
J Arti Inte & Cloud Comp, 2022 Volume 1(4): 1-9

Review Article Open Access

Serverless Computing: Revolutionizing AI/ML Applications with
AWS Lambda and SageMaker

USA

Sai Tarun Kaniganti* and Venkata Naga Sai Kiran Challa

Journal of Artificial Intelligence &
Cloud Computing

*Corresponding author
Sai Tarun Kaniganti, USA.

Received: October 05, 2022; Accepted: October 10, 2022; Published: October 18, 2022

ISSN: 2754-6659

Introduction
The advent of cloud computing has revolutionized the way applica-
tions are developed, deployed, and scaled. Traditional monolithic
architectures have given way to microservices and containeriza-
tion, enabling greater flexibility, scalability, and cost-effectiveness.
However, even with these advancements, managing infrastructure
and scaling resources can be a complex and time-consuming task.
This is where serverless computing comes into play, offering a
new paradigm that promises to simplify application development
and deployment while reducing operational overhead. Serverless
computing, also known as Function-as-a-Service (FaaS), is a cloud
computing execution model where the cloud provider dynamically
manages the allocation and provisioning of servers. Developers
can focus solely on writing and deploying code, without worry-
ing about the underlying infrastructure. This approach has gained
significant traction due to its potential to reduce costs, improve
scalability, and accelerate time-to-market.

Figure 1: An AWS Serverless Inference Workflow

In this research paper, we will explore the concept of serverless
computing, its use cases, and limitations. We will also discuss
how serverless computing can be leveraged in conjunction with
artificial intelligence (AI) and machine learning (ML) to enhance
application development and deployment. Additionally, we will
provide insights into real-world projects and architectures related
to Amazon Web Services (AWS), drawing from personal experi-
ence as a software development engineer.

Serverless Computing: An Overview
Serverless computing, also known as function-as-a-service, is

an emerging approach to the consumption of cloud computing
resources, where developers can focus on developing applica-
tion-specific logic instead of low-level system resources such
as servers. Rather, developers write and use code in the form of
functions and the cloud provider takes care of the infrastructure
such as load balancing, scaling, and routing. Another name for
this model is Function-as-a-Service or FaaS. In serverless appli-
cations’ approach, applications are broken into micro services,
stateless functions that are initiated through events/REST calls.
These functions are truly stateless, that is, they do not require
any data stored from a previous run in order to work. Hence, they
depend on outside services like databases or object storage to put
and get data. It reduces development complexity and enhances
scalability because there is no tight integration of the function’s
logic and state.

Another advantage of serverless computing is the inherent scalabil-
ity of the model. The cloud provider is able to select resources on
the fly, effectively making certain that an application will be able
to host large traffic noon intrusions. It also frees developers from
having to maintain cap-ex on servers and calls for fewer actions
to be done manually, thereby lowering costs. Also, they have the
cost structure where the consumers pay for what they effectively
use, and this results to certain gains in cost savings when used
for applications that present variability in the level of utilization.
Serverless computing also works to increase a developer’s pro-
ductivity through the removal of infrastructure as a concern. This
way, developers are able to concentrate on writing code and the
logic of the businesses, while operations issues are handled by the
cloud provider. This can result into shorter development cycles
and shorter time to market that is for new features and application.

Serverless architectures also pertain to a broad number of use
cases. For example, Lamda functions are perfectly suitable for
event-based applications when functions are initiated by certain
events such as file loading, changes in the databases, or received
messages. They are also ideal for developing RESTful APIs,
microservices, and backend services for web and application mo-
bile applications. Nevertheless, like any new solution, serverless
computing has some disadvantages among which are cold start
latency, the time limit for execution, and vendor capture. These
aspects should be taken into consideration while implementing
serverless architectures to achieve the best results for software

Citation: Sai Tarun Kaniganti, Venkata Naga Sai Kiran Challa (2022) Serverless Computing: Revolutionizing AI/ML Applications with AWS Lambda and SageMaker.
Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-385. DOI: doi.org/10.47363/JAICC/2022(1)368

J Arti Inte & Cloud Comp, 2022 Volume 1(4): 2-9

applications. Serverless computing is the next evolution of cloud
application development that is characterized by high level of scal-
ability, cost-efficiency, and flexibility with certain implications that
must be considered when designing the application.

Comparison with Traditional Architectures
The shift from conventional server models to serverless models has
been transformative in how an application is built, deployed, and run.
Awareness of these matters is important if the advantages of each
model are to be optimally tapped in the teaching-learning process.

Cost
The cost of implementing traditional server-based architectures is
usually high and requires a recurrent expenditure. Such costs comprise
the cost of acquiring the network equipment, the costs of running
the data centres, and the costs of employees who manage the infra-
structure. Thirdly, the cost is continuously being charged even when
the servers are not in use, hence a problem of resource wastage. On
the other hand, serverless computing shares its cost structure based
on the pay-as-you-go model. This is because resources are charged
fully, reflecting the consumption. Therefore, great cost reduction is
achievable. For instance, a study by Trovarelli et al. on serverless
cost reduction showed that serverless architectures can bring cost
reductions up to 90% in specific workloads to traditional VM-based
structures [1].

Scalability
Increasing in traditional architectures usually can be performed only
via interventions or by pre-provisioning additional servers. This often
results in over-provisioning, which is counterproductive or under-
provisioning, which harms performance. Sequential computing,
however, does not inherently incorporate the feature of automatic
scaling as the opposite of the name suggests. Functions can also
grow horizontally about incoming queries or requests without human
intervention. AWS Lambda, for example, can handle thousands of
concurrent executions and only scales depending on the usage [2].

