
J Phy Math & its Appli, 2024              Volume 2(4): 1-8

Review Article

Stable Proximal Dynamical System for Mixed Variational Inequalities 
in Hilbert Spaces
Oday Hazaimah 

*Corresponding author
Oday Hazaimah, 1667 Huntington Hill Dr, apt G APT G, USA.

Received: May 03, 2024; Accepted: May 08, 2024; Published: August 30, 2024

Open    Access

Keywords: Proximal Dynamical System, Mixed Variational 
Inequality, Convex Optimization, Fixed-Time Stability, Lyapunov 
Stability Theory

The Mathematics Subject Classification (MSC): 34H15, 90C25, 
93D40.

Introduction
Dynamical systems approaches have been used ubiquitously and 
become a very fruitful topic of research and powerful alternative 
tool in developing and advancing techniques for solving mixed 
variational inequalities (MVIs). MVIs was originally considered 
by Lescarret and Browder for its applications in mathematical 
physics. Afterwards, it has been remarkably noted that MVIs have 
a tremendous variety of real-life applications in several disciplines 
such as economics and operations research, convex optimization, 
signal processing, game theory and control theory [1-7]. The 
dynamical system approach has been used to study the qualitative 
properties such as, the existence, uniqueness, convergence and 
stability of the solution of variational inequalities. It was shown, 
in 1990’s, that the variational inequalities can be reformulated in 
terms of dynamical systems, and their solutions are equivalent to 
the equilibrium points of the corresponding dynamical systems 
[6,8]. Among other classes of dynamical systems, we focus our 
attention in this paper to one essential class of discontinuous 
dynamical systems, that is, projected dynamical systems whose 
trajectories remain in a feasible domain by projecting outward 
portions of a vector field at the boundary of the domain. Projected 
dynamical systems gain its significance due to its role in the study 
of variational inequalities and differential inclusions, as well as 
nonlinear optimization in a more general setting. Hence, this paper is 
in principle induced by the emerging interest in dynamical systems 
that solve optimization problems and variational inequalities [6,8-

11]. Variational inequality (for short VI), introduced and studied 
in the early sixties by Stampacchia, is a powerful mathematical 
model in which it has played a fundamental role in the study of 
important concepts in equilibrium problems in finance, machine 
learning and optimization, for instance, the process of minimizing 
a cost (usually smooth and convex) function can be modeled by 
a variational inequality, see, for example, Brezis; Cavazzuti; 
Kinderlehrer and Stampacchia; Noor, et al. Stampacchia, and 
the references therein [1,5,6,10,12-14]. It is worth mentioning 
that the variational inequalities are natural generalizations of 
the variational principles, the origin of which can be traced back 
to Fermat, Newton, Leibniz, Euler and Largrange. Qualitative 
properties of VI strongly depend on some kind of monotonicity. 
In particular, the existence and uniqueness of the solution to the 
VI can be established under strong monotonicity (strong convexity 
for real-valued functions), for more details about the methods 
used in this regard with their variants [15,16]. MVIs simply can 
be seen as variational inequalities plus a nonlinear term and if 
the nonlinear term is a proper, convex and lower-semicontinuous 
function, then one can show that the mixed variational inequalities 
are equivalent to the fixed point and the resolvent equations [6,8].

Numerous methods for solving MVIs have been considered and 
developed in the literature which they fall into two main aspects; 
namely, discrete-time gradient-based algorithms, and continuous-
time gradient flows. Several gradient-based descent iterative 
methods have been analyzed with convergence analysis entails 
that the operator is strongly monotone and Lipschitz continuous 
[1,7,15]. Gradient-based algorithms are designed to treat a class 
of optimization algorithms which are characterized by robustness, 
Nesterov [17]. The most popular gradient-based is, by Goldstein, 
the steepest descent approach in which it employs the gradient as 
search direction along with past gradient information [18]. For 
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accelerating the convergence of these gradient methods, positive 
definite Hessian matrices are employed by Newton approaches 
[19]. When the objective function in the optimization problem 
has sharp edges or discontinuous points (i.e., nonsmooth), then 
proximal gradient approaches can be employed to access and 
compute the subgradients [3,4,15]. The most commonly used 
method for MVI is the proximal point algorithm, and since 
proximal operators are generalizations of projection operators, 
it follows that the most commonly used method for variational 
inequality problems, as a particular case of MVI, is the projection 
algorithm.

In this paper, we are interested in designing a continuous-time 
dynamical system such that its solution converges to the solution 
of the corresponding MVI in a fixed time starting from any given 
initial condition as it is known that dynamical systems may exhibit 
dynamics that are highly sensitive to initial conditions. This work 
is a generalization of Garg et al. from having constrained defined 
in finite dimensions to the context of infinite dimensional vector 
spaces [20,21]. The stability analysis of the equilibrium points 
of the dynamical systems utilizes tools from classical Lyapunov 
theory. While it is known that the convergence time for a broad 
class of convex optimization algorithms depends upon the initial 
conditions and can grow unbounded with the distance of the 
initial condition from an equilibrium point, the idea of fixed-
time stability was introduced in Kinderlehrer D, and used in 
Nesterov Y, to provide a finite upper bound for all initial conditions 
[20,21]. To the best of our knowledge, this is the first time a paper 
proposes fixed-time stable proximal dynamical systems for MVIs, 
or equivalently, non-smooth convex optimization problems in real 
Hilbert spaces. In Garg K, modified gradient flow schemes are 
introduced for unconstrained and constrained convex optimization 
problems, as well as for minimax saddle problems such that linear 
equality constraints and continuously differentiable objective 
function are assumed [22]. In Romero O, the authors proposed 
dynamical systems as differential inclusions, with solutions 
converge to strictly local minimizers [23].

The contribution of this paper summarized by two main extensions: 
i. Proposing a generalized projection continuous-time dynamical 
scheme for solving MVIs and can be applied to non-smooth convex 
optimization problems along with discussing the arguments of 
existence, uniqueness, convergence and stability; 
ii. In the spirit of the ideas introduced by Bello and Hazaimah 
we extend the work of Garg, et al. to more general variational 
problems appear in any infinite-dimensional Hilbert space [15,21]. 
The paper is organized as follows. In section 2 we list some 
notational backgrounds and essential definitions. In 3, we present a 
connection between optimization and proximal dynamical systems, 
and define known systems used in the literature. In section 4, we 
modify a continuous-time proximal dynamical system based on 
section 3. Finally, in section 5, we conclude the work and give 
some future extensions.

