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Introduction
Synchronous circuits represent the pinnacle of circuit design 
innovation. Nevertheless, asynchronous circuits are becoming 
increasingly significant in the field of circuit design, offering a 
multitude of advantages over their synchronous counterparts. 
These include enhanced performance, reduced power consumption, 
increased modularity, the absence of a single point of failure, 
and the elimination of clock skew, among others. For further 
information, please refer to [1]. Furthermore, asynchronous 
circuits demonstrate enhanced resilience to fluctuations in supply 
voltage and temperature. In asynchronous designs, local faults 
are often constrained to the affected area, thereby enhancing 
fault tolerance. Moreover, they generate less electromagnetic 
interference and are therefore more suitable for applications in 
which electromagnetic compatibility is a significant consideration 
[2]. However, there are also some disadvantages to this approach, 
including the necessity for more complex design methods and 
an associated lack of design tools. FPGAs are a special type of 
hardware component distinguished by their high performance, 
flexibility, and energy efficiency. In contrast to conventional 
integrated circuits, which are pre-programmed for a specific 

function, FPGAs can be reconfigured after manufacture to under- 
take new tasks or optimize performance. This feature renders 
them an optimal platform for the development of demanding 
applications that require high computing power, low latency, 
and customizability. For a considerable period, the market for 
processors was divided between two architectures: x86 and 
ARM, which are mainly used in mobile devices. In recent years, 
however, a new contender has emerged, offering a novel approach 
in the form of RISC-V. RISC-V is a license-free instruction set 
architecture (ISA) that originated at the University of California, 
Berkeley [3]. In contrast to the x86 architecture, which has evolved 
over time and is characterized by a high degree of complexity, the 
RISC-V architecture was developed from scratch. The principle of 
simplicity was given precedence. The objective of this simplicity 
is twofold: firstly, to reduce the cost of hardware, and secondly, to 
enhance flexibility. RISC-V is becoming an increasingly significant 
player in the field of processors [4]. A significant advantage is that 
it is not subject to licensing restrictions. This allows a multitude of 
companies and research groups to develop and utilize processors 
based on RISC-V. This has resulted in the emergence of a diverse 
range of RISC-V processors, which are employed in a multitude 
of applications. The spectrum encompasses a range of devices, 
from those designed for energy efficiency in the Internet of Things 
(IoT) to high-performance computers. The simplicity, flexibility, 
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and license-free nature of RISC-V make it an attractive option for 
many developers. Other positive aspects of RISC-V include its 
energy efficiency, scalability, and security, as the basic architecture 
of RISC-V is so simple and offers little scope for attack.

Structure of the Paper
A brief review of the literature is presented to distinguish this paper 
from others in the field. The following section presents the circuit 
structure, which comprises the self-locking pulse circuit, the dual-
rail domino logic circuit, and the entire pipeline with completion 
detection and its realization in the FPGA. Subsequently, an existing 
synchronous multicycle RISC-V processor is introduced, after 
which a control automaton for this Turing-complete processor is 
realized as a domino logic pipeline. The pipeline is demonstrated 
as a means of controlling a GALS system, which can be divided 
into subcircuits at will in order to achieve the highest possible 
speed and safety. The subsequent chapter presents the results and 
offers a comparison with synchronous automata. Subsequently, 
we will present a blueprint for a completely asynchronous central 
processing unit (CPU). In conclusion, the potential for future work 
in this area is discussed.

Related Work
In their study, presented a method for optimizing the clocking 
process in self-resetting domino pipelines [5, 6]. This method 
employs the use of soft synchronizers and roadblocks to facilitate 
time borrowing, thereby maximizing throughput and eliminating 
latch overhead. The authors introduced a high-performance 
clocking methodology for self-resetting domino pipelines that 
optimizes the clock rate through time borrowing and robust 
handling of clock skew while eliminating latch overhead. However, 
their approach does not sufficiently simplify the complex clocking 
and synchronization management, nor does it provide a robust 
precharge management system. Furthermore, it does not provide 
a streamlined implementation and testing methodology.

In the studies a method for optimizing the clocking process in 
self-resetting domino pipelines was presented [5, 6]. This approach 
employs soft synchronizers and roadblocks to facilitate time 
borrowing, thereby maximizing through- put and eliminating latch 
overhead. The authors introduced a high-performance clocking 
methodology that optimizes the clock rate through time borrowing 
and robust handling of clock skew while removing latch overhead. 
However, their approach does not adequately simplify the complex 
management of clocking and synchronization, nor does it provide 
a robust precharge management system. Additionally, it lacks a 
streamlined implementation and testing methodology.