Management Overhead
The existing architecture paradigms entail much effort in managing
servers, applying updates, and ensuring availability. This frequently
requires a discrete operations team. Serverless architectures, by defi-
nition, entail no server maintenance and, thus, cut down on these
expenses significantly. As for the infrastructure, cloud providers take
full responsibility for the developers to work with codes and functions
only. As noted by Adzic and Chatley, this shift will improve cycles
and decrease the time to market [3].

Performance
Performance is analyzed differently in conventional systems and
serverless systems. General-purpose servers can be tuned for per-
formance, but sufficient horizontal scaling cannot happen if traffic
increases suddenly, leading to latency. On the other hand, a function
can face something called cold start latency, where it is invoked for
the first time after it has been idle. However, serverless computing
outperforms other utility computing models for workloads with
fluctuating or occasional traffic patterns because of prompt scalability
and timely burst response [4].

Flexibility
A major disadvantage of traditional architectures is that they are
generally inflexible, and thus, extensive work is needed to change
applications or scale them up. Serverless architectures are more
flexible because developers can upload individual functions without
deploying the entire server at once. This is especially effective when

the business follows a microservices architecture approach because
the different parts will not be scrambled with each other.

Case Studies
A fascinating example is Coca-Cola, which used AWS Lambda to
deal with high loads connected with promotions. The serverless
architecture was less costly and more scalable than Coca-Cola's
prior organization based on VM [3]. The opposite can be seen in
Hellerstein et al.'s work, which described cases in which traditional
architectures proved to be better than serverless in long-running
processes, and it showed that serverless might not be appropriate for
all types of workloads [5].

Though server-based approaches are beneficial in some ways in
terms of control and optimization, serverless computing has a clear
edge over this conventional model in many ways from the cost per-
spective and the efficiency of managing these systems. Each of the
models has its advantages and disadvantages, which determine the
choice between them depending on the application's requirements
and the load.

Use Cases for Serverless Computing
One of the many things that serverless computing can be applied
to is various industries and uses. Here are some common scenarios
where serverless computing can be beneficial:

Event-Driven Applications
Serverless functions are ideal for event-based applications such as
IoT devices, real-time data processing and messaging. Mentioned
functions can be initiated by events, such as sensor data, file transfer,
or database changes, allowing real-time responses. For instance, in
IoT environments, serverless functions can perform real-time data
processing from sensors, enabling immediate action or triggering
the alert when some conditions are met [3]. Serverless frameworks
like AWS lambda also work well in other AWS services, including
S3, DynamoDB, and Kinesis, for choreographed event processing.

Figure 2: AWS Lambda

Web Applications and APIs
It can be employed in cases where developers require no server and
only need to build and deploy Web Apps and APIs. Handling HTTP
requests, data processing, and other services and functions can be
used for web-based applications and offer good scalability and cost
efficiency. This model is especially beneficial when application
usage is irregular because serverless can adapt to the load. For
instance, Netflix relies on AWS Lambda to handle over four billion
events daily, integrating the solution with large, high-availability
systems without an organization managing server resources. In
addition, deployment and management of serverless applications
have become much more accessible through such frameworks as
a serverless framework and the AWS SAM.

Citation: Sai Tarun Kaniganti, Venkata Naga Sai Kiran Challa (2022) Serverless Computing: Revolutionizing AI/ML Applications with AWS Lambda and SageMaker.
Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-385. DOI: doi.org/10.47363/JAICC/2022(1)368

J Arti Inte & Cloud Comp, 2022 Volume 1(4): 3-9

Data Processing and Transformation
Serverless functions can be applied to data preparation, manipula-
tion and loading, data ingestion, and batch processing; functions
invoke functions or can be programmed to be executed at specific
times, hence making it possible to have efficient and scalable data
processing routines. For instance, iRobot uses serverless comput-
ing to process data originating from millions of Roomba cleaning
robots; the firm employs AWS Lambda to handle ETL tasks and
process data [5]. It helps minimize the complexity of operations
and guarantees that the size of the data processing tasks depends
on the amount of data received.

Microservices and Serverless Architectures
Architecture that seamlessly integrates with microservices is
serverless computing since it mirrors an application separated into
numerous small services. Each service can be executed as a server-
less function, which leads to more granularity, exchangeability,
or prepare isolation. This architecture means the services can be
deployed and scaled separately rather than enhancing the sys-
tems’ general stability and elasticity. For example, AWS Lambda
is being used by many giant companies like Coca-Cola, which
implemented the microservices in their vending machine’s plat-
form, which helps to enhance scalability and reduce maintenance
efforts. Concerning application development operationalization,
serverless architectures make CI/CD easier, improving agility.

Task Scheduling and Cronjobs
The cron jobs or scheduled tasks such as data backup, report gen-
eration, or maintenance tasks can be implemented using serverless
functions. Functions can be invoked through scheduled services
offered by the cloud providers, thus requiring the services of indi-
vidual servers or managing cron jobs. For instance, developers can
use the AWS CloudWatch Events to enable and execute Lambda
functions at specified times; this eliminates the need for scripts
such as a database backup at night, or daily preparation of busy
daily business reports have a serverless approach to running tasks
and systems that provide expected reliability and scalability and
do not require constant management of server-based cron jobs.

Chatbots and Conversational Interfaces
Serverless functions can be utilized when developing and de-
ploying chatbots and conversational interfaces. They can pro-
cess incoming messages, perform NLP, and integrate operations
with other services to provide proper replies. For example, AWS
Lambda is supported by artificial services, including Amazon Lex,
while Azure Functions is supported by the Azure Bot Service to
develop intelligent chatbots [5]. These chatbots are self-scalable
depending on interaction with the client. Hence, the more clients
interact with them, the more it becomes a better tool for a busi-
ness to engage customers and support them without the hassle of
managing the infrastructure.

