
Volume 3(2): 1-6J Arti Inte & Cloud Comp, 2024

Open Access

Journal of Artificial Intelligence &
Cloud Computing

ISSN: 2754-6659

Review Article

Serverless Architectures and Their Influence on Web Development

USA

Mani Shankar Srinivas Lingolu* and Manoj Kumar Dobbala

*Corresponding author
Mani Shankar Srinivas Lingolu, USA.

Received: April 15, 2024; Accepted: April 23, 2024; Published: April 29, 2024

Keywords: Serverless Architecture, Web, AWS Lambda, Google
Cloud Functions, AZURE Functions

Introduction
The evolution of web development has been marked by continuous
innovation, with each new technology promising to simplify the
developer’s workload, reduce operational costs, and enhance the
performance and scalability of online applications. Serverless
computing, despite its name, does not imply the absence of
servers but rather the abstraction of server management from the
developer’s responsibilities. This model is facilitated by cloud
service providers who dynamically manage the allocation of
machine resources. Priced based on consumption rather than pre-
allocated capacity, serverless architectures offer a cost-efficient
solution for deploying applications that can scale with demand
[1-10].

The migration from traditional server-based models to serverless
architectures represents a significant shift in web development
practices. This transition has implications not only for technical
implementation but also for project management, cost structure,
and the skill sets required of development teams [8]. With

serverless computing, the scalability, availability, and fault
tolerance of applications are managed by the cloud provider,
shifting the focus of developers towards writing more efficient
and effective code [11].

However, the adoption of serverless computing is not without
challenges [9]. Concerns over vendor lock-in, security, cold
starts, and the complexity of debugging serverless applications
are significant hurdles [10]. This paper aims to provide a balanced
analysis, addressing the benefits of serverless computing while
acknowledging the obstacles to its adoption [3].

Through a comprehensive review of literature, case studies, and
expert interviews, this research paper will answer critical questions
about the efficiency, cost, and scalability benefits of serverless
computing, as well as the challenges it presents to the web
development community. By examining the influence of serverless
architectures on web development, this study contributes to a
deeper understanding of how this technology is reshaping the
landscape of the internet and paving the way for the future of
application development [12]. The below figure (Figure 1) shows
generic flow of how serverless systems are architectured.

ABSTRACT
In recent years, serverless computing has emerged as a transformative technology in the field of web development, offering a new paradigm that eliminates
the need for server management and promotes a more efficient deployment model. This computing model enables developers to focus solely on writing
code, while the underlying infrastructure scaling, provisioning, and maintenance is handled by cloud service providers. The key attraction of serverless
computing lies in its promise to increase operational efficiency, reduce costs, and simplify scalability challenges inherent in traditional web development
practices.

This research paper aims to provide a comprehensive analysis of serverless computing and highlighting the significant influence of serverless computing
on web development, indicating a shift towards more agile, cost-effective, and scalable web applications. Paper compares serverless architectures with
traditional server-based web development models and seeks to understand the impact of this technology on the development lifecycle, project costs, and
organizational workflows. Through an examination of various serverless platforms and tools, such as AWS Lambda, Azure Functions, and Google Cloud
Functions, this study assesses the current landscape of serverless technologies and their adoption in web development. It also acknowledges the hurdles
in adopting serverless architectures, including security concerns, vendor lock-in risks, and the need for a change in thinking in development practices.
The paper underscores the importance of ongoing innovation and research in overcoming these challenges, suggesting future directions for enhancing the
serverless model’s effectiveness and adoption in the web development industry.