Preliminaries
In this section, some optimization-related basics and foundations 
are presented from monotone operators theory, dynamical systems 
theory, convex analysis. Let H be a real Hilbert space equipped 
with inner product ⟨•,•⟩ and induced norm                           . Let T 
: H ⇒ H be a set-valued (multifunction) operator and its domain 
be denoted by dom(T) := {x ∈ H;T(x) < ∞}. Let Fix(T) := {x ∈ H 
: x = T(x)} be defined as the set of all fixed points of a function 
T. Define the graph of T by

Furthermore, T is maximally monotone if there exists no monotone 
operator T ′ such that Gph(T ′) properly contains Gph(T). Recalling 
that for any maximal operator T (by Brezis,) the resolvent operator 
associated with T is the full domain single-valued operator in 
H given by JT := (I + T)−1 where I: H → H denotes the identity 
operator [3]. The inverse of T is the set-valued operator defined by
                                           Moreover, JαT := (I + αT)−1 : 
H → dom (T) if α > 0. Let C be a nonempty, convex and closed 
subset of H. The set C is said to be convex set, if (1−λ)x+λy ∈ C, 
∀x,y ∈ C, λ ∈ [0,1]. Assume the function F : C → H, we say F is 
a convex function, if 

F((1 − λ)x + λy) ≤ (1 − λ)F(x) + λF(y), ∀x,y ∈ C, λ ∈ [0,1].

If the function F is smooth, then the following well known result 
holds:

Theorem 1: Let C be a nonempty, convex and closed subset of H. 
Let F be a smooth convex function. Then x ∈ C is the minimum 
of the smooth convex F(x) if and only if, x ∈ C satisfies
⟨F′(x),y − x⟩ ≥ 0,∀y ∈ C
where F′ is the Frechet derivative of F at x ∈ C.

This theorem shows that the variational inequalities are natural 
links and analogous to the minimization of the convex functional 
subject to certain constraint which has led to study a more general 
variational inequality. Furthermore, one can define the normal 
cone operator with respect to C ⊆ H as

Hence, the orthogonal projection of x onto C, ΠC(x), is given by 
ΠC(x) = JNC(x) = (I + NC)(x). Now, we state a very well-known fact 
on orthogonal projections, followed by some useful definitions 
of monotonocity [24].

Proposition 2 Let C be nonempty closed convex subset of H, and 
ΠC be the orthogonal projection onto C [25]. For all x,y ∈ H and 
all z ∈ C the following hold:

Definition 1: Let C ⊂ H be arbitrary. The operator T : C → H, 
is called:
(i)	 monotone, if for all x,y ∈ C,

⟨T(x) − T(y),x − y⟩ ≥ 0.
(ii)	 strongly monotone if there exists a modulus λ > 0 such 
that for all x,y ∈ C,

⟨T(x) − T(y),x − y⟩ ≥ λ∥x − y∥2.
(iii)	 pseudomonotone, if for all x,y ∈ C,

⟨T(y),x − y⟩ ≥ 0 =⇒ ⟨T(x),x − y⟩ ≥ 0.
(iv)	 strongly pseudomonotone if there exists λ > 0 such that 
for all x,y ∈ C,

⟨T(y),x − y⟩ ≥ 0 =⇒ ⟨T(x),x − y⟩ ≥ λ∥x − y∥2.

Notice that the following implications hold, (ii) =⇒ (i) =⇒ (iii) 
and (ii) =⇒ (iv) =⇒ (iii), whereas the converse need not be true 
generally.

In what follows, we give some notational foundations and 
significant definitions related to the main model used in this paper, 
MVIs, which can be formulated by

inner product ⟨·, ·⟩ and induced norm ∥ · ∥ :=
√
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Find x∗ ∈ H such that ⟨T(x∗), x − x∗⟩ + g(x) − g(x∗) ≥ 0 , for all 
x ∈ H	 (1)

where T : dom g → H is an operator and g : H → ℝ∪{∞} is a 
proper (dom g ≠ ∅), lower semi-continuous convex function. If 
C is a closed and convex set in H and

is the indicator function of C then problem (1) is reduced to the 
equivalent and particular case of MVIs, namely, the classical 
variational inequality (VI), which is equivalent to the generalized 
equation (a.k.a monotone inclusion)

Find                  such that                                                     (2)

where the subdifferential mapping ∂g : H ⇒ H, defined as ∂g(x) 
:= {u ∈ H ; g(y) ≥ g(x)+⟨u,y−x⟩, ∀y ∈ H} is a maximal monotone 
operator. To extend the inclusion (2), a variety of numerical and 
analytical methods have been developed for finding a zero of the 
sum of two operators; one is smooth and another is not (that is, 
find a point x∗ ∈ H such that 0 ∈ A(x∗) + B(x∗) ). One of the most 
important classical splitting methods to find a zero of the sum 
A+B is the forward-backward (FB) splitting method introduced 
in Passty GB which is given as [26].

                                                                                        (3)

where αk > 0 for all k ∈ ℕ with A being smooth and B is nonsmooth. 
This iteration (3) converges weakly to a point in the solution set 
of the inclusion 0 ∈ Ax + Bx, when the inverse of A is β-strongly 
monotone (or equivalently A being β-cocoercive), i.e.,

where αk ≤ β for all k ∈ ℕ and liminf k→∞ αk > 0; see, for instance, 
[15,27]. It is worth emphasizing that the cocoercivity assumption of 
an operator is a strictly stronger property than Lipschitz continuity. 
Recalling that, for some L ≥ 0, A is L-Lipschitz if

Note that β-cocoercive operators are monotone and 1/β-Lipschitz 
continuous, but the converse does not hold in general, i.e., there 
exist monotone and Lipschitz continuous operators that are not 
cocoercive. If we restrict our choice and take B = NC the normal 
cone of C, i.e., find x ∈ C such that 0 ∈ A(x)+NC(x), then the MVI 
can be written as

Find x ∈ C, such that ⟨Ax,y − x⟩ ≥ 0 for all y ∈ C.    (4)   

A popular strategy to solve problem (4) relies basically on the 
cutting plane (a.k.a. localization) idea which is based on finding a 
suitable hyperplane that separates the solution of the problem from 
the current iterate and then performs a metric projection step. This 
kind of idea is used by the famous Korpelevich’s Extragradient 
method  and its variants for solving problem (4), we refer the reader 
for more details about screening several methods and survey some 
recent developments derived from this extragradient one to the 
work of Bello and Hazaimah and the references therein [4,15]. 
From now on, unless stated otherwise, we will assume that the 
operator T is:

(i)   Strongly monotone with modulus λ.
(ii)  Lipschitz continuous with Lipschitz constant L.
(iii)  If T is strongly monotone or strongly pseudomononotone on 
C ⊆ H, then the variational inequality has at most one solution.