In a high-speed add-compare-select unit for Viterbi decoders 
using locally self-resetting CMOS was proposed [7]. This design 
achieves significantly higher data rates in comparison to static and 
domino CMOS designs. However, it is associated with increased 
power consumption and design complexity due to the necessity 
of careful device sizing and additional components.

In contrast, the authors of introduced a dual keeper structure 
and delay logic gates to enhance the performance and noise 
margin of domino logic gates, ensuring high-speed switching 
and robustness to noise and timing variations [8]. However, their 
approach introduces additional design complexity and does not 
sufficiently address scalability issues.

In their work they developed a new type of logic gate with input 
disable functionality for use in rapid and power-efficient arithmetic 

operations [9]. They demonstrated the application of these gates 
in a 16-bit parallel adder. However, their work primarily focuses 
on the development of new arithmetic circuits and does not 
extensively validate the logic in broader applications or address 
the issue of implementation complexity.

In two novel synchronization approaches for clockless pipelining 
of coarse grain datapaths using self-resetting stage logic were 
proposed as a means of achieving high throughput. However, 
these approaches are not scalable and are associated with increased 
implementation complexity [10]. In their seminal work  they 
introduced the Self-Resetting Logic with Gate Diffusion Input 
technique, which enables the creation of low-power, high-speed 
logic circuits [11]. They demonstrated the effectiveness of this 
technique through the design and simulation of various adders. 
However, their approach results in an increased number of 
transistors and a more complex design.

In their study a method for designing high-throughput and ultra-low- 
power asynchronous domino logic pipelines based on a constructed 
critical data path was presented [12]. However, their approach does 
not fully address the challenges of design automation, placement, 
routing optimization, and timing verification. The implementation 
of low-power and high-performance asynchronous dual-rail 
interconnect using domino logic gates in 16-nm technology was 
proposed in [13]. The integration of self-locking mechanisms or the 
detailed implementation of a complete RISC-V pipeline controller 
remains an open issue. In a novel framework for automating the 
design of asynchronous logic control in AMS electronics was 
discussed, integrating formal verification and specialized analog-
to-asynchronous interface components for handling non-persistent 
signals [14]. However, this framework does not comprehensively 
address the challenges of design automation and efficient handling 
of non-persistent signals within FPGA implementations.

In their study the authors presented a methodology for implementing 
asynchronous phase-decoupled circuits using traditional electronic 
design automation (EDA) tools. The authors demonstrated the 
implementation of an asynchronous RISC-V processor on the 
Xilinx ZCU102 FPGA, achieving a threefold improvement in 
dynamic power efficiency compared to its synchronous counter- 
part while maintaining similar resource utilization [15]. This 
approach illustrates the potential of asynchronous design 
in reducing power consumption for IoT and neuromorphic 
applications, despite the challenges in commercial tool support. 
This work builds upon the findings presented in [16, 17].

Self-Locking Domino Logic
This section presents the structure and realization of the self-locking 
domino logic in the FPGA. The delay-insensitive domino logic 
was selected to minimize constraints in the design process while 
maintaining hazard-free and race-free operations. This approach 
contrasts with one-step designs where complex algorithms are 
employed to construct the automaton without clocking [18]. The 
programming in the FPGA occurs at the lowest level of abstraction 
to ensure that the structure is built in the same way, without the 
software attempting to optimize the structure. This is because the 
synchronous optimization process is used to build the structure. 
The asynchronous design cannot be simulated, so it must be built 
in accordance with the structure and verified with tests. This is to 
ensure that any known error models are excluded. The structural 
comparison of domino logic on the FPGA was conducted in [17]. 
This section will subsequently discuss the individual realizations 
in the FPGA at the low level.
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Globally Asynchronous Locally Synchronous (GALS)
GALS is a design methodology for electronic circuits. It addresses 
the challenge of ensuring safe and reliable data transfer between 
independent clock domains within a system. A GALS system 
breaks down the circuit into independent blocks, each with its 
own local clock. These blocks communicate with each other 
asynchronously using handshaking protocols [19]. This allows for 
flexibility because blocks can operate at different speeds based 
on their needs, and scalability because the system can be easily 
expanded without worrying about the global clock. Furthermore, 
the GALS methodology results in reduced power consumption, 
as only active blocks are clocked, thereby increasing the system’s 
power efficiency.