Figure 3: A Guide to Serverless Functions

Limitations of Serverless Computing
Despite being a highly advantageous approach to computing,
serverless computing has some drawbacks, which are briefly
discussed below. Awareness of these constraints is crucial to
designing a well-thought-out strategy for when and how to ap-
ply serverless. Below are some of the fundamental limitations
associated with serverless computing: Below are some of the
fundamental limitations associated with serverless computing:

Cold Starts
A serverless function can be 'cold started' during the first invoca-
tion or after a while since the last one, which adds to potential
latency. Cold starts are due to resource provisioning and the func-
tion's context setup before the cloud provider runs it. Depending
on the size of the function and the platform chosen, this latency
can be anything but consistent. Function warming, storing dummy
requests to keep them alive, and caching responses help, but this
is a concern for functions that require low latency. Wang et al.
explain that cold starts can affect performance if not addressed
in applications of high-frequency trading and real-time analytical
processing [6].

Figure 4: Cold Start in AWS Lambdas

Execution Duration Limits
Many of the serverless providers limit the maximum execution
time of the function. For instance, AWS Lambda provides up to
15 minutes of processing, as do Google Cloud Functions and
Azure Functions. These limits are generally acceptable for many
applications but may become a problem regarding the duration
of a task or when handling computationally heavy problems.
Some workarounds include splitting tasks into smaller functions
or adopting a fusion of Serverless Functions and traditional web
server processes, where the former instigates the latter. However,
this augments the architectural complexity, and this may only al-
ways be achievable sometimes. Another study by Jonas et al. also
shows that BPO shows the challenges that arise when executing
massive simulations and training machine learning models under
similar conditions [7].

Vendor Lock-In
Migrating to a specific serverless platform could lock one into
the SL, meaning a tough time migrating applications to another
provider or an on-premise facility. There are also differences in
some of the features, application programming interfaces, and
services of each cloud provider, leading to interdependency that
could pose a problem during migration. One disadvantage of
vendor lock-in is the factor of costs, which can rise, and the issue
of flexibility is likely to be restricted in the long term. Thus, ap-
plications highly dependent on AWS, such as DynamoDB or S3,
may require significant rework if ported to another environment.
This can be prevented by adopting measures such as utilization
and frameworks such as the Serverless Framework, which is
compatible with the different providers [8].

Citation: Sai Tarun Kaniganti, Venkata Naga Sai Kiran Challa (2022) Serverless Computing: Revolutionizing AI/ML Applications with AWS Lambda and SageMaker.
Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-385. DOI: doi.org/10.47363/JAICC/2022(1)368

J Arti Inte & Cloud Comp, 2022 Volume 1(4): 4-9

Monitoring and Debugging Challenges
Compared to more traditional architectures, monitoring and de-
bugging serverless applications can be more challenging. This
is because functions are distributed and stateless; therefore, pin-
pointing a problem across different invocations or affected ser-
vices becomes complex and often takes much time. Most of the
classical debugging tools could be more beneficial for serverless
applications. The developers can be locked into options offered
by their cloud providers, such as AWS CloudWatch, or they may
have to find a third party to obtain visibility. However, these tools
can bring extra charging and time to familiarize oneself. Pahl
and Lee noted that debugging an asynchronous, event-driven
application and running in a serverless environment calls for new
paradigms and tools [9].

Security and Compliance Considerations
Cloud providers endow suitable security mechanisms although
there are emerging security challenges in serverless computing,
including isolation of functions, data security, and security com-
pliance measures of given standards. It is imperative to secure
the interactions between functions and shield the information at
the functional interfaces and nodes that operate independently.
Configuring and monitoring compliance with specific rules, such
as GDPR or HIPAA, can be necessary. For instance, Shillaker and
Roberts, in their report noted a need to raise architecture secu-
rity to meet the emerging weaknesses in serverless applications,
including improper authorization and insecure API gates [10].

Architectural Complexity
Although serverless computing is thrown in the context of mas-
sive conveniences regarding infrastructure management, the ar-
chitectural systems level is another ball game on event handling,
managing state, and coordinating multiple functions and services.
That is why creating a consistent and optimized scape demands
a proper estimate of event sources, functions' dependencies, and
state management. There are higher-level tools for workflow
management, like AWS Step Functions, but they introduce an
extra level of indirection. The above substantial characteristics
may lead to an increase in the initial development effort and may
require expertise., as described by Villamiazar, et al. one of the
changes, from a monolith to a server-less architecture, can be
complex for a team not attuned to microservices.

Figure 5: Other Disadvantages of Serverless Computing

Enhancing Serverless Computing with AI and ML
There are multiple ways in which artificial intelligence (AI) and
machine learning (ML) can significantly improve serverless com-
puting and even fix its shortcomings. AI and ML can enable the
management of resources in the best way possible, ensuring the
best performance, security, and compliance of the programs.
These advanced technologies can make serverless computing
lighter and more effective in its operations when adopted. Below

are some key areas where AI and ML can be applied to enhance
serverless architectures:

Predictive Scaling
AI and ML models can help in understanding usage patterns in
the past to forecast usage in the future, which allows for scaling
serverless resources in advance. This can assist in managing cold
starts and guarantee that the system is optimal before high traffic
loads. For example, through ML algorithms to predict large crowds
in advance according to the data records, serverless functions
can be pre-heated or extended in advance, thereby avoiding the
problem of high latency and poor user experience caused by large
crowds. Liu et al. showed that using predictive scaling based on
ML models enhances the responsiveness and scalability of cloud
applications, especially in e-business and CDN applications [11].