Citation: Mani Shankar Srinivas Lingolu, Manoj Kumar Dobbala (2024) Serverless Architectures and Their Influence on Web Development. Journal of Artificial
Intelligence & Cloud Computing. SRC/JAICC-316. DOI: doi.org/10.47363/JAICC/2024(3)297

J Arti Inte & Cloud Comp, 2024 Volume 3(2): 2-6

Figure 1: Serverless Flow

Let us take a use case of Image processing using AWS Lambda
when user uploads an image to storage service like AWS s3.
When an image is uploaded to AWS s3, an event triggers the AWS
Lambda function [4]. The Lambda function retrieves the image,
generates a thumbnail, and calls Amazon Rekognition to analyze
and tag the image content. The processed thumbnail and the
generated tags are then stored in S3 and DynamoDB, respectively.
This serverless workflow exemplifies how AWS services can
be orchestrated to build scalable, event-driven applications,
maximizing efficiency, and minimizing operational overhead.
The below figure 2 describes the AWS lambda image processing
in sequence diagram which shows sequence of events from image
upload to creation of thumbnails and tags [4].

Figure 2: Sequence Diagram of Image Processing using AWS l

Background with History and Covering Different Tools or
Technologies
History of Serverless Computing
Serverless computing, as a concept, has roots that trace back to
the early days of cloud computing, but it only gained significant
momentum in the mid-2010s. The term “serverless” is somewhat of
a misnomer because servers are still involved; it is the management
of these servers that is abstracted from the developer. The advent
of serverless computing marked a shift away from traditional,
server-centric architecture towards a more dynamic, event-driven
model that scales automatically, and charges based on actual usage
rather than allocated capacity.

The launch of Amazon Web Services (AWS) Lambda in 2014
was a pivotal moment in the serverless movement, introducing
the idea of Function as a Service (FaaS) to a broad audience.
This service allowed developers to run code in response to events
without provisioning or managing servers, which sparked a new
way of thinking about application development and deployment.
Following AWS Lambda’s success, other cloud providers,
including Microsoft Azure and Google Cloud, introduced their
own FaaS offerings, each adding unique features and capabilities
to the serverless ecosystem.

Figure 3: Historical Chart Tracing Serverless Technology

The historical chart traces serverless tech from early 2000s
beginnings to widespread adoption today. AWS Lambda launched
in 2014, sparking a serverless revolution followed by other cloud
giants. Growth in tools and enterprise adoption marked progress
post-2016. By 2022, serverless extended to edge computing,
displaying its evolution. Today, serverless is a key driver of cloud
innovation and developer efficiency.

Technologies
AWS Lambda: As the first widely adopted serverless computing
service, AWS Lambda set the standard for FaaS [4]. It allows
developers to run code in response to triggers from AWS services
like Amazon S3, DynamoDB, and API Gateway, or directly from
HTTP requests using API Gateway.

Google Cloud Functions: Google’s entry into the serverless
space focuses on simplicity and integration with Google Cloud
Platform service [5]. It supports Node.js, Python, Go, and Java,
allowing developers to build serverless applications that react
to events from within Google Cloud or through HTTP requests.

Azure Functions: Microsoft’s take on serverless computing
provides similar functionality to AWS Lambda, with the added
integration into the Azure ecosystem. Azure Functions supports
a wide range of programming languages and development
environments, making it a versatile choice for developers invested
in Microsoft’s cloud services [6].

IBM Cloud Functions: As IBM’s serverless computing offering,
IBM Cloud Functions allows developers to run code in response
to events without managing infrastructure [13]. It supports Node.
js, Python, Java, and Swift environments running in a Linux

Citation: Mani Shankar Srinivas Lingolu, Manoj Kumar Dobbala (2024) Serverless Architectures and Their Influence on Web Development. Journal of Artificial
Intelligence & Cloud Computing. SRC/JAICC-316. DOI: doi.org/10.47363/JAICC/2024(3)297

J Arti Inte & Cloud Comp, 2024 Volume 3(2): 3-6

container. Developers can write code that executes in response to
events from cloud services like IBM Cloudant and IBM Message
Hub, as well as HTTP requests via the built-in OpenWhisk actions.
IBM Cloud Functions integrates tightly with other IBM Cloud
services like IBM Containers and IBM Watson, making it a good
option for serverless applications within IBM’s cloud platform.
The OpenWhisk platform that underpins IBM Cloud Functions
is highly scalable and provides robust triggers and actions for
building event-driven serverless architectures.