Asynchronous Handshake Protocol: An asynchronous 
handshake protocol represents the communication agreement 
between two or more entities, allowing them to exchange data 
without the necessity of a common clock [20]. This is in contrast 
to synchronous protocols, which rely on the timing of a common 
clock to regulate communication. In contrast to synchronous 
protocols, which rely on the timing of a common clock to regulate 
communication, asynchronous handshake protocols employ a pair 
of signals to regulate data transmission. The initial signal is used 
to initiate the transmission of data (REQ), while the subsequent 
signal is utilized to confirm the successful completion of the 
data transmission (ACK). Firstly, the four-phase protocol, as 
outlined in, is elucidated through the lens of a hypothetical goods 
purchase, see Figure 1 [1]. The process commences with the 
opening of the channel by B, who then makes an offer by setting 
acknowledgement (ack) to a low value. Subsequently, the customer 
(A) wishes to place an order and does so by setting the request 
(req) parameter to a high value. Following this, the supplier (B) 
generates the invoice. The delivery process then commences with 
the shipment of the goods and the setting of the ack parameter 
to a high value. The customer (A) then receives the goods and 
resets the request parameter to a low value. The supplier (B) 
then creates the receipt. Once the supplier (B) has received the 
payment, it acknowledges the process, thereby allowing a new 
order process to begin.

Figure 1: 4-Phase Handshaking Protocol time

Pulse Circuit
The objective of self-locking is to facilitate the system’s re-
accessibility subsequent to a single traversal of the circuit branches 
and their subsequent establishment in a valid state. The Lookup 
table (LUT) structure input pulse circuit, which serves to lock 
the input, can be observed in Figure 2, its table in Table I, and 
the signal flow graph in Figure 3. The equation for Q is listed in

Figure 2: Pulse Circuit for Self-locking and Duty Cycle

Table I: Truth Table of Pulse Circuit
Δ(Q) Y Q Comment

0 0 1 Switch
0 1 1 Switch
1 0 1 Hold
1 1 0 Switch

Figure 3: Signal Flow Graph of Pulse Circuit

Equation 1:

                                                                                  (1) 
                                                                                  (2)

The digital timing diagram can be found in Figure 4. The self-
resetting input pulse circuit is utilized for self-locking, whereby the 
input is directly locked following an initial pulse req. Subsequently, 
a precharge phase for the domino logic is initiated by the circuit’s 
self-resetting feedback, which subsequently disables the input. 
The propagation delay, denoted as τ∆, of the self-reset circuit 
determines the length of the precharge phase. It is thus imperative 
to guarantee that the precharge phase is sufficiently prolonged to 
ensure that all internal nodes are pulled to VDD. Once this has 
been achieved, the dual-rail domino logic (DRDL) gates have 
no disjunctive outputs and subsequently trigger the evaluation 
phase after the system has self-reset, which occurs after a delay 
of τ∆. Subsequently, the rising edge of dc initiates the transfer 
of states and input signals to a D-FF at the input, where they are 
stabilized until the next evaluation phase. The circuit thus blocks 
the input, generates a duty cycle, and ensures stable signals during 
the evaluation step. Once the subsequent block is complete, it will 
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set an enable signal to 1 (ACK) and unlock the input once more.

Domino Logic
The domino logic family is an asynchronous logic family based on 
the principle of the domino effect, as described in [21]. The domino 
effect describes the sequence of events that occurs when one 
domino falls and causes the subsequent domino in the sequence 
to fall as well. In domino logic, these effects are employed for the 
transmission of data through a switching network. The general 
mode of operation of a domino logic gate can be divided into two 
phases: precharge and evaluate. A domino gate represents the 
fundamental unit of construction in domino logic. It is composed 
of two transistor circuits, one for the pull-up phase and one for 
the pull-down phase, which are integrated into a single unit. For 
an illustrative example, see Figure 5, which depicts an AND2 
single-rail domino gate with a keeper on transistor level (TL). 

Figure 4: Digital Timing Diagram

In the precharge phase, the inner node is charged to VDD, and the 
logic state after the inverter is 0. Upon transitioning to the evaluate 
phase, namely when the duty cycle switches from 0 to 1, the node 
is pulled to ground (GND) when the pull-down is active (i.e., when 
the equation is fulfilled) and logic 1 is present at the output. It is 
now possible to connect Domino logic gates in series and have 
them propagate through the pipeline. In light of the recognition of 
the domino logic inherent to the FPGA, a cursory examination of 
the structural viability of the aforementioned logic is warranted. 
To this end, the logic has been mapped to a multiplexer (MUX) 
structure of pass transistors, which realizes a LUT, as shown in 
Figure 6 [22].
 