Proximal Dynamical Systems and Optimization
Bridging dynamical systems with optimization has long been 
studied and developed for the sake of equivalence of the 
corresponding solutions of optimization problems and equilibrium 
solutions of dynamical systems [6,8,11,28].

Definition 2: A global continuous time dynamical system is a 
pair (X,T), where X is a topological space and T : R × X → X is 
a continuous map so that T(0,x) = x , and T(s,T(t,x)) = T(s + t,x) 
for all x ∈ X and all t,s ∈ R.
We therefore formulate the main goal of this work as:

Problem 1: Design a continuous-time proximal dynamical system, 
such that its solution converges to the solution of the MVI (1) 
within a fixed time, dependent of the initial conditions. Note that 
the following nonsmooth optimization problem:

with f : dom(g) → H being a smooth convex function and g : H 
→ R∪{∞} being a proper, lower semicontinuous convex (not 
necessarily smooth) function, is equivalent to the MVI if whenever 
the operator T coincides with the gradient of the smooth function 
f, namely T = ∇f in (1). Consider the autonomous (time-invariant) 
dynamical system:

                                                                                      (5)

where the vector field T : H → H is continuous and T(x∗) = 0 for 
some x∗ ∈ H.

Definition 3: The equilibrium point x∗ of (5) is said to be fixed-
time stable if it is Lyapunov stable and

where supx0∈HT(x0) < ∞ and T : H → [0,∞).

The following two auxiliary lemmas are significant in proving 
the main theoretical result of this paper such that they provide 
properties of Lyapunov function V for fixed-time stability. The 
existence of such a Lyapunov function for a modified proximal 
dynamical system lays down the foundation and the analyses for 
the stability, in which Lemma (3) is used with γ3 = 1. However, 
the proofs are omitted due their existence [20].

Lemma 3: (Lyapunov condition for fixed-time stability). Let V 
: H → [0,∞) be a continuously differentiable unbounded function 
such that V (x∗) = 0, V (x) > 0 for all x ∈ H \ {x∗} and V (x) ≤

                                         with a1, a2, γ1,γ2,γ3 > 0 such that γ1γ3 < 
1 and γ2γ3 > 1. Then, the equilibrium point x∗ of (5) is fixed-time 

stable with                                                            for any

initial condition x0 ∈ H.
 

In what follows, we give some notational foundations and significant definitions related to the main
model used in this paper, MVIs, which can be formulated by

Find x∗ ∈ H such that ⟨T (x∗), x− x∗⟩+ g(x)− g(x∗) ≥ 0 , for all x ∈ H (1)

where T : dom g → H is an operator and g : H → R∪{∞} is a proper (dom g ̸= ∅), lower semi-continuous
convex function. If C is a closed and convex set in H and

IC(x) :=

{
0, if x ̸∈ C
+∞, if x ∈ C.

is the indicator function of C then problem (1) is reduced to the equivalent and particular case of MVIs,
namely, the classical variational inequality (VI), which is equivalent to the generalized equation (a.k.a
monotone inclusion)

Find x∗ ∈ H such that 0 ∈ T (x∗) + ∂g(x∗), (2)

where the subdifferential mapping ∂g : H ⇒ H, defined as ∂g(x) := {u ∈ H ; g(y) ≥ g(x)+⟨u, y−x⟩, ∀y ∈
H} is a maximal monotone operator. To extend the inclusion (2), a variety of numerical and analytical
methods have been developed for finding a zero of the sum of two operators; one is smooth and another
is not (that is, find a point x∗ ∈ H such that 0 ∈ A(x∗) + B(x∗) ). One of the most important
classical splitting methods to find a zero of the sum A+B is the forward-backward (FB) splitting method
introduced in [8] which is given as:

xk+1 := JαkB(x
k − αkAx

k), (3)

where αk > 0 for all k ∈ N with A being smooth and B is nonsmooth. This iteration (3) converges
weakly to a point in the solution set of the inclusion 0 ∈ Ax + Bx, when the inverse of A is β-strongly
monotone (or equivalently A being β-cocoercive), i.e.,

∀x, y ∈ H, ⟨Ax−Ay, x− y⟩ ≥ β∥Ax−Ay∥2,

where αk ≤ β for all k ∈ N and lim infk→∞ αk > 0; see, for instance, [3, 26]. It is worth emphasizing
that the cocoercivity assumption of an operator is a strictly stronger property than Lipschitz continuity.
Recalling that, for some L ≥ 0, A is L-Lipschitz if

∥Ax−Ay∥ ≤ L∥x− y∥ , ∀x, y ∈ H.

Note that β-cocoercive operators are monotone and 1/β-Lipschitz continuous, but the converse does not
hold in general, i.e., there exist monotone and Lipschitz continuous operators that are not cocoercive. If
we restrict our choice and take B = NC the normal cone of C, i.e., find x ∈ C such that 0 ∈ A(x)+NC(x),
then the MVI can be written as

Find x ∈ C, such that ⟨Ax, y − x⟩ ≥ 0 for all y ∈ C. (4)

A popular strategy to solve problem (4) relies basically on the cutting plane (a.k.a. localization) idea
which is based on finding a suitable hyperplane that separates the solution of the problem from the
current iterate and then performs a metric projection step. This kind of idea is used by the famous
Korpelevich’s Extragradient method [19] and its variants for solving problem (4), we refer the reader for
more details about screening several methods and survey some recent developments derived from this
extragradient one to the work of Bello and Hazaimah [3] and the references therein. From now on, unless
stated otherwise, we will assume that the operator T is:
(i) Strongly monotone with modulus λ.
(ii) Lipschitz continuous with Lipschitz constant L.
(iii) If T is strongly monotone or strongly pseudomononotone on C ⊆ H, then the variational inequality

has at most one solution.
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3 Proximal Dynamical Systems and Optimization

Bridging dynamical systems with optimization has long been studied and developed for the sake of equiv-
alence of the corresponding solutions of optimization problems and equilibrium solutions of dynamical
systems, see, for instance, [9], [11], [24], [25].
Definition 2. A global continuous time dynamical system is a pair (X,T ), where X is a topological
space and T : R×X → X is a continuous map so that T (0, x) = x , and T (s, T (t, x)) = T (s+ t, x) for
all x ∈ X and all t, s ∈ R.