OpenFaaS (Functions as a Service): This open-source project
enables developers to run serverless functions on their own
infrastructure, offering greater control and flexibility. OpenFaaS is
cloud-agnostic, supporting Kubernetes and Docker, and it appeals
to organizations looking to benefit from serverless computing
without committing to a specific cloud provider [14].

Kubeless: Another open source serverless framework that
runs on Kubernetes, Kubeless is designed to be simple and
straightforward to deploy and manage [15]. It supports multiple
programming languages and integrates seamlessly with the
Kubernetes ecosystem, providing a native serverless experience
on Kubernetes.

Analysis of Serverless Technologies
Platforms
Serverless computing platforms vary significantly in features,
performance, pricing models, and support for development
languages. AWS Lambda, as a pioneer, offers extensive integration
with other AWS services, making it a robust choice for applications
already within the AWS ecosystem. Azure Functions cater to
enterprises with a strong commitment to Microsoft technologies,
providing seamless integration with Azure’s cloud services.
Google Cloud Functions appeal to developers looking for
tight integration with Google’s analytics and machine learning
services. Open-source alternatives like OpenFaaS and Kubeless
offer flexibility and control for organizations looking to deploy
serverless computing on their infrastructure or in a multi-cloud
environment. This comparative analysis underlines the importance
of choosing a serverless platform that aligns with the application’s
requirements, existing cloud services, and organizational policies.

Evolution of Serverless Architectures
Serverless architectures have rapidly evolved from simple, single-
purpose functions to complex, multi-component applications.
This evolution is marked by the introduction of services that
manage backend tasks (e.g., authentication, data processing) and
the integration with frontend frameworks, enabling full-stack
development in a serverless model. Serverless containers, such
as AWS Fargate and Google Cloud Run, expand the serverless
model to containerized applications, offering developers more
flexibility in runtime environments without managing the
underlying infrastructure [16]. These advancements illustrate
the serverless ecosystem’s growth towards supporting a broader
range of application patterns and requirements.

Emerging Trends and Technologies
The serverless computing domain is continuously influenced by
emerging trends and technologies. Artificial intelligence (AI) and
machine learning (ML) are increasingly integrated into serverless
platforms, automating tasks like performance optimization
and anomaly detection. Efforts to reduce cold starts-delays in
function execution—have led to innovative solutions like pre-
warming and improved deployment strategies. Edge computing,

where computation is performed closer to the data source,
benefits from serverless models by enabling more responsive
and scalable applications. The CloudEvents specification by the
CNCF represents a move towards standardizing event data across
services, facilitating more straightforward integration and event-
driven architectures.

Security Considerations in Serverless Computing
Security in serverless computing presents unique challenges and
opportunities. The serverless model inherently reduces the attack
surface by abstracting away the server layer, yet it introduces
specific vulnerabilities related to function execution and third-
party services. Addressing these concerns requires a focus on
secure coding practices, diligent management of dependencies,
and the encryption of sensitive data [7]. Furthermore, leveraging
API gateways and implementing rigorous access controls are
critical for securing serverless applications.

Serverless Frameworks and Tooling
The development and deployment of serverless applications
are supported by a rich ecosystem of frameworks and tooling.
Frameworks like the Serverless Framework and AWS SAM
abstract the complexity of deploying serverless applications
across multiple environments, offering features like local testing,
configuration as code, and automated deployments [17]. Terraform,
a tool for infrastructure as code, supports serverless architectures,
enabling consistent and repeatable deployment processes across
cloud providers. These tools not only simplify the serverless
development lifecycle but also promote best practices and enhance
productivity.