Figure 5: Single Rail Domino Logic on Transistor Level

Figure 6: Single-Rail Domino Logic mapped to LUT3

As the lower path for dc = 0 is to charge the inverter, all assignments 
are mapped to 1. The structure was not drawn to include this path 
for simplicity; only the connection to VDD is included. The node 
situated prior to the NMOS, which is regulated by dc, can only be 
charged to VDD or remain in a high-impedance state and retain 
the charge. Accordingly, this simplification accurately reflects the 
structure. Furthermore, the node X can be pulled solely over AB 
to GND, indicating that the top path is the sole one capable of 
triggering the transition from 1 to 0. Consequently, the top path 
loads from 0 to 1 (precharge), and the bottom path discharges 
from 1 to 0 (evaluate). By implementing this simplification and 
demonstrating solely the paths for the transitions, we achieve the 
structure depicted in Figure 6 with the exception that the transistor 
for Evaluate is closer to the output, as shown in Figure 7.

Figure 7: Transitions of SRDL mapped to LUT3
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The structure can be replicated by exchanging the control inputs 
of the LUT. Domino logic can now be used for asynchronous 
handshaking and offers the aforementioned advantages of 
asynchronous circuits over traditional synchronous logic families. 
To achieve the objective of recognizing the transition through the 
gate, DRDL gates are employed, as illustrated in Figure 8.

Figure 8: Dual Rail Domino Logic

These have an output designated as F, as well as a complementary 
output, which is represented by the symbol F. The same 
fundamental principle is applicable here: the precharge phase is 
first, followed by the evaluation phase. In the PC phase, both inner 
nodes are pulled to VDD, the outputs are equivalent in their output 
value of logical 0, and then in the evaluation phase, one output 
becomes 1, while the other remains 0 due to the disjointness. This 
allows for the direct recognition of whether the domino gate has 
finished switching or not by linking both complementary outputs 
with an exclusive or (XOR). The dual-rail circuit thus provides a 
means of determining whether the circuit is in a valid state (i.e., 
the switched state) or an invalid state (i.e., the switching process 
is still underway). This information is always available, allowing 
the user to ascertain whether the circuit is currently occupied or 
ready for new data.

Pipeline with Completion Detection
It is now possible to construct a series of Domino gates in such a 
way that a pipeline is created, which is then operated in a sequential 
manner. This is in contrast to the usual operation of a pipeline, 
which is pipelined. This is accomplished by assigning a distinct 
state for each transfer of a “1,” that is, for each domino effect to 
the subsequent stage. Nevertheless, the use of real pipelining is 
also applicable in conjunction with the requisite holding elements 
between stages. Nevertheless, this approach would be infeasible 
for the processing of instructions and the multicycle processor 
under consideration. The serial composition is performed by 
establishing the dominoes from the initial stage, designated as 
f0, to the final stage, identified as fn-1, to form the function f = 
fn-1. The composition of the serial pipeline is defined as follows:

Firstly, all domino gates are subjected to a preliminary charge, 
the purpose of which is to energize the internal nodes to a voltage 
of VDD and set the outputs to a value of 0. The evaluation phase 
then pulls each DRDL gate in a path to 0, thus producing a 1 at 
one output of F and F. Upon achieving complementarity between 
all DRDL gates, the system is deemed complete and the input is 
thereby unlocked. The input pulse thus serves as a request signal 
and the en signal as an acknowledgment, thereby implementing 
an asynchronous handshaking protocol. In the pipeline circuit, it 
is sufficient to check only the last stage for disjunctivity, as the 
last stage can only switch as soon as the previous one has done so. 
However, a comprehensive analysis of all stages for disjointness 

has been conducted, whereby an XOR operation has been applied 
to each stage and the results rounded to ensure that each individual 
gate has switched and thus enhance safety.

Low-Level Primitives Design
The realization of our circuits is accomplished through the use of 
the Arty A7 Artix-7 FPGA Development Board, which is provided 
by Digilent and contains an FPGA manufactured by Xilinx Inc. 
The FPGA is programmed with the Vivado Design Suite (VDS) 
at the lowest possible level in order to precisely define how the 
structures are generated within the FPGA (what you see is what 
you get). The primitive libraries from ARTIX-7 are utilized for this 
objective [23]. Two commands have emerged as pivotal: firstly, the 
ability to incorporate combinatorial loops into the constraints, and 
secondly, the “don’t touch” commands to prevent the VDS from 
modifying any settings. The design is currently still completed 
manually, but it will be automated in the future. The logical design 
is based on LUTs. These LUTs are typically multiplexers that 
switch exactly one path to the output, depending on the input 
assignment. They are constructed in the shelf from NMOS pass 
transistors or transmission gates [22]. These low-level primitives 
can now be initialized as shown in the code snippet of listing 1.