We therefore formulate the main goal of this work as:
Problem 1. Design a continuous-time proximal dynamical system, such that its solution converges

to the solution of the MVI (1) within a fixed time, dependent of the initial conditions. Note that the
following nonsmooth optimization problem:

min
x∈H

f(x) + g(x),

with f : dom (g) → H being a smooth convex function and g : H → R∪{∞} being a proper, lower semi-
continuous convex (not necessarily smooth) function, is equivalent to the MVI if whenever the operator
T coincides with the gradient of the smooth function f , namely T = ∇f in (1). Consider the autonomous
(time-invariant) dynamical system:

ẋ = T (x), (5)

where the vector field T : H → H is continuous and T (x∗) = 0 for some x∗ ∈ H.
Definition 3. The equilibrium point x∗ of (5) is said to be fixed-time stable if it is Lyapunov stable and

lim
t→T (x(0))

x(t) = x∗,

where supx0∈HT (x0) < ∞ and T : H → [0,∞).
The following two auxiliary lemmas are significant in proving the main theoretical result of this paper

such that they provide properties of Lyapunov function V for fixed-time stability. The existence of such a
Lyapunov function for a modified proximal dynamical system lays down the foundation and the analyses
for the stability, in which Lemma (3) is used with γ3 = 1. However, the proofs are omitted due their
existence (see e.g. [27]).
Lemma 3 (Lyapunov condition for fixed-time stability). Let V : H → [0,∞) be a continuously
differentiable unbounded function such that V (x∗) = 0, V (x) > 0 for all x ∈ H \ {x∗} and V̇ (x) ≤
−
(
a1V (x)γ1 + a2V (x)γ2

)γ3
with a1, a2, γ1, γ2, γ3 > 0 such that γ1γ3 < 1 and γ2γ3 > 1. Then, the

equilibrium point x∗ of (5) is fixed-time stable with T (x(0)) ≤ 1

aγ3

1 (1− γ1γ3)
+

1

aγ3

2 (γ2γ3 − 1)
, for any

initial condition x0 ∈ H.
Lemma 4. For any given α ∈ (0, 1), suppose that there is a positive number

ϵ(α) =
log(α)

log( 1−α
1+α )

> 0.

Then , (
1− α

1 + α

)1−α1

> α, for each α1 ∈ (1− ϵ(α), 1].

Furthermore, (
1− α

1 + α

)α2−1

> α, for each α2 ∈ [1, 1 + ϵ(α)).

Now, we formally define the most significant mapping in this study, that is the proximal operator.
Given the proximal operator associated with a proper lower semi-continuous convex function f : H →
R ∪ {∞} and it is defined as follows:

proxf (x) := argmin
y∈H

f(y) +
1

2
∥x− y∥2.
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Lemma 4: For any given α ∈ (0,1), suppose that there is a positive 
number

Then,

                                          for each  
      
Furthermore,
                                          

                                         for each  

Now, we formally define the most significant mapping in this 
study, that is the proximal operator. Given the proximal operator 
associated with a proper lower semi-continuous convex function 
f : H → ℝ ∪ {∞} and it is defined as follows:

For the purpose of solving the MVI (1), we need the following 
equivalent result between variational inequalities and the fixed-
point problem.

Lemma 5: C ⊆ H, and assume the function x ∈ C is a solution 
of the variational inequality (4) if and only if x ∈ C satisfies the 
relation [14]

 

where ΠC is the projection operator and λ > 0 is a constant.

Lemma (5) implies that the variational inequalities (4) is equivalent 
to the fixed point problem (6). One can define the residue vector 
R(x) by the relation R(x) = x − ΠC (x − λTx). By Lemma (5), we 
notice that x ∈ C is a solution of (4) if and only if x ∈ C is a zero 
of the equation R(x) = 0. We now consider a projected dynamical 
system associated with the variational inequalities (4) using the 
equivalent formulation (6), this class of projected dynamical 
system was suggested in [6] as

                                                                                         (7)

where k is a parameter. The right hand of (7) is related to the 
resolvent operator and is discontinuous on the boundary of the 
set C. In the light of the preceding, and invoking the generalized 
setting of projected dynamical systems, we now need to consider 
the following nominal proximal dynamical system:

                                                                                        (8)

where k,λ > 0 are some constants. Next lemma connects and 
establishes the relationship between an equilibrium point of 
the nominal proximal dynamical system and a solution of the 
associated MVI.

Lemma 6: A point x∗ ∈ H is an equilibrium point of (8) if and 
only if it is a solution to the MVI (1).

Proof. From, proposition 12.26), for all z ∈ H it follows that

Hence, the conclusion applies [2].

Next lemma is very important and auxiliary for showing the 
contribution and efficiency of the main result of this paper.

Lemma 7: Given λ > 0 and its upper bound is  
                                                       Then for all x ∈ H, we have             

provided that x∗ is an equilibrium point of (8).