Community and Ecosystem Development
The serverless computing ecosystem is bolstered by a vibrant
community of developers, vendors, and enthusiasts. Community-
led initiatives, such as ServerlessDays, Kubecon. conferences and
numerous online forums, foster collaboration, knowledge sharing,
and innovation. Open-source projects play a crucial role in the
ecosystem, offering alternatives to vendor-specific solutions and
contributing to the diversity of tools available to developers. The
community’s commitment to advancing serverless computing is
evident in the wealth of resources, including tutorials, case studies,
and best practices, that guide newcomers and experts alike through
the intricacies of serverless architectures.

Research Questions and Case Studies!
In this study, we aim to address several pivotal questions that
encapsulate the core inquiries surrounding serverless architectures
and their influence on the web development landscape. These
questions are designed to guide our analysis and ensure a focused
investigation into the most critical aspects of serverless computing.
The following research questions have been identified:

Research Question 1: How does serverless computing alter the
workflow and efficiency of web development teams compared to
traditional server-based models?

This question seeks to explore the changes in development
practices, project management, and team efficiency brought about
by the adoption of serverless architectures. It includes examining
the impact on the development lifecycle, from coding and
deployment to maintenance and scaling, and how these changes
affect the overall productivity and agility of web development
teams.

Citation: Mani Shankar Srinivas Lingolu, Manoj Kumar Dobbala (2024) Serverless Architectures and Their Influence on Web Development. Journal of Artificial
Intelligence & Cloud Computing. SRC/JAICC-316. DOI: doi.org/10.47363/JAICC/2024(3)297

J Arti Inte & Cloud Comp, 2024 Volume 3(2): 4-6

Research Question 2: What are the key technical and
organizational challenges associated with adopting serverless
architectures in web development projects?

Identifying and analyzing the hurdles faced by organizations and
development teams in migrating to or implementing serverless
architectures are crucial. This involves delving into issues such
as the learning curve, security considerations, vendor lock-in,
and the integration of serverless with existing infrastructure and
development workflows.

Research Question 3: In what ways can serverless computing
contribute to cost optimization and scalability in web applications?

This question aims to quantify the economic and performance
benefits of serverless computing. It focuses on the ability of
serverless models to reduce operational costs, improve resource
utilization, and facilitate seamless scalability in response to
fluctuating demand, compared to traditional server-based
approaches.

Analysis on Research Questions

RQ 1 - Workflow and Efficiency

Objective: Investigate how serverless computing influences the
workflow, efficiency, and productivity of web development teams
in comparison to traditional server-based models.

Findings
•	 Speed of Deployment: Serverless computing significantly

reduces the time required for deploying applications. Without
the need to manage server infrastructure, developers can
focus on code, leading to faster iteration cycles. Case studies,
particularly from startups and agile enterprises, highlight
deployments that can be accomplished in days or hours rather
than weeks [15].

•	 Maintenance and Scalability: The automated scaling feature
of serverless architectures ensures that applications can handle
varying loads without manual intervention. This reduces
the maintenance overhead for development teams, allowing
them to allocate more resources towards new features or
improvements. However, the dependence on cloud providers
for scaling can introduce complexities in monitoring and
optimization efforts.

•	 Developer Productivity: Surveys and community articles
reveal an increase in developer satisfaction and productivity,
attributed to the reduced burden of server management and the
ability to deploy code more frequently. However, some reports
challenges in debugging and testing serverless applications,
indicating a need for better tooling and practices.

Discussion: The shift to serverless computing offers clear benefits
in terms of deployment speed and operational efficiency, enhancing
the agility of web development teams. Nevertheless, to fully
leverage these advantages, organizations must invest in training
for their developers on serverless best practices and adopt tooling
that addresses the unique challenges of serverless environments.

In a practical application of serverless computing, climate
technology leader BlocPower utilized Amazon Web Services
(AWS) to enhance its BlocMaps application-a SaaS solution aimed
at supporting municipalities and utility companies in building
decarbonization efforts [18]. The need for improved performance

and data handling capabilities led BlocPower to collaborate with
AWS, exploring Amazon Redshift Serverless through a proof
of concept. This exploration revealed significant performance
improvements, with data processing and querying becoming 10
times faster than the previous architecture. By adopting Amazon
Redshift Serverless, alongside Amazon S3 and AWS Glue,
BlocPower achieved a substantial reduction in the time DevOps
engineers spent on scaling, while also enabling near real-time
data querying across multiple sources.