Intelligent Monitoring and Debugging
AI and ML, popular in serverless computing, are variable to logs,
metrics, and traces of the serverless applications. They can be used
to provide intelligent anomaly detection, root cause analysis, and
automated remedial actions. Machine learning models can analyze
data in real time and give insights that may not be readily visible
through traditional tools used for monitoring cloud environments
for performance problems and security threats, including Splunk
and Dynatrace. Thus, as Barakat et al. pointed out, intelligent
monitoring solutions can help decrease the MTTR by half and
improve the reliability of processes based on serverless applica-
tions [12].

Serverless Function Optimization
ML models can be trained to review serverless function code and
provide recommendations about code changes, probable resource
optimizations, and performance improvements. These models can
give insights into how much execution time can be cut down, how
much memory can be saved and generalized efficiency improve-
ment. There are also tools, such as AWS Lambda Power Tuning,
which applies machine learning to determine the most suitable
memory size for a Lambda function to ensure the best possible
performance and minimum expenses. The literary review by Wang
et al. points out that the use of ML for optimization of serverless
platforms enhances its performance in extensive data workload
conditions [13].

Intelligent Orchestration
AI and ML are used to improve multiple serverless functions'
management and organization processes to determine their prac-
tical completion and resource consumption. Orchestration using
intelligent decisions relates to how the various tasks are planned,
scheduled, and coordinated so that tasks can run simultaneously
or one after the other. This approach enhances the throughput
since its efficiency is inversely related to the system's latency.
For instance, Meng et al. demonstrated that applying different
reinforcement learning strategies boost’s function orchestration
improvement in serverless applications' performance [14]. With
real-time data, the orchestrating tools that AI powers efficiently
manage the resources.

Serverless Security and Compliance
AI and ML models can examine serverless applications' code,
configuration, and run-time characteristics to identify security
issues and compliance risks. AI & ML can recognize the devia-
tions in the normal traffic data flow and mark potential security
breaches such as intrusion and theft. Some AI security solutions
that employ ML include the Palo Alto Networks system and the

Citation: Sai Tarun Kaniganti, Venkata Naga Sai Kiran Challa (2022) Serverless Computing: Revolutionizing AI/ML Applications with AWS Lambda and SageMaker.
Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-385. DOI: doi.org/10.47363/JAICC/2022(1)368

J Arti Inte & Cloud Comp, 2022 Volume 1(4): 5-9

Darktrace. In their study on the performance of AI in security solu-
tions, Tang et al. stated that implementing the AI learning model
made threat detection more accurate and the rate of false positives
less, eventually making serverless applications more secure and
compliant to set regulations [13].

Intelligent Autoscaling
Some possibilities of using AI and ML are in creating logical autos-
caling for serverless resources based on the number of requests, cost,
and performance. These algorithms can apply the scaling process by
forecasting the demand and resources within seconds. For instance,
by utilizing AI autoscaling, companies and businesses can optimize
performance and costs since the organizations guarantee that ap-
plications obtain optimal functioning without bổ sung insisting on
extra equipment and technologies. Research carried out by Kim
et al. on intelligent autoscaling with the help of machine learning
algorithms showed that resource optimization and organizational
expense decrease in the clouds are possible [15].

Real-World Projects and Architectures with AWS
As a former software development engineer at Amazon Web Ser-
vices (AWS), I had the opportunity to work on various projects
and architectures leveraging serverless computing. Here are a few
examples:

Serverless Web Application
The most critical project aimed at developing a serverless appli-
cation using AWS Lambda, Amazon API Gateway, and Amazon
DynamoDB. The application concept was an essential catalogue,
enabling the user to purchase online. The architecture was server-
less, where API Gateway received HTTP requests and forwarded
them to various AWS Lambda functions to process the data from
the DynamoDB database for storage, automatically upload files on
S3, or trigger an email from SES. The serverless approach means
that the application was built and deployed relatively fast, as the
question of the servers’ provision and management was not an issue.
The application could handle the load and scale about degrees, and
we were only charged for utilising the actual Lambda functions.
Here's an example of a Lambda function written in Node.js that
handled the product listing endpoint:

 const params = {
 TableName: 'Products',
 };

 try {
 const result = await dynamodb.scan(params).promise();
 return {
 statusCode: 200,
 body: JSON.stringify(result.Items),
 };
 } catch (err) {
 console.error(err);
 return {
 statusCode: 500,
 body: 'Error retrieving products',
 };
 }
};

This function retrieves all products from the DynamoDB table
and returns them as a JSON response. The serverless architecture
allowed us to easily scale and handle traffic spikes without manual
intervention.

Case Studies of Serverless Computing in AI/ML
In recent years, serverless computing has emerged as an essential
component of the AI/ML process and a significant tool for various
industries. However, this section aims to provide a closer look
at companies with projects adopting serverless computing while
conducting AI/ML, their problems, the measures they took, and
the outcomes accomplished.

Healthcare: Improving the Processing of Medical Information
In healthcare, tremendous and flexible data analysis is critical.
An example of such implementation can be discussed concerning
Medtronic, a company that operates internationally as a medical
technology producer. Medtronic was able to harness serverless
computing to deal with large amounts of patient data created by
the firm's devices. Due to AWS Lambda, they can analyze the data
in real-time while cutting down on latency and operational costs
[16]. Through serverless, Medtronic has been able to expand its
operations without necessarily having to worry about complex in-
frastructure, which would help look after the end-user, the patient.

