testability for high-performance self- resetting domino
pipelines. in Proceedings 20th Anniversary Conference on
Advanced Research in VLSI 200-214.

6. K Yun, A Dooply (1999) Optimal evaluation clocking of self-
resetting domino pipelines. in Proceedings of the ASP-DAC
’99 Asia and South Pacific Design Automation Conference
121-124.

7. G Jung, JJ Kong, G Sobelman, K Parhi (2002) High-speed
add-compare-select units using locally self-resetting cmos. in
2002 IEEE International Symposium on Circuits and Systems
(ISCAS) 1: 1-1.

8. SO Jung, KW Kim, SM Kang (2003) Timing constraints for
domino logic gates with timing- dependent keepers. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems 96-103.

9. M Litvin, S Mourad (2005) Self-reset logic for fast arithmetic
applications. IEEE Transactions on Very Large-Scale
Integration (VLSI) Systems 13: 462-475.

10. A Alsharqawi, A Einioui (2006) Clockless pipelining for
coarse grain datapaths. in 19th International Conference on
VLSI Design held jointly with 5th International Conference
on Embedded Systems Design 5.

11. U Ramadass, J ponnian, P Dhavachelvan (2014) New low
power adders in self-resetting logic with gate diffusion input
technique. Journal of King Saud University - Engineering
Sciences 7: 3.

12. Z Xia, M Hariyama, M Kameyama (2015) Asynchronous
domino logic pipeline design based on constructed critical
data path. IEEE Transactions on Very Large-Scale Integration
(VLSI) Systems 23: 619-630.

13. H Rezaei, SA Moghaddam (2016) Implementation of low-
power and high-performance asynchronous dual-rail join
using domino logic gates in 16-nm technology. in 2016 24th
Iranian Conference on Electrical Engineering (ICEE) 142-
147.

14. D Sokolov, V Khomenko, A Mokhov, V Dubikhin, D Lloyd,
et al. (2020) Automating the design of asynchronous logic
control for ams electronics. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 39: 952-965.

15. Z Li, Y Huang, L Tian, R Zhu, S Xiao, et al. (2021) A low-
power asynchronous risc-v processor with propagated timing
constraints method. IEEE Transactions on Circuits and
Systems II: Express Briefs 68: 3153-3157.

16. F Deeg, X Wu, SM. Sattler (2024) Self-locking domino logic
pipelined controller for risc-v in fpga. Athens Journal of
Technology and Engineering 11: 201-218.

17. F Deeg, SM Sattler (2024) Self-locked asynchronous
controller for risc-v architecture on fpga. In AmEC 2024 -
Automotive meets Electronics & Control 1-5.

18. F Deeg, J Zhu, SM Sattler (2020) Asynchronous design. in
AmE 2020 - Automotive meets Electronics; 11th GMM-
Symposium 1-5.

19. M Krstic, E Grass, FK Gaijrkaynak, P Vivet (2007) Globally
asynchronous, locally synchronous circuits: Overview and
outlook. IEEE Design & Test of Computers 24: 430-441.

20. D Chapiro (1984) Globally-asynchronous locally-synchronous
systems 9.

21. D Hodges, H Jackson, R Saleh (2004) Analysis and design
of digital integrated circuits: In deep submicron technology
/ da hodges h g jackson, ra saleh 1.

22. C Chiasson, V Betz (2013) Should fpgas abandon the
pass-gate. in 2013 23rd International Conference on Field
programmable Logic and Applications 1-8.

23. (2012) Vivado Design Suite 7 Series FPGA Libraries Guide.
XILINX UG953 https://ecen220wiki.groups.et.byu.net/
media/lab_06/00_fdce.pdf.

24. S Harris, D Harris (2021) Digital Design and Computer
Architecture, RISC-V Edition. Elsevier Science https://
shop.elsevier.com/books/digital-design-and-computer-
architecture-risc-v-edition/harris/978-0-12-820064-3.

25. A Waterman, K Asanovic (2017) The risc-v instruction set
manual. User-level ISA, document version 1-133.