These backend enhancements translated into a markedly smoother
user experience, with reduced latency on the application’s
frontend. Prior to the serverless transition, loading building
profiles on BlocMaps could take 20-30 seconds-a delay that was
significantly reduced to under 5 seconds post-implementation.
This improvement not only enhanced customer satisfaction but
also bolstered BlocPower’s market expansion efforts through
positive word-of-mouth. The case of BlocPower and BlocMaps
underscores the transformative potential of serverless computing
in optimizing performance and scalability, while simultaneously
streamlining operational efficiency and cost.

RQ 2 - Challenges in Adoption

Objective: Identify the main challenges web development teams
face when adopting serverless architectures, from both technical
and organizational perspectives [11,19].

Findings
•	 Learning Curve and Skill Gaps: The transition to serverless

requires developers to understand new concepts and tools,
which can initially slow down development efforts. The
necessity for knowledge in cloud configurations, event-driven
programming, and state management represents a significant
shift from traditional server management.

•	 Security and Compliance: Security concerns, such as
securing serverless APIs and managing function permissions,
remain top challenges. Compliance with data protection
regulations becomes complex due to the distributed nature
of serverless applications.

•	 Vendor Lock-in: Dependency on specific cloud providers’
implementations of serverless computing can limit flexibility
and raise concerns about portability, pricing, and service
discontinuation.

•	 Cold Starts: The latency introduced by cold starts (the delay
when invoking idle functions) is a noted performance issue,
affecting user experience in latency-sensitive applications.

Discussion: Overcoming the challenges of serverless adoption
requires a balanced approach that includes comprehensive training,
adoption of best practices for security and compliance, careful
selection of cloud providers, and strategies to mitigate cold starts.
Organizations must weigh these challenges against the benefits of
serverless computing to make informed decisions [16].

RQ 3 - Cost Optimization and Scalability

Objective: Evaluate how serverless computing impacts the cost
optimization and scalability of web applications.

Findings
•	 Cost-Efficiency: Serverless models offer a pay-as-you-go

pricing structure, which can lead to significant cost savings
for applications with fluctuating workloads. However, for

Citation: Mani Shankar Srinivas Lingolu, Manoj Kumar Dobbala (2024) Serverless Architectures and Their Influence on Web Development. Journal of Artificial
Intelligence & Cloud Computing. SRC/JAICC-316. DOI: doi.org/10.47363/JAICC/2024(3)297

J Arti Inte & Cloud Comp, 2024 Volume 3(2): 5-6

constant high-load applications, serverless may not always
be the most cost-effective solution [20].

•	 Scalability: Serverless computing excels in scalability,
allowing applications to seamlessly scale in response to
actual demand without manual intervention. This dynamic
scalability supports highly variable workloads and can
improve the availability and performance of web applications.

Discussion: The financial and operational benefits of serverless
computing for cost optimization and scalability are evident,
particularly for applications with variable traffic patterns. Yet, it is
crucial for organizations to closely monitor usage to manage costs
effectively and consider architectural best practices to maximize
the benefits of serverless scalability.

Conclusion
The exploration of serverless computing within the realm of
web development has revealed a technology poised to redefine
traditional development and deployment models [1]. Through the
detailed analysis of workflow efficiency, adoption challenges, and
the economic and scalability impacts, this paper has illuminated
both the transformative potential of serverless computing and the
hurdles that come with its adoption. Few key areas that could be
improved in serverless in web platforms are:

Cold Start Optimization: Reducing the initialization time for
serverless functions, particularly for high-traffic web applications.

Enhanced State Management: Providing better support for
stateful applications without compromising the serverless model’s
benefits.