Proof: Based on Proposition 26.16 (ii)), it is known that for a 
proper, lower semi-continuous convex function g, the proximal 
operator prox is firmly nonexpansive [25]. Hence, the following 
inequality:

                                                                                              (9)

holds for all x ∈ H. Using Lemma 6, it follows that x ∈ H is also an 
equilibrium point of (8) and therefore, x∗ = prox(x∗−λT(x∗))). This 
result along with the assumption that the operator F is strongly 
monotone and Lipschitz continuous, further implies that the right 
hand side of (9) can have an upper bound such that:

                                                                                            (10)
Thus, the result concludes by taking the square root of both sides 
of the inequality (10), where                              and λ ∈ (0, 1). 
Recall that an operator F is non expansive if it is Lipschitz with 
constant 1. Moreover, F is firmly nonexpansive if

Modified Proximal Dynamical System
In the following, we introduce the modified proximal dynamical 
system, in which its equilibrium point is fixed-time stable and 
the coefficients are no longer exist (that is, the coefficient in the 
right-hand side of the differential equation depends on the state 
x). Consider the modification of (8) given by:

                                                                                            (11)

where

with k1,k2 > 0, α1 ∈ (0,1) and α2 > 1. For the points outside the set 
of the fixed points of the proximal operator, the first fraction in 
the piece wise function k above has the finite-time stability of the 
equilibrium point of (11), whereas the second term converges to 
the equilibrium point of (11) uniformly for any given condition 
and constructs an upper bound for the convergence rate [22]. Next 
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ẋ = T (x), (5)

where the vector field T : H → H is continuous and T (x∗) = 0 for some x∗ ∈ H.
Definition 3. The equilibrium point x∗ of (5) is said to be fixed-time stable if it is Lyapunov stable and

lim
t→T (x(0))

x(t) = x∗,

where supx0∈HT (x0) < ∞ and T : H → [0,∞).
The following two auxiliary lemmas are significant in proving the main theoretical result of this paper

such that they provide properties of Lyapunov function V for fixed-time stability. The existence of such a
Lyapunov function for a modified proximal dynamical system lays down the foundation and the analyses
for the stability, in which Lemma (3) is used with γ3 = 1. However, the proofs are omitted due their
existence (see e.g. [27]).
Lemma 3 (Lyapunov condition for fixed-time stability). Let V : H → [0,∞) be a continuously
differentiable unbounded function such that V (x∗) = 0, V (x) > 0 for all x ∈ H \ {x∗} and V̇ (x) ≤
−
(
a1V (x)γ1 + a2V (x)γ2

)γ3
with a1, a2, γ1, γ2, γ3 > 0 such that γ1γ3 < 1 and γ2γ3 > 1. Then, the

equilibrium point x∗ of (5) is fixed-time stable with T (x(0)) ≤ 1

aγ3

1 (1− γ1γ3)
+

1

aγ3

2 (γ2γ3 − 1)
, for any

initial condition x0 ∈ H.
Lemma 4. For any given α ∈ (0, 1), suppose that there is a positive number

ϵ(α) =
log(α)

log( 1−α
1+α )

> 0.

Then , (
1− α

1 + α

)1−α1

> α, for each α1 ∈ (1− ϵ(α), 1].

Furthermore, (
1− α

1 + α

)α2−1

> α, for each α2 ∈ [1, 1 + ϵ(α)).

Now, we formally define the most significant mapping in this study, that is the proximal operator.
Given the proximal operator associated with a proper lower semi-continuous convex function f : H →
R ∪ {∞} and it is defined as follows:

proxf (x) := argmin
y∈H

f(y) +
1

2
∥x− y∥2.

5

3 Proximal Dynamical Systems and Optimization

Bridging dynamical systems with optimization has long been studied and developed for the sake of equiv-
alence of the corresponding solutions of optimization problems and equilibrium solutions of dynamical
systems, see, for instance, [9], [11], [24], [25].
Definition 2. A global continuous time dynamical system is a pair (X,T ), where X is a topological
space and T : R×X → X is a continuous map so that T (0, x) = x , and T (s, T (t, x)) = T (s+ t, x) for
all x ∈ X and all t, s ∈ R.

We therefore formulate the main goal of this work as:
Problem 1. Design a continuous-time proximal dynamical system, such that its solution converges

to the solution of the MVI (1) within a fixed time, dependent of the initial conditions. Note that the
following nonsmooth optimization problem:

min
x∈H

f(x) + g(x),

with f : dom (g) → H being a smooth convex function and g : H → R∪{∞} being a proper, lower semi-
continuous convex (not necessarily smooth) function, is equivalent to the MVI if whenever the operator
T coincides with the gradient of the smooth function f , namely T = ∇f in (1). Consider the autonomous
(time-invariant) dynamical system:
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ẋ = T (x), (5)

where the vector field T : H → H is continuous and T (x∗) = 0 for some x∗ ∈ H.
Definition 3. The equilibrium point x∗ of (5) is said to be fixed-time stable if it is Lyapunov stable and

lim
t→T (x(0))

x(t) = x∗,

where supx0∈HT (x0) < ∞ and T : H → [0,∞).
The following two auxiliary lemmas are significant in proving the main theoretical result of this paper

such that they provide properties of Lyapunov function V for fixed-time stability. The existence of such a
Lyapunov function for a modified proximal dynamical system lays down the foundation and the analyses
for the stability, in which Lemma (3) is used with γ3 = 1. However, the proofs are omitted due their
existence (see e.g. [27]).
Lemma 3 (Lyapunov condition for fixed-time stability). Let V : H → [0,∞) be a continuously
differentiable unbounded function such that V (x∗) = 0, V (x) > 0 for all x ∈ H \ {x∗} and V̇ (x) ≤
−
(
a1V (x)γ1 + a2V (x)γ2

)γ3
with a1, a2, γ1, γ2, γ3 > 0 such that γ1γ3 < 1 and γ2γ3 > 1. Then, the

equilibrium point x∗ of (5) is fixed-time stable with T (x(0)) ≤ 1

aγ3

1 (1− γ1γ3)
+

1

aγ3

2 (γ2γ3 − 1)
, for any

initial condition x0 ∈ H.
Lemma 4. For any given α ∈ (0, 1), suppose that there is a positive number

ϵ(α) =
log(α)

log( 1−α
1+α )

> 0.

Then , (
1− α

1 + α

)1−α1

> α, for each α1 ∈ (1− ϵ(α), 1].

Furthermore, (
1− α

1 + α

)α2−1

> α, for each α2 ∈ [1, 1 + ϵ(α)).

Now, we formally define the most significant mapping in this study, that is the proximal operator.
Given the proximal operator associated with a proper lower semi-continuous convex function f : H →
R ∪ {∞} and it is defined as follows:

proxf (x) := argmin
y∈H

f(y) +
1

2
∥x− y∥2.