In order to construct dual-rail domino logic circuits, it has been 
determined that the LUT6_2 structure will be utilized, as this 
configuration enables the
 

Listing 1: Low-Level LUT6_2 for AND2 DRDL Gate

Generation of two distinct outputs when input 5 is maintained 
at a fixed voltage of VDD. Nevertheless, this approach entails a 
trade-off in that one input is no longer available for use, and the 
number of table entries is reduced from 26 to 25. For designs with 
a maximum of five inputs, however, this has no adverse effects. 
The LUT is initialized with a hexadecimal number. In this case, 
the realized function is F = I4 ∧ I3 ∧ I2 ∧ I1 ∧ I0 for positive P in 
F and  F = I4 ∨ I3 ∨ I2 ∨ I1 ∨ I0 for the complementary pin F. To 
generate the duty cycle for the self-locking input pulse circuit, a 
self-resetting LUT structure can be employed, wherein the LUT 
is set to one and transitions to a high state on the positive edge 
of P. Subsequently, the system resets itself asynchronously after 
a duration of τ∆. In lieu of utilizing the fundamental component 
of an FDCE, specifically a D-Flipflop with Clock Enable and 
Asynchronous Clear, as illustrated in, the corresponding LUT-
based configuration from Figure 2 is employed, see 2 [16].

As placement and routing are fundamental to the safe implementation 
of asynchronous design, it is of the utmost importance to place 
the LUTs in a manner that precludes the emergence of structural 
hazards or functionally unstable feedback loops. In this case, it was 
crucial to employ the LUT 6 for the asynchronous self-resetting 
pulse circuit, as this represents the fundamental logical element 
of the Artix-7 FPGA. Consequently, the inputs are explicitly 
defined, thereby facilitating a comprehensive understanding 
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of the design process. Some aspects of the design still require 
constraints, including locking the inputs to be utilized, establishing 
permissions for combinatorial loops, and implementing do-not-
touch commands (see 3), which prevent the optimization of the 
implementation process, as this was optimized for synchronous 
design.

Parallelization of Domino Gates
As previously stated, switching can also occur in parallel, rather 
than in a cascaded manner. This is due to the fact that the switching 
processes are unidirectional and have a clear endpoint, which 
is enabled by the disjointed nature of the components and the 
self-clocking mechanism. This allows for hazard-free operation. 
This is due to the fact that the circuit is only unlocked once all 
switching components are disjoint from one another. It is similarly 
conceivable to design the ALU in parallel as a dual-rail domino 
gate, with the objective of maintaining the minimum processing 
delay. This is achieved by communicating with the controller 
using the handshake protocol and switching the individual gates 
in parallel until they are all disjoint. In this instance, the individual 
domino gates are composed in parallel to form the function f = f0(x) 
+ f1(x) + ... + fn-2(x) + fn-1(x), where fi(x) is the value of the i-th bit.

Listing 2: Low-Level Self-Resetting Pulse Circuit

Listing 3: Constraints for Asynchronous FPGA Design

Implementation For Risc-V Processor
The architectural design of RISC-V can be divided into two 
principal components: the datapath and the control unit. This 
paper presents the design of a control unit for a 32-bit Turing-

complete RISC-V architecture. In the RV32 RISC-V architecture, 
memory addresses and data words are 32-bit. This represents a 
flexible and energy-efficient alternative to the dominant RISC 
and Complex Instruction Set Computer (CISC) architectures. 
The simplified instruction set at the core of RISC-V is small and 
orthogonal, allowing for a thriving ecosystem of innovation. 
This approach reduces the hardware requirements and improves 
overall performance by eliminating the complexity and overhead 
associated with complex instruction sets.

Reduced Instructions Set
The fundamental instructions, comprising a length of 32 bits, 
are classified into distinct categories based on the opcode. For 
illustrative purposes, Table II depicts the instruction formats that 
are Turing complete and are utilized in this work. The opcode 
is implemented in the initial seven bits of the instruction, while 
the remaining bits vary according to the specific operation. 
Arithmetic operations predominantly utilise the R-type format. 
The instruction has two source registers (rs1 and rs2) and one 
destination register (rd) as operands. The general function of the 
instruction is determined by the function field funct3, while the 
seven bits in funct7 are used to specify the exact function when 
the “funct3” of two instructions are the same. Instructions for 
loading operations are formatted according to the L-type format. 
This format is identical to that of the I-type. The I-type instruction 
format is analogous to the R-type format, with the exception that 
the funct7 and rs2 fields, which are present in the R-type format, 
are absent in the I-type format. Instead, the 12-bit field imm is 
utilized. Store instructions employ the S-type format, wherein the 
value in rs2 is stored at the address calculated by imm and rs1. 
The B-type format is utilized for branch instructions, wherein 
the values in rs1 and rs2 are compared, and the target address 
is contained within imm [24]. The jump and link instructions 
employ the J-type format, whereby the 20 bits within the imm field 
delineate the target address, while the return address is situated 
within rd [25].