Improved Local Development: Offering tools that closely mimic
the cloud environment for local testing and debugging.

Extended Runtime Support: Adding more programming
languages and custom runtime support for greater flexibility.

Advanced Monitoring and Diagnostics: Developing superior
monitoring and logging tools to diagnose and troubleshoot
serverless applications more effectively [22].

Figure 4: Illustrates Potential Improvements in Serverless
Technology

Summary of Key Findings
•	 Workflow and Efficiency: The adoption of serverless

computing significantly accelerates the deployment process
and reduces the operational overhead associated with
server management. This shift not only enhances developer
productivity by allowing more focus on core development
tasks but also introduces new challenges in debugging and
monitoring serverless applications.

•	 Challenges in Adoption: The transition to serverless
architectures presents a steep learning curve, highlighting
the necessity for upskilling development teams and adapting
to new programming paradigms. Security considerations,
particularly in the context of function permissions and data
compliance, emerge as critical concerns. Moreover, the
potential for vendor lock-in and the performance impact
of cold starts represent significant obstacles for some
applications.

•	 Cost Optimization and Scalability: Serverless computing
offers a compelling model for cost savings and operational
efficiency, particularly for applications with variable
workloads. The pay-as-you-go pricing model aligns costs
directly with usage, though it necessitates careful monitoring
to prevent unexpected expenses. Scalability, a hallmark of
serverless computing, is achieved with unprecedented ease,
allowing applications to respond dynamically to changing
demands.

Implications for Web Development
The findings of this paper underscore the growing influence of
serverless computing on the web development landscape. As
serverless architectures become more prevalent, developers and
organizations must adapt to the nuances of serverless design and
operation. This includes embracing new tools and practices for
serverless application development, monitoring, and security. The
evolution toward serverless computing also signals a shift in the
skill sets required of web developers, emphasizing cloud services,
security, and event-driven programming.

Directions for Future Research: While this study provides
foundational insights into serverless computing’s impact on web
development, several areas warrant further investigation. Future
research could explore:
•	 Longitudinal Studies on Serverless Adoption: Assessing

the long-term effects of serverless computing on development
practices, project costs, and operational efficiency.

•	 Comparative Performance Analysis: Deep dives into the
performance characteristics of serverless applications versus
traditional architectures, with a focus on optimizing cold start
times and resource utilization.

•	 Security Best Practices: Developing comprehensive
strategies for securing serverless applications, including
function-level permissions, data encryption, and compliance
with evolving data protection regulations.

•	 Hybrid Architectures: Investigating the integration of
serverless computing with traditional and containerized
environments to leverage the strengths of each model.

Final Thoughts
Serverless computing represents a significant evolution in web
development, offering pathways to greater efficiency, scalability,
and cost-effectiveness. However, realizing its full potential requires
navigating its associated challenges, particularly around security,
vendor dependency, and the initial learning curve [8,19,21]. As
the technology matures and the ecosystem around serverless
computing continues to develop, it stands to offer even greater
opportunities for innovation and efficiency in web development.
Embracing serverless computing is not merely about adopting
modern technology but about moving towards a more agile,
scalable, and cost-efficient future in web development.

Citation: Mani Shankar Srinivas Lingolu, Manoj Kumar Dobbala (2024) Serverless Architectures and Their Influence on Web Development. Journal of Artificial
Intelligence & Cloud Computing. SRC/JAICC-316. DOI: doi.org/10.47363/JAICC/2024(3)297

J Arti Inte & Cloud Comp, 2024 Volume 3(2): 6-6

Copyright: ©2024 Mani Shankar Srinivas Lingolu. This is an open-access
article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

References
1.	 Kien Nguyen, Loh Frank, Nguyen Tung, Doan Duong, Thanh

Nguyen, et al. (2023) Serverless Computing Lifecycle Model
for Edge Cloud Deployments. IEEE Xplore 145-150.