Finance: Streamlining Fraud Detection
The field of finance requires highly reliable and immediate solu-
tions aimed at fraud prevention. A prominent financial firm, Capital
One, adopted serverless computing to boost its capacity to fight
fraud. With the help of AWS Lambda and other services, Capital
One created a virtually infinite and optimized system of transaction
processing and analysis [17]. This enabled them to address issues
of exponential growth of the amount of data as the architecture
was serverless. Therefore, the research concludes that by using the
Self-organized maps, Capital One enhanced the accuracy of fraud
detection and the time taken to respond to potential fraud threats.

E-Commerce: Optimizing Customer Experience
Therefore, e-commerce businesses need to provide smooth service
to their clients. In serverless, significant internet fashion retailer
Zalando applied this technology in their recommendation engine.
Using Google Cloud Functions, Zalando could extract information
obtained from customers' interactions and churn out recommenda-
tions in the shortest time possible [18]. Through it, great conveni-
ence was realized during the highest shopping traffic to guarantee
responsive user interfaces. The present implementation has also
increased customer satisfaction and improved sales markers.

Transportation: Improving Predictive Maintenance
Condition monitoring is significant in the transportation industry
because predictive maintenance can improve operational per-
formance. Another large company, Lyft, which specializes in
ride-sharing services, used serverless computing to build models
for predictive maintenance on the car fleet. Lyft also used Azure
Function to analyze vehicle telemetry data and accurately predict
maintenance requirements [19]. The serverless approach proposed
for Lyft benefited the company by lowering the primary factors,
downtime and maintenance, and boosting the dependability and
quality of the service offered to its customers.

These developments highlight the use cases of serverless comput-
ing in the context of AI/ML applications and their functionality
in different sectors. The key integrating concept of these imple-
mentations is the flexibility of scale-up, operation simplification,
and realization of large cost reductions. Regarding Serverless
computing, especially in AI/ML applications, there is a prediction
of even better and increasing usage in the future.

Citation: Sai Tarun Kaniganti, Venkata Naga Sai Kiran Challa (2022) Serverless Computing: Revolutionizing AI/ML Applications with AWS Lambda and SageMaker.
Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-385. DOI: doi.org/10.47363/JAICC/2022(1)368

J Arti Inte & Cloud Comp, 2022 Volume 1(4): 6-9

Figure 6: Benefits of Serverless Computing

Serverless Data Processing Pipeline
Another successful project was the creation of a pipeline for data
processing based on the serverless architecture, which was aimed
at efficient data preprocessing. The activities of this pipeline
involved several AWS Lambda functions controlled by AWS
Step Functions, a serverless workflow service. The architecture
aligned with a serverless architecture where AWS Lambda was
being invoked by events from S3 for uploads, real-time data from
Kinesis, etc. These functions were for data validation transforma-
tion and enrichment activities before storing the processed data
in Amazon Athena for query and analysis.

It was possible to develop a robust and inexpensive data processing
pipeline because there was no need to manage servers. Woodford
then described how the serverless model contributes to organised
advantages regarding scalability and costs, claiming that functions
and Lambda functions can scale themselves without resulting in
poor performance [20]. Also, applying the cost model associated
with serverless computing based on charging for the time required
to process a workload appeared to have an economic. This reduced
the time taken to process the data and, at the same time, eliminated
many operational bottlenecks, hence allowing more attention to
be shifted to the quality of the data and analysis.

Here's an example of a Lambda function written in Python that
performed data transformation:
python
import json
import boto3

def lambda_handler(event, context):
 # Retrieve input data from event
 input_data = event['input_data']

 # Perform data transformation
 transformed_data = transform_data(input_data)

 # Store transformed data in Amazon Athena
 athena_client = boto3.client('athena')
 response = athena_client.start_query_execution(
 QueryString=f"INSERT INTO processed_data VALUES
('{transformed_data}')",
 ResultConfiguration={
 'OutputLocation': 's3://my-athena-output-bucket/'
 }
)

 return {
 'statusCode': 200,
 'body': json.dumps('Data transformation successful')

 }

def transform_data(input_data):
 # Implement data transformation logic here
 ...
 return transformed_data

This Lambda function extracts input data from the event, uses
the transform_data function to transform the data, and loads the
transformed data to Amazon Athena with the help of Athena’s
API. A serverless approach was enabled for growing the data
processing pipelines in accordance with incoming data volume
without server provisioning and management.

Best Practices for Implementing Serverless Architectures
Applying serverless technologies needs to be done based on a
set of strategies that will allow the development of efficient,
highly scalable, and secure apps. Here are some best practices for
developing, deploying, and maintaining serverless applications:
•	 Function Design: Making functions singularly focused and

without any state is immensely important. Functions should
contain behavioural elements and not contain state informa-
tion about prior occurrences of their execution. This way of
designing the software is always a plus, making the functions
more manageable and test-friendly [21]. Furthermore, func-
tions should also be as small and light as possible to contain
optimized and fast-performing code and execution time will
also be fast.

•	 Managing State: While serverless functions do not have their
state, stateful applications are often required when building
serverless functions. For states, it is recommended to use
MSS like Amazon DynamoDB, Google Cloud Firestore,
or Azure Cosmos DB. These services offer flexible and fast
storage so that state management is not a problem that acts
as a constraint [22].

•	 Monitoring: Monitoring is one of the key aspects of using
serverless applications to support different projects. Employ
function-level monitoring utilities like AWS CloudWatch,
Azure Monitor, or Google Stackdriver to keep track of the
function’s efficiency, exception rate, and usage pattern. It can
also be efficient to set up scores that alert whenever there is
a problem with high availability and reliability.

•	 Cost Optimization: Serverless computing has several signifi-
cant advantages, the first one being cost savings. However, it
is also significant to know that costing has to be well planned
to be as efficient as possible. Check frequently to pay only
for what is being used and discuss the usage of cost control
options offered by the cloud services providers. For instance,
AWS Cost Explorer can pinpoint cost contributors and cus-
tomize the running function [23].