Synchronous Multicycle CPU
We will now provide a brief introduction to the initial processor 
which can be observed in Figure 9 [24]. It is a synchronous 
processor that is Turing complete, which signifies its capacity 
to calculate all Turing-computable functions. The processor is 
realized as a multicycle processor in order to facilitate the design 
of different access times for different instructions, thereby enabling 
the division of an instruction into discrete individual steps. This 
differs from the approach taken with a single-cycle processor, 
where the worst-case path for the entire instruction is considered. 
Instead, in this case, the worst case for the individual processing 
steps is considered. However, the processor employs a Harvard 
architecture, which is evident from the fact that it has separate 
data and instruction registers in a block random access memory 
(BRAM) (i.e., with two different addresses).

Table II: RISC-V Instruction Formats
Type Bits [31:25] Bits [24:20] Bits [19:15] Bits [14:12] Bits [11:7] Opcode[6:0]

R-Type       funct7 rs2 rs1 funct3 rd 0110011

I-Type imm[11:0] rs1 funct3 rd 0010011

L-Type imm[11:0] rs1 funct3 rd 0000011

S-Type imm[11:5] rs2 rs1 funct3 imm[4:0] 0100011

B-Type imm[12|10:5] rs2 rs1 funct3 imm[4:1|11] 1100011

J-Type imm[20|10:1|11|19:12] rd 1101111
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Figure 9: Synchronous CPU and the Synchronous State Transfer 
Function

Synchronous Control Unit
The control unit is described in brief below. In order to facilitate 
the processing of instructions, an automaton is generated that was 
derived from RISC-V and employs the input opcode 6:2 for the 
purpose of decoding the individual states. In contrast to [24], a 
few additional states were incorporated due to the necessity of 
two clock cycles for memory access. Consequently, the multicycle 
processor is divided into the following branches: load, store, 
r-type, i-type, btype, and jal. The clock cycles are distributed in 
order to achieve shorter access times, as illustrated in Figure 10.

Figure 10: Automaton Graph of synchronous Moore Machine

This results in the longest instruction load and the shortest 
branch-if-equal (BEQ). A single-cycle processor would now 
accommodate the most unfavorable scenario for all instructions, 
whereas the multicycle processor would conserve three cycles 
for the branch-if-equal (BEQ) instruction. It is evident that the 
differing access times of the instructions necessitate the use 
of a multicycle processor. Subsequently, the automaton was 
constructed as a Moore machine, with each state having a single 
output. Subsequently, a synchronous automaton was devised at 
the high level, incorporating optimizations derived from VDS.

Design of the Asynchronous Controller
Subsequently, the asynchronous circuit is implemented in the 
synchronous RISC-V processor. The asynchronous handshaking 
protocol has the potential to markedly improve the processor’s 
performance, as it enables the implementation of varying 
access times for distinct process steps (e.g., writing memory 
is considerably slower than addressing the register file). As 
the domino logic is realised as a pipeline, there is also a direct 
transfer to pipelines; however, this application is not addressed 
further in this paper. In order to facilitate the design of a pipeline 
cascade, which is a more complex process in domino logic, a 
Mealy automaton will be implemented that can generate different 
output values for its states depending on the input signal.

In contrast to the synchronous Moore automaton, which has 
predefined pro- cessing times for the various instructions, the 
Mealy automaton is clocked externally by REQ and ACK. This 
implies that the identical states for dis- parate instructions can have 
disparate access times. Consequently, the states are superimposed, 
and the edges are retained. Furthermore, self-locking can be 
applied to the output function, which negates the necessity for 
hazards and other potential issues. This results in a reduction in 
hardware requirements in comparison to the Moore Machine. The 
individual states were then encoded one-hot to enhance clarity in 
the domino output in the z-variables.

The automaton graph for the pipeline can be found in Figure 11 
and its structure in Figure 12. The opcode of the BEQ branch is 
Edge A, as it requires only three state transitions. Edge B is given 
by the R-type, I-type, and JAL branches. Edge C represents the 
edge for the Store instruction, while the Load instruction reaches 
the final state, represented by the binary sequence [100000].