5

3 Proximal Dynamical Systems and Optimization

Bridging dynamical systems with optimization has long been studied and developed for the sake of equiv-
alence of the corresponding solutions of optimization problems and equilibrium solutions of dynamical
systems, see, for instance, [9], [11], [24], [25].
Definition 2. A global continuous time dynamical system is a pair (X,T ), where X is a topological
space and T : R×X → X is a continuous map so that T (0, x) = x , and T (s, T (t, x)) = T (s+ t, x) for
all x ∈ X and all t, s ∈ R.

We therefore formulate the main goal of this work as:
Problem 1. Design a continuous-time proximal dynamical system, such that its solution converges

to the solution of the MVI (1) within a fixed time, dependent of the initial conditions. Note that the
following nonsmooth optimization problem:

min
x∈H

f(x) + g(x),

with f : dom (g) → H being a smooth convex function and g : H → R∪{∞} being a proper, lower semi-
continuous convex (not necessarily smooth) function, is equivalent to the MVI if whenever the operator
T coincides with the gradient of the smooth function f , namely T = ∇f in (1). Consider the autonomous
(time-invariant) dynamical system:
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For the purpose of solving the MVI (1), we need the following equivalent result between variational
inequalities and the fixed point problem.
Lemma 5 ( [23]). Let C ⊆ H, and assume the function x ∈ C is a solution of the variational inequality
(4) if and only if x ∈ C satisfies the relation

x = ΠC(x− λTx), (6)

where ΠC is the projection operator and λ > 0 is a constant.
Lemma (5) implies that the variational inequalities (4) is equivalent to the fixed point problem (6).

One can define the residue vector R(x) by the relation R(x) = x − ΠC(x − λTx). By Lemma (5), we
notice that x ∈ C is a solution of (4) if and only if x ∈ C is a zero of the equation R(x) = 0. We
now consider a projected dynamical system associated with the variational inequalities (4) using the
equivalent formulation (6), this class of projected dynamical system was suggested in [24] as

ẋ = −k R(x)

= −k
(
x−ΠC(x− λTx)

)
, x(t0) = x0 ∈ C, (7)

where k is a parameter. The right hand of (7) is related to the resolvent operator and is discontinuous on
the boundary of the set C. In the light of the preceding, and invoking the generalized setting of projected
dynamical systems, we now need to consider the following nominal proximal dynamical system:

ẋ = −k(x− prox(x− λT (x))), (8)

where k, λ > 0 are some constants. Next lemma connects and establishes the relationship between an
equilibrium point of the nominal proximal dynamical system and a solution of the associated MVI.
Lemma 6. A point x∗ ∈ H is an equilibrium point of (8) if and only if it is a solution to the MVI (1).

Proof. From ( [2], proposition 12.26), for all z ∈ H it follows that

x∗ = prox(x∗ − λT (x∗))) ⇐⇒ ⟨(x∗ − λT (x∗))− x∗, z − x∗⟩+ λg(x∗) ≤ λg(z)

⇐⇒ λ⟨T (x∗), z − x∗⟩+ λg(z)− λg(x∗) ≥ 0

⇐⇒ ⟨T (x∗), z − x∗⟩+ g(z)− g(x∗) ≥ 0.

Hence, the conclusion applies.

Next lemma is very important and auxiliary for showing the contribution and efficiency of the main
result of this paper.
Lemma 7. Given λ > 0 and its upper bound is 2µ

L2 , let α =
√

1− 2λµ+ λ2L2 ∈ (0, 1). Then for all
x ∈ H, we have

∥ proxλg(x− λT (x))− x∗∥ ≤ α∥x− x∗∥,
provided that x∗ is an equilibrium point of (8).

Proof. Based on ( [2], Proposition 26.16 (ii)), it is known that for a proper, lower semi-continuous convex
function g, the proximal operator prox is firmly nonexpansive ( [2], Corollary 23.11). Hence, the
following inequality:

∥prox(x− λT (x))− prox(x∗ − λT (x∗))∥2 ≤ ∥(x− λT (x))− (x∗ − λT (x∗))∥2

= ∥x− x∗∥2 − 2λ⟨T (x)− T (x∗), x− x∗⟩
+ λ2∥T (x)− T (x∗)∥2 (9)

holds for all x ∈ H. Using Lemma 6, it follows that x ∈ H is also an equilibrium point of (8) and
therefore, x∗ = prox(x∗−λT (x∗))). This result along with the assumption that the operator F is strongly
monotone and Lipschitz continuous, further implies that the right hand side of (9) can have an upper
bound such that:

∥prox(x− λT (x))− prox(x∗ − λT (x∗))∥2 ≤ ∥x− x∗∥2 − 2λµ∥x− x∗∥2 + λ2L2∥x− x∗∥2,
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L2 , let α =
√
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6 = (1− 2λµ+ λ2L2)∥x− x∗∥2. (10)

Thus, the result concludes by taking the square root of both sides of the inequality (10), where

α =


1− 2λµ+ λ2L2 and λ ∈ (0, 1). Recall that an operator F is non expansive if it is Lipschitz with
constant 1. Moreover, F is firmly nonexpansive if

∀x, y ∈ H, ∥T (x)− T (y)∥2 ≤ ∥x− y∥2 − ∥(x− T (x))− (y − T (y))∥2.

4 Modified Proximal Dynamical System

In the following, we introduce the modified proximal dynamical system, in which its equilibrium point
is fixed-time stable and the coefficients are no longer exist (that is, the coefficient in the right-hand side
of the differential equation depends on the state x). Consider the modification of (8) given by:

ẋ = −k(x)(x− prox(x− λT (x))), (11)

where

k(x) =



0 if x ∈ Fix (prox)

k1
∥x− prox(x− λTx)∥(1−α1)

+
k2

∥x− prox(x− λTx)∥(1−α2)
if x ∈ H \ Fix (prox)

(12)

with k1, k2 > 0, α1 ∈ (0, 1) and α2 > 1. For the points outside the set of the fixed points of the
proximal operator, the first fraction in the piece wise function k above has the finite-time stability of the
equilibrium point of (11), whereas the second term converges to the equilibrium point of (11) uniformly
for any given condition and constructs an upper bound for the convergence rate (see [13], Remark 4).
Next lemma institutes and confirms the equivalence between equilibrium points of the modified and
nominal proximal dynamical systems.
Lemma 8. A point x∗ ∈ H is an equilibrium point of (11) if and only if it is an equilibrium point of (8).