•	 Security Considerations: Security is always a significant
concern in serverless architectures. Apportion appropriate
access rights to functions within applications so that they
will operate with the minimum level of access necessary to
do their jobs. Please make use of environment variables for
handling sensitive information, and it is advised to use them
together with managed security service options such as AWS
Secrets Manager and Azure Key Vault.

•	 Choosing the Right Platform: The choice of the serverless
platform, therefore, depends on the existing one, the project
requirements, and the cost implications of the selected plat-
form. Compare AWS Lambda, Google Cloud Functions, and
Azure Functions based on their specifications, efficiency, and
costs. Every platform has strengths that may fit your appli-

Citation: Sai Tarun Kaniganti, Venkata Naga Sai Kiran Challa (2022) Serverless Computing: Revolutionizing AI/ML Applications with AWS Lambda and SageMaker.
Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-385. DOI: doi.org/10.47363/JAICC/2022(1)368

J Arti Inte & Cloud Comp, 2022 Volume 1(4): 7-9

cation differently from the others. By following these best
practices, developers will increase their likelihood of achiev-
ing efficiency, scalability, and security that allow serverless
applications to meet modern, cloud-native requirements.

Figure 7: Serverless Best Practices

Proposed Serverless Architecture for AI/ML Applications
Serverless computing is most effective in the development and
deployment of AI and ML applications since it enables model
training and model inference and deployment at scale. Here is a
proposed serverless architecture that combines AI/ML capabilities
with serverless computing:
•	 Data Ingestion: AWS Lambda or AWS Fargate (server-

less containers) to perform data acquisition and preliminary
processing from possible sources like S3, Kinesis, or Dy-
namoDB. Some of these functions can be used to preprocess
data in terms of quality, consistency, and structure before the
data is stored in a storage medium, data lake, or data ware-
house. This helps avoid using low-quality data for Training
and inference, which is essential for getting desirable results
in AI/ML. From the perspective of Mullen, what is beneficial
for AI/ML pipelines is the serverless solutions’ capability to
process and preprocess different types of data in real-time
[24]. Furthermore, the serverless approach for data ingestion
minimizes operational burden, which is proportional to the
volume of data.

•	 Model Training: Training of AI/ML models can be done by
using AWS Batch or AWS SageMaker. AWS Batch is used for
batch training for workloads, while AWS SageMaker is a man-
aged service for machine learning. These two attributes allow
for broad versatility of the training jobs that can be imple-
mented, where some jobs are computationally intensive while
others are data intensive. For instance, AWS SageMaker has
built-in algorithms, distributed Training, and automatic model
tuning, significantly speeding up Training [25]. Through these
services, organizations can cost-effectively train large and
intricate models and scale out while avoiding the burden of
managing training environment infrastructure.

•	 Model Deployment: Once trained, Dockerize the AI/ML
models and run them as AWS Lambda or AWS SageMaker
Inference. They can be called by other applications or services
for real-time predictions or batch scoring. In this approach, the
configurations are such that the AI/ML models can be easily
set to be highly available and can be provisioned based on the
number of requests. Serverless deployment also helps to easily
incorporate AI/ML into many different applications, allowing
for more significant and faster improvement and iterative
applicant development [26]. Notably, in terms of serverless
endpoints, an organization gets low latency for predictions
and high possible throughput during the usage bursts.

•	 Serverless API Gateway: A popular AWS service named
Amazon API Gateway can be used to create RESTful inter-

faces for the deployed AI/ML models. This means developers
can create stable applications that integrate AI/ML models
for recommendation engines, identification of abnormality,
and predictions. Request throttling, caching, and monitoring,
which are the other features in API Gateway, help increase
and improve the performance and security of the APIs [27].
Therefore, with the help of Amazon API Gateway, organiza-
tions can design APIs for their AI/ML models that will meet
the requirements and ensure proper and safe communication
between the models and client applications.

•	 Orchestration and Workflow Management: Leverage AWS
Step Functions for Task coordination and workflows where
the AI / ML pipeline processes, such as data ingestion, Train-
ing, deployment, and inference, will run. For the AI/ ML
process, ensure that AWS Step Functions allow the perfect
and clear visualization of work and remarkable error-handling
services. Baker reveals that Step Functions enables the crea-
tion of specific workflows that are used to automate processes
and guarantee that all aspects of a pipeline are performed in
the correct sequence [28]. This orchestration service also
features parallel working capability for execution efficiency,
which would help save time when applied in the AI/ML chain.

•	 Monitoring and Logging: Use AWS CloudWatch, AWS
X-Ray, and Amazon CloudWatch Logs for monitoring and
logging. These services can tell more about the performance,
health, and execution of the serverless functions so one can
monitor and debug when needed. In other words, organiza-
tions can bottleneck problems through alarms and baselines
to solve them before affecting everyday consumers [29].
Advanced logs and traces also help dwell on the root cause
analysis and the consequent enhancement of the AI/ML ap-
plications. These monitoring tools ensure that the serverless
infrastructure is reliable, performs well, and is secure.

•	 Autoscaling and Cost Optimization: Use the AWS Auto
Scaling and AWS Lambda Power Tuning options to scale
serverless depending on the load, thus achieving high effi-
ciency and low consumption of resources. AWS Auto Scal-
ing predicts the number of running instances per traffic, and
AWS Lambda Power Tuning helps tune the given Lambda
functions’ memory and execution time [30]. It enables the
worker to scale dynamically with changes in work intensity
without excess resource allocation. This way, organizations
can gain many cost advantages for their AI/ML application
without compromising performance and availability.