Figure 11: Automaton Graph Pipeline

Design of an Asynchronous ALU
To more effectively illustrate the advantages of the asynchronous 
handshake protocol, we have elected to configure the ALU as 
a parallelized, self-locking domino logic, which allows for a 
more comprehensive and accurate representation of the protocol’s 
functionality. Given the considerable time required to access 
the ALU, the self-clocked variant represents a promising 
improvement. The following section will serve as a case study in 
domino logic, utilizing the AND instruction as a point of analysis. 
This approach will elucidate the design process. The initial stage 
of the process is the conversion of an asynchronous ALU into a 
domino logic structure. The bitwise AND can be implemented 
in a straightforward manner by utilizing the AND structure of 
a domino gate and combining each position of the 32-bit word 
in dual-rail. This can be accomplished entirely in parallel. The 
independence of all dual-rail gates indicates whether the ALU has 
undergone rounding, allowing the input to be unlocked by setting 
the en signal (ACK) to 1. The code snippet for the ALU’s AND 
function as DRDL AND2 is provided below for reference. The 
resulting structure of the AND for the ALU in self-locking domino 
logic is illustrated in Figure 13. Moreover, the input incorporates 
a self-locking pulse circuit that generates a duty cycle, thereby 
initiating the precharge phase. This is followed by a scan of the 
source registers of the ALU multiplexers, after which the input is 
unlocked when each of the 32 DRDL gates has disjoint outputs.
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Figure 12: Structure of realized Pipeline in FPGA

Integration in the CPU
The self-locking machine can now be readily incorporated into 
the existing CPU and controlled via the clock, for instance, thus 
facilitating its integration into existing systems. While this does 
not immediately enhance performance if the other processor 
components do not exhibit GALS behavior, it demonstrates the 
simplicity of integrating self-timed circuits. Moreover, self-timing 
requires fewer flip-flops, which consequently results in reduced 
power consumption. To illustrate the advantages of asynchronous 
handshaking, the DRDL ALU was also integrated. The controller 
oversees the operation of other components in a synchronous 
manner, while simultaneously initiating the asynchronous hand- 
shaking process with the ALU, thereby accelerating the execution 
of instructions that utilize the ALU.

Listing 4: Low-Level 32-Bit DRDL AND

Power Performance and Area (PPA) Results
The PPA analysis of the implemented asynchronous processor 
on an FPGA definitively demonstrates its efficiency and viability 
for a range of applications. This section presents the findings 
from the synthesis, implementation, and simulation processes 
using the Vivado Design Suite. The results are presented in three 
subsections: power analysis, performance analysis, and area 
analysis.

Figure 13: Domino Logic ALU

Power Consumption
The power consumption shares of the individual processors were 
obtained from the Vivado Power Analysis Tool, as detailed in 
Figure 14.

Figure 14: Power Consumption of the Synhronous vs. 
Asynchronous CPU

The total dynamic power consumption of both the asynchronous 
and synchronous processors is nearly similar, which can be 
attributed to the parallel operation of the asynchronous processor. 
Nevertheless, the asynchronous design results in significant 
power savings in the clock network, as demonstrated by the 
lower proportion of power consumption allocated to clocks in 
the asynchronous processor in comparison to the synchronous 
one. This underscores the efficacy of the asynchronous processor 
in curbing clock-related power consumption, which is a pivotal 
aspect of comprehensive power management and energy efficiency.

Performance Analysis
In this section, we evaluate the effectiveness of our asynchronous 
CPU design by comparing it with a synchronous CPU. To elucidate 
the advantages and potential trade-offs of the asynchronous 
CPU design in comparison to its synchronous counterpart, the 
SPECint2000 benchmark suite is employed. The SPECint2000 
benchmark is a well-established and widely used tool for evaluating 
the performance of computer processors. It is maintained by the 
Standard Performance Evaluation Corporation (SPEC), which 
also develops and maintains the broader SPEC benchmark suite. 
SPECint2000 is particularly focused on integer processing. The 
benchmark is commonly applied to measure the performance of 
CPUs with integer-heavy workloads, providing a comprehensive 
assessment through a variety of real-world applications. The 
benchmark is composed of approximately 25 % loads, 10% stores, 
11% branches, 2% jumps, and 52% R- or I-type ALU instructions 
[24]. The diverse range of operations included in the SPECint2000 
benchmark renders it an optimal tool for evaluating and comparing 
the performance characteristics of different CPU architectures. 
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The synchronous CPU and the designated asynchronous CPU 
are applied to run the programs in the SPECint2000 benchmark 
set. Ultimately, the throughput and the average latency of every 
instruction of both CPUs are observed.

A loop was constructed around the test code with a branch-targeted 
indirect jump (BEQ) instruction using a clock frequency of 100 
megahertz (MHz), and the throughput of the asynchronous and 
synchronous CPUs, as well as the average duration per instruction, 
were determined see Table III.