2.	 Singh Sachchidanand, Sewak Mohit (2018) Winning
in the Era of Serverless Computing and Function as a
Service. IEEE Xplore https://ieeexplore.ieee.org/abstract/
document/8529465.

3.	 Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng,
Stephen Fink, et al. (2017) Serverless Computing: Current
Trends and Open Problems. ArXiv https://arxiv.org/
abs/1706.03178.

4.	 Building Applications with Serverless Architectures. AWS
Serverless https://aws.amazon.com/lambda/serverless-
architectures-learn-more/.

5.	 (2019) Introducing Cloud Functions: Serverless event-based
programming in Google Cloud Platform. Google https://
cloud.google.com/functions.

6.	 Azure Serverless. Azure https://azure.microsoft.com/en-us/
solutions/serverless.

7.	 Marin E, Perino D, Di Pietro R (2022) Serverless computing:
a security perspective. J Cloud Comp 11.

8.	 Vassalo JT (2019) Serverless architectures and their impact on
the modern programming model. In 2019 IEEE International
Conference on Software Architecture Companion (ICSA-C)
9-16.

9.	 Hossein Shafiei, Ahmad Khonsari, Payam Mousavi (2022)
Serverless Computing: A Survey of Opportunities, Challenges,
and Applications. ACM Comput Surv 54: 1-32.

10.	 Hellerstein JM, Faleiro J, Gonzalez JE, Schleier-Smith
J, Sreekanti V, et al. (2018) Serverless computing: One
step forward, two steps back. arXiv https://arxiv.org/
abs/1812.03651.

11.	 Jinfeng Wen, Zhenpeng Chen, Xuanzhe Liu (2022) Software
Engineering for Serverless Computing. arXiv https://arxiv.
org/abs/2207.13263.

12.	 Taibi Davide, Spillner Josef, Wawruch Konrad (2021)
Serverless Where are we now and where are we heading?
IEEE Software 25-31.

13.	 (2021) Serverless on IBM Cloud. IBM Cloud Functions
https://www.ibm.com/products/functions.

14.	 Serverless Functions, Made Simple. OpenFaas https://www.
openfaas.com/.

15.	 Kubeless Framework. Serverless https://www.serverless.com/
framework/docs-providers-kubeless-guide-intro.

16.	 McGrath G, Brenner PR (2017) Serverless Computing:
Design, Implementation, and Performance. 2017 IEEE 37th
International Conference on Distributed Computing Systems
Workshops (ICDCSW), Atlanta, GA, USA 405-410.

17.	 Top Serverless Frameworks for Creating Serverless Apps.
TatvaSoft https://www.tatvasoft.com/outsourcing/2022/11/
serverless-frameworks.html.

18.	 Processing Data 10x Faster Using Amazon Redshift
Serverless with BlocPower. AWS Amazon https://aws.
amazon.com/solutions/case-studies/blocpower-redshift-case-
study/?did=cr_card&trk=cr_card.

19.	 The State of Serverless Report. Datadog https://www.
datadoghq.com/state-of-serverless/.

20.	 Cordingly R, Shu W, Lloyd WJ (2020) Predicting Performance
and Cost of Serverless Computing Functions with SAAF.
2020 IEEE Intl Conf on Dependable, Autonomic and
Secure Computing, Intl Conf on Pervasive Intelligence and
Computing, Intl Conf on Cloud and Big Data Computing, Intl
Conf on Cyber Science and Technology Congress (DASC/
PiCom/CBDCom/CyberSciTech), Calgary, AB, Canada 640-
649.

21.	 Sáad A (2023) The Power of Serverless Architecture in
Web Development. Linkedin https://www.linkedin.com/
pulse/power-serverless-architecture-web-development-
s%C3%A1ad-amir-lcvxf.

22.	 Kumari Anisha, Behera Ranjan, Sahoo Bibhudatta, Misra
Sanjay (2022) Role of Serverless Computing in Healthcare
Systems: Case Studies. Computational Science and Its
Applications – ICCSA 2022 Workshops: Malaga, Spain
123-134.