Proof. It is obvious that if x∗ ∈ H is an equilibrium point of (11), i.e., x∗ ∈ Fix (prox), and by using
the piecewise k(x) then we can see that x∗ is also an equilibrium point of (8). For the other direction,
we just need to observe that for any equilibrium point x ∈ Fix (prox), we have k(x) = 0.

Remark 1. If the vector field G in (14) is selected as the one in (8), i.e., G(x) := x− prox(x− λF (x))
for any x ∈ H, then G satisfies the inequality ⟨x−x∗, G(x)⟩ > 0, ∀x ∈ H\{x∗}, where x∗ is the solution
of the MVI (1), i.e., Fix (prox) has only a unique element x∗ = x̄. Furthermore, and for all x ∈ H, the
following equality holds,

⟨x− x∗, x− prox(x− λF (x))⟩ = ∥x− x∗∥2 + ⟨x− x∗, x∗ − prox(x− λF (x))⟩. (13)

Using the Cauchy-Schwarz inequality and lemma (7), then (13) has a lower bound as:

⟨x− x∗, x− prox(x− λF (x))⟩ ≥ (1− α)∥x− x∗∥2,

where α ∈ (0, 1), which implies that ⟨x− x∗, G(x)⟩ > 0 for all x ∈ H \ {x∗}.
The following proposition assures that the solutions of (11) exist and are uniquely determined for all

future iterations.
Proposition 9. Let G : H → H be a locally Lipschitz continuous vector field such that

G(x̄) = 0 and ⟨x− x̄, G(x)⟩ > 0

for all x ∈ H \ x̄,where x̄ ∈ H. Consider the following autonomous dynamical system:

ẋ = −σ(x)G(x) (14)
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lemma institutes and confirms the equivalence between equilibrium 
points of the modified and nominal proximal dynamical systems.

Lemma 8: A point x∗ ∈ H is an equilibrium point of (11) if and 
only if it is an equilibrium point of (8).
Proof. It is obvious that if x∗ ∈ H is an equilibrium point of (11), 
i.e., x∗ ∈ Fix(prox), and by using the piecewise k(x) then we 
can see that x∗ is also an equilibrium point of (8). For the other 
direction, we just need to observe that for any equilibrium point 
x ∈ Fix(prox), we have k(x) = 0.  

Remark 1: If the vector field G in (14) is selected as the one in 
(8), i.e., G(x) := x−prox(x−λF(x)) for any x ∈ H, then G satisfies the 
inequality ⟨x−x∗,G(x)⟩ > 0, ∀x ∈ H\{x∗}, where x∗ is the solution 
of the MVI (1), i.e., Fix(prox) has only a unique element x∗ = 
x. Furthermore, and for all x ∈ H, the following equality holds,

Using the Cauchy-Schwarz inequality and lemma (7), then (13) 
has a lower bound as:

where α ∈ (0,1), which implies that ⟨x − x∗,G(x)⟩ > 0 for all x ∈ 
H \ {x∗}.

The following proposition assures that the solutions of (11) exist 
and are uniquely determined for all future iterations.

Proposition 9: Let G : H → H be a locally Lipschitz continuous 
vector field such that

for all x ∈ H \ x,where x ∈ H. Consider the following autonomous 
dynamical system:

                                                                                     (14)

where

with k1,k2 > 0, α1 ∈ (0,1) and α2 > 1. Then, the right hand side of (14) 
is continuous for all x ∈ H, and there exist a solution of (14), wich 
is uniquely determined for all t ≥ 0 and for any initial condition.

Proof: We first treat the existence claim followed by the uniqueness 
of a solution. Since the piece wise function σ is continuous on all 
points belong to the set H\{x∗} and the vector field G is locally 
Lipschitz continuous on H, then G is continuous at x∗ ∈ H. Note 
that limx→x∗ σ(x)G(x) = 0, since α1 ∈ (0,1) and α2 > 1. For any 
given initial point, the equilibrium point x∗ ∈ H of the vector 
field G can be shown that it is globally asymptotically stable and 
hence, it is unique. Using the fact that G is continuous, it follows 
from Scutari G, that for any given x0 ∈ H, there exists a solution 
of (14) on some interval [0,τ(x0)], with τ(x0) > 0. Moreover, by 
Scutari G, the maximal interval of existence for any such solution 
of (14) is [0,τ(x0)). Thanks to the stability theory of dynamical 
systems such that we can assume the function V : H → [0,∞) 
defined as                              to be the Lyapunov function for the 
dynamical system (14) along with its trajectory (i.e., solution 

curve), for any x0 ∈ H, written as [29].

which implies V (x(t)) ≤ 0, since σ(x) ≥ 0 , ∀ x ∈ H and by using 
remark (1), for all t ∈ [0, τ(x0)), consequently, V (x(t)) ≤ V (x0) and 
any solution of (14) defined on [0,τ(x0)) lies entirely in the set Kx0 
:= {z ∈ H ; ∥z − x∗∥ ≤ ∥x0 − x∗∥}. It follows that, by Stampacchia 
G the solution goes to infinity inside the compact set Kx0 ( i.e., 
τ(x0) = ∞), thus, it is not everywhere defined and this completes 
the existence argument [30]. Next we discuss the uniqueness, 
for any given x0 ∈ H , let xs be a solution of (14) with the initial 
condition xsol(0) = x0. To this end, we need to consider two cases 
related to the equilibrium point of the dynamical system (14); (i) 
xsol(0) = x∗, and (ii) xsol(0) ∈ H \ {x∗}. In the first case, we consider 
the same Lyapunov function V above and following the same 
guidelines from the existence argument we would have come to 
the conclusion that the solution of (14) is non-positive for any 
initial point. Hence, xsol is uniquely determined. Let T := inf{t ≥ 
0 : xsol(t) = x∗} which is strictly positive by the continuity of xsol. 
Next, consider the parameterization Φ: [0,T) → [0,∞) defined as 
follows:

                                                                                           (15)

Since the integrand σ(xsol(v)) is continuous on H and strictly 
positive for any v ∈ [0,T), and since xsol is continuous on [0,T), 
it follows that the function Φ is a strictly increasing continuous 
function, for all t ∈ (0,T). Furthermore, from the inverse function 
Theorem, it follows that Φ−1 exists and strictly increasing 
continuous. Hence, a solution corresponding to the vector field 
in (14) is also a solution corresponding to the vector field G, 
under the parameterization (15). Furthermore, since the vector 
field G is locally Lipschitz continuous on H, it can be shown 
that for any given initial condition, there exists a unique solution 
corresponding to G by following similar steps of the existence 
argument [21]. Hence, xsol is uniquely determined and since the 
function Φ is injective, with Φ(0) = 0, it follows that xsol is also 
uniquely determined.