Table III: Performance Metrics
Parameter Asynchronous CPU Synchronous CPU
Throughput (MIPS) 25.64 22.73
Average Latency/
Instruction

39.5 ns 44 ns

The analysis demonstrates that the CPU performance for the 
SPECint2000 benchmark increased by approximately 10% as a 
result of enabling communication between the control unit and 
the ALU through the use of DRDL gates.

Area Analysis
The objective of the area analysis is to evaluate the utilization 
of FPGA resources, including LUTs, slice registers, and slices. 
The asynchronous design utilized 6.67% of the available LUTs, 
indicating a moderate complexity in logic implementation. 
Additionally, the design employed 4.85% of the available slice 
registers and leveraged 4.63% slices.

As anticipated, the area utilized exhibited an increase, yet remained 
within the anticipated range due to the implementation of DRDL 
gates within a single LUT.

Table IV: FPGA Resource Utilization
Resource Type Utilization in (%) 

Async
Utilization in (%) 

Sync
LUTs 6.67% 6.32%
Slice Registers 4.85% 4.9%
Slices 9.27% 8.9%

Discussion
The PPA results indicate that the asynchronous processor 
exhibits substantial potential in terms of performance, which is 
of paramount importance for performance-critical applications. 
Although there was a slight alteration in power consumption, 
the area analysis demonstrates a balanced utilization of FPGA 
resources, thereby substantiating the feasibility of implementing 
such designs within reasonable silicon area constraints.

Blueprint of an Asynchronous CPU
The straightforward integration resulting from the modularity 
of asynchronous circuits allows for the presentation of a 
comprehensive blueprint for an asynchronous processor. The 
objective is to devise the entire processor in an asynchronous 
manner, whereby each circuit component operates with request 
and acknowledgment signals, eliminating the necessity for a global 
clock for the entire circuit, see Figure 15. It can be observed that 
the individual circuit components engage in communication with 
the controller through the use of a request and acknowledgement 
mechanism, which is represented by the double arrow symbol. 
The construction of combinational circuits is achieved through 

the utilisation of domino logic, whereas the implementation of 
D-FFs is accomplished by employing asynchronous D-latches with 
request and acknowledge signals. The memory operates on clock 
cycles, wherein the ack signal is set with precision after two cycles 
(the data access process necessitates this number of cycles). The 
feasibility of a single-cycle processor for this type of processor 
is also a potential avenue for future investigation, however, the 
current focus is on the development of a pipelined processor.

Figure 15: Asynchronous CPU

Conclusion and Future Work
This work proposes an asynchronous RISC-V CPU design based 
on self- locking domino control. The asynchronous approach 
offers advantages over traditional synchronous designs in 
terms of performance, power consumption, and modularity. 
The paper provides a comprehensive account of the design and 
implementation of the asynchronous control unit, which employs 
domino control on an FPGA development board. The control unit 
has been designed to accommodate a Turing-complete 32-bit 
RISC-V architecture. A noteworthy feature of the design is the 
incorporation of a self-locking mechanism, which guarantees that 
the circuit remains engaged until all processing stages have been 
completed. This eliminates the necessity for a global clock and 
simplifies error- free operation. Furthermore, the paper discusses 
the possibility of parallelizing the ALU using domino control to 
further improve performance. Subsequently, the paper illustrates 
the straightforward integration of the asynchronous control unit 
into an existing synchronous CPU, thereby demonstrating the 
potential benefits of self-timed circuits. Ultimately, the PPA 
analysis of the implemented asynchronous processor on an FPGA 
substantiates its considerable potential for diverse applications.

The power analysis indicates that while the total dynamic 
power consumption of the asynchronous processor is 
comparable to that of the synchronous processor, it achieves 
a significant reduction in power consumption within the clock 
network. This highlights the effectiveness of the asynchronous 
processor in reducing clock-related power consumption, which 
is a crucial aspect of comprehensive power management and 
energy efficiency. A performance analysis conducted using the 
SPECint2000 benchmark suite revealed that the asynchronous 
processor exhibited superior performance compared to the syn- 
chronous processor. This was demonstrated by a 10% increase 
in throughput and a reduction in average latency per instruction. 
This performance enhancement is achieved through the utilisation 
of handshaking with DRDL gates in the control unit and ALU. 
The area analysis indicates that the asynchronous design employs 
FPGA resources in a moderate manner, exhibiting a slight increase 
in LUT, slice register, and slice utilization in comparison to the 
synchronous design. Notwithstanding this increase, the resource 
utilization remains within acceptable limits, thereby substantiating 
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the feasibility of implementing the asynchronous processor 
within reasonable silicon area constraints. In conclusion, the 
asynchronous processor exhibits notable advantages in terms 
of power efficiency, performance, and area utilization, thereby 
establishing its viability as a potential solution for performance-
critical applications.
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