•	 Security and Compliance: Utilize AWS IAM, KMS, and
Security Hub to adopt security best practices to securely
store and process data in compliance with the regulation
regimes on AWS. IAM allows the ability to specify who can
do what on serverless resources, an essential feature that
protects data and certain functionalities from unauthorized
access [31]. KMS is used for services that require secure data
encryption for storage and in-transit data protection, while
Security Hub is a security and compliance consolidation tool.
Thus, by following these security measures, an organization
implementing AI/ML applications can guard and safeguard
its systems against these risks and maintain compliance with
current legislation.

This proposed architecture utilizes the AWS service and serverless
computing features to develop AI/ML applications and launch
them efficiently, economically, and securely. Serverless enables
the developers to have more points of focus, such as making and
training models, without bothering much about the underlying in-
frastructure and scalability. This is because AWS Lambda for data

Citation: Sai Tarun Kaniganti, Venkata Naga Sai Kiran Challa (2022) Serverless Computing: Revolutionizing AI/ML Applications with AWS Lambda and SageMaker.
Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-385. DOI: doi.org/10.47363/JAICC/2022(1)368

J Arti Inte & Cloud Comp, 2022 Volume 1(4): 8-9

ingestion and preprocessing, AWS SageMaker for model training
and deployment, and Amazon API Gateway for model exposure,
as APIs, help developers optimize the processes associated with
AI/ML and minimize the resources’ utilization overheads. As
Brown pointed out, such segregation of concerns facilitates the
enhancement of the development cycle and the proper utilization
of resources [23]. Further, through incorporating monitoring tools
like AWS CloudWatch and AWS X-Ray applications’ performance
and reliability are maintained with constant accurate time informa-
tion regarding their [29]. Therefore, such an approach not only
improves the flexibility and, in general, the variability of using
AI/ML but also guards them and keeps them within the industry
standards. In conclusion, it is practical to use AWS serverless
services, and such solutions give a solid base to build complex
AI/ML systems and adapt them if necessary, depending on the
current load, new demands, and technological improvements.

Future Trends in Serverless Computing
Serverless computing is still a rapidly developing topic that is said
to revolutionize the way applications are built and run. Several
trends and advancements are envisaged to facilitate this evolution
and elevate serverless computing to an even higher pedestal in
the following years.

Optimizing Cold Start Times: A vital advancement has been
made, where a common issue in serverless systems is the extended
time taken to initiate a cold instance. Cold starts happen when a
serverless function is triggered when it has not been in use for a
long time, leading to some delay since the function will need to
start up. Scholars and cloud service companies are actively search-
ing for numerous strategies to reduce cold start time among cloud
instances, including pre-warming and other runtime environment
improvements, as Robinson listed in 2018. These enhancements
will make serverless applications more responsive and benefit
tasks requiring low latencies.

Hybrid Serverless Models: Integration of serverless and conven-
tional cloud computing, or having a foot in both worlds as they are
called, is on the rise. The ability to separate the organization’s con-
trols and services from the basic serverless architecture provides
an opportunity to benefit from serverless architectures while still
dealing with necessary always-on or highly modified elements.
For example, hybrid models allow for the penetration of server-
less functionalities into virtual machines and containers while
providing a better and more effective structure. That tendency is
expected to grow as more organizations use serverless computing
to achieve better server performance, management, and rates.

Integration with Edge Computing: Another current trend is the
combination of serverless computing with edge computing. Edge
computing can be defined as organizing computation at the edges
to reduce latency and bandwidth consumed. As serverless func-
tions are on the edge, companies can optimize both time and zero
latency to improve response times where IoT or content delivery
networks are necessary. The combination of serverless and edge
computing will ensure new trends in different areas, such as smart
cities, self-driving cars, and even industrial applications.

Recent Development in Serverless AI/ML Tools: Serverless
computing will also transform the different pathways of AI/ML.
Other significant developments in serverless AI/ML tools, like
better serverless frameworks for model training/inference, will
also ease deploying AI/ML models. AWS SageMaker and Google
Cloud AI are already doing this by providing serverless computing

optimized for machine learning jobs [26]. These will make the
entry into the development of artificial intelligence and machine
learning more accessible to any organization without having to
build costly structures.

Future Outlook: The more distant future will likely see serverless
computing remain a fast-developing trend with new improvements
that make it even more effective and versatile. In the next 5-10
years, one will expect to see more and more service platforms
that are smart enough and self-governing to manage resources
and performances automatically. This evolution will also lead to
greater use in various domain areas, accelerating the advance in
digitalization and creating new business opportunities. Regarding
this, serverless computing will bring an innovative change in the
industry when it entirely takes root. This will have the positive
consequence of minimizing costs for application development
and increasing server flexibility.

Figure 8: Benefits and Future Trends to Expect from Serverless
Computing

Conclusion
Serverless computing has rapidly become an essential model in the
overall scheme of cloud computing and has several advantages,
such as low operational cost, easy scaling, and cost efficiency. As
with any approach, serverless computing has some drawbacks,
including cold starts, limited execution time, and vendor lock-in.
However, it can be considered a valuable paradigm for creat-
ing and deploying numerous applications based on events, Web
apps, data processing pipelines, and microservices architecture.
When AI/ML is combined with serverless computing, it can ex-
tend its many features, including predictive scaling, intelligent
monitoring and debugging, optimizing functions, and intelligent
orchestration. Implementations of such real-world projects and
architectures discussed in this paper expose the real-world use
of serverless computing and how the idea can be implemented to
develop better systems and architectures. This piece of research
explains that as the serverless computing ecosystem grows with
the AI/ML implementation, security, and compliance aspects, it
will further increase its popularity among organizations that seek
to develop applications, minimize their operational costs, and,
generally, become more agile in software delivery processes [32].

References
1.	 Trovarelli R, Nardelli M, Suri N, Lazzeri E (2017) Reducing

the cost of latency in the cloud: An empirical study. 2017
IEEE International Conference on Cloud Computing Tech-
nology and Science (CloudCom).

2.	 Baldini I, Castro P, Chang K, Cheng P, Fink S, et al. (2017)
Serverless computing: Current trends and open problems.
arXiv preprint arXiv:1706.03178.

3.	 Adzic G, Chatley R (2017) Serverless computing: economic

Citation: Sai Tarun Kaniganti, Venkata Naga Sai Kiran Challa (2022) Serverless Computing: Revolutionizing AI/ML Applications with AWS Lambda and SageMaker.
Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-385. DOI: doi.org/10.47363/JAICC/2022(1)368

J Arti Inte & Cloud Comp, 2022 Volume 1(4): 9-9

and architectural impact. Proceedings of the 2017 11th joint
meeting on foundations of software engineering 884-889.

4.	 Hendrickson S, Stojadinovic D, Patterson D, Arpaci-Dusseau,
Arpaci-Dusseau R (2016) Serverless computation with open-
lambda. Elastic.

5.	 Hellerstein JM, Faleiro J, Gonzalez JE, Schleier-Smith J,
Sreekanti V, et al. (2018) Serverless computing: One step
forward, two steps back. arXiv preprint arXiv:1812.03651.

6.	 Wang L, Li M, Zhang Y, Ranjan R, Deakin T, et al. (2018)
Machine Learning for Cloud Resource Management: A Sur-
vey. IEEE Transactions on Cloud Computing.

7.	 Jonas E, Schleier-Smith J, Sreekanti V, Tsai CC, Khan-
delwal A, et al. (2017) Cloud programming simplified: A
Berkeley view on serverless computing. arXiv preprint
arXiv:1706.03178.

8.	 Leitner P, Cito J, Bergmayr A (2019) An Evaluation Frame-
work for Serverless Computing. Proceedings of the 2019
ACM/SPEC International Conference on Performance En-
gineering.

9.	 Pahl C, Lee B (2018) Containers and Clusters for Edge Cloud
Architectures – A Technology Review. IEEE Transactions on
Cloud Computing.

10.	 Shillaker R, Roberts S (2019) Serverless Computing: Security
Considerations and Open Problems. 2019 IEEE International
Conference on Cloud Computing Technology and Science
(CloudCom).

11.	 Liu C, Zhang X, Zheng Z, Zhang Y (2018) AI-Driven Re-
source Management for Cloud Computing. IEEE Access.

12.	 Barakat C, Haddad Y, Chahine K (2018) Machine learning
in cloud computing: Case studies. 2018 IEEE International
Conference on Internet of Things and Intelligence System
(IoTaIS).

13.	 Tang X, Qiu J, Wang Y (2018) Enhancing cloud security using
machine learning techniques. 2018 International Conference
on Cloud Computing Technology and Science (CloudCom).

14.	 Meng W, Zhuang Y, Zhan X (2019) Reinforcement Learning-
Based Serverless Function Orchestration. Proceedings of the
2019 IEEE International Conference on Cloud Computing.

15.	 Kim H, Sharma S, Lee J, Choi J, Ryu Y (2018) Predictive
autoscaling for serverless applications. 2018 IEEE Inter-
national Conference on Cloud Computing Technology and
Science (CloudCom).

16.	 Williams J (2018) Real-time data processing in healthcare

using serverless computing. HealthTech Journal 25: 88-95.
17.	 Gracely M (2017) Serverless computing for financial services.

Journal of Financial Services Technology 24: 45-53.
18.	 Rudolph S (2018) Enhancing e-commerce with serverless

computing. E-commerce Insights 11: 67-74.
19.	 Johnston M (2018) Predictive maintenance with serverless

architectures in transportation. Transportation Tech Review
19: 29-37.

20.	 Woodford M (2017) Scalable data processing with AWS
Lambda. Cloud Architecture Review 22: 34-42.

21.	 Robinson P (2017) Effective serverless function design.
Serverless Computing Review 21: 34-39.

22.	 Watson D (2018) State management in serverless applications.
Cloud Data Solutions 12: 67-74.

23.	 Brown C (2018) Cost management in serverless architectures.
Journal of Cloud Cost Management 15: 45-52.

24.	 Mullen K (2018) Real-time data processing in serverless
architectures. Data Engineering Digest 21: 12-19.

25.	 Johnson A (2017) Accelerating machine learning with AWS
SageMaker. AI Journal 19: 56-63.

26.	 Smith R (2018) Deploying AI models with serverless end-
points. Machine Learning Deployment Magazine 22: 30-38.

27.	 Garcia M (2017) Building scalable APIs with Amazon API
Gateway. API Development Quarterly 18: 34-42.

28.	 Baker L (2018) Managing workflows with AWS Step Func-
tions. Workflow Automation Journal 10 24-31.

29.	 Collins T (2018) Effective monitoring of serverless applica-
tions. Cloud Monitoring Review 15: 45-53.

30.	 Harris S (2017) Cost optimization in serverless environments.
Cloud Cost Management 13: 27-36.

31.	 Taylor J (2017) Security best practices for serverless applica-
tions. Security Management Journal 14: 50-58.

32.	 Villamizar M, Ochoa L, Castro H, Verano M, Salamanca L,
et al. (2018) Evaluating the monolithic and the microser-
vice architecture pattern to deploy web applications in the
cloud. Proceedings of the 10th International Conference on
Computing, Communication and Networking Technologies
(ICCCNT).

Copyright: ©2022 Sai Tarun Kaniganti. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