The following theorem establishes the first main result of the paper.

Theorem 10: For any given
                                                                             and

Then, the solution x ∈ H of (1) is a fixed time stable equilibrium 
point of (11) for any α1 ∈ (1− ϵ(α),1)∩ (0,1) and α2 ∈ (1,1 + ϵ(α)).

Proof: By (Proposition 12.28), it follows that the vector field in 
(8) is Lipschitz continuous on H, with a unique equilibrium point 
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H \ {x}, reads:

= (1− 2λµ+ λ2L2)∥x− x∗∥2. (10)

Thus, the result concludes by taking the square root of both sides of the inequality (10), where

α =


1− 2λµ+ λ2L2 and λ ∈ (0, 1). Recall that an operator F is non expansive if it is Lipschitz with
constant 1. Moreover, F is firmly nonexpansive if

∀x, y ∈ H, ∥T (x)− T (y)∥2 ≤ ∥x− y∥2 − ∥(x− T (x))− (y − T (y))∥2.

4 Modified Proximal Dynamical System

In the following, we introduce the modified proximal dynamical system, in which its equilibrium point
is fixed-time stable and the coefficients are no longer exist (that is, the coefficient in the right-hand side
of the differential equation depends on the state x). Consider the modification of (8) given by:

ẋ = −k(x)(x− prox(x− λT (x))), (11)

where

k(x) =



0 if x ∈ Fix (prox)

k1
∥x− prox(x− λTx)∥(1−α1)

+
k2

∥x− prox(x− λTx)∥(1−α2)
if x ∈ H \ Fix (prox)

(12)

with k1, k2 > 0, α1 ∈ (0, 1) and α2 > 1. For the points outside the set of the fixed points of the
proximal operator, the first fraction in the piece wise function k above has the finite-time stability of the
equilibrium point of (11), whereas the second term converges to the equilibrium point of (11) uniformly
for any given condition and constructs an upper bound for the convergence rate (see [13], Remark 4).
Next lemma institutes and confirms the equivalence between equilibrium points of the modified and
nominal proximal dynamical systems.
Lemma 8. A point x∗ ∈ H is an equilibrium point of (11) if and only if it is an equilibrium point of (8).

Proof. It is obvious that if x∗ ∈ H is an equilibrium point of (11), i.e., x∗ ∈ Fix (prox), and by using
the piecewise k(x) then we can see that x∗ is also an equilibrium point of (8). For the other direction,
we just need to observe that for any equilibrium point x ∈ Fix (prox), we have k(x) = 0.

Remark 1. If the vector field G in (14) is selected as the one in (8), i.e., G(x) := x− prox(x− λF (x))
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of the MVI (1), i.e., Fix (prox) has only a unique element x∗ = x̄. Furthermore, and for all x ∈ H, the
following equality holds,
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Using the Cauchy-Schwarz inequality and lemma (7), then (13) has a lower bound as:

⟨x− x∗, x− prox(x− λF (x))⟩ ≥ (1− α)∥x− x∗∥2,

where α ∈ (0, 1), which implies that ⟨x− x∗, G(x)⟩ > 0 for all x ∈ H \ {x∗}.
The following proposition assures that the solutions of (11) exist and are uniquely determined for all

future iterations.
Proposition 9. Let G : H → H be a locally Lipschitz continuous vector field such that

G(x̄) = 0 and ⟨x− x̄, G(x)⟩ > 0

for all x ∈ H \ x̄,where x̄ ∈ H. Consider the following autonomous dynamical system:

ẋ = −σ(x)G(x) (14)
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7where

σ(x) =



0, if G(x) = 0;

k1
∥G(x)∥(1−α1)

+
k2

∥G(x)∥(1−α2)
, otherwise,

with k1, k2 > 0, α1 ∈ (0, 1) and α2 > 1. Then, the right hand side of (14) is continuous for all x ∈ H,
and there exist a solution of (14), wich is uniquely determined for all t ≥ 0 and for any initial condition.

Proof. We first treat the existence claim followed by the uniqueness of a solution. Since the piece wise
function σ is continuous on all points belong to the set H\{x∗} and the vector field G is locally Lipschitz
continuous on H, then G is continuous at x∗ ∈ H. Note that limx→x∗ σ(x)G(x) = 0, since α1 ∈ (0, 1)
and α2 > 1. For any given initial point, the equilibrium point x∗ ∈ H of the vector field G can be shown
that it is globally asymptotically stable and hence, it is unique. Using the fact that G is continuous, it
follows from ( [16], Theorem I.1.1) that for any given x0 ∈ H, there exists a solution of (14) on some
interval [0, τ(x0)], with τ(x0) > 0. Moreover, by ( [16], Theorem I.2.1), the maximal interval of existence
for any such solution of (14) is [0, τ̄(x0)). Thanks to the stability theory of dynamical systems such that
we can assume the function V : H → [0,∞) defined as V (x) := 1

2∥x−x∗∥2, to be the Lyapunov function
for the dynamical system (14) along with its trajectory (i.e., solution curve), for any x0 ∈ H, written as:

V̇ (x(t)) = −⟨x(t)− x∗, σ(x(t))G(x(t))⟩,

which implies V̇ (x(t)) ≤ 0, since σ(x) ≥ 0 , ∀ x ∈ H and by using remark (1), for all t ∈ [0, τ̄(x0)),
consequently, V (x(t)) ≤ V (x0) and any solution of (14) defined on [0, τ̄(x0)) lies entirely in the set
Kx0 := {z ∈ H ; ∥z − x∗∥ ≤ ∥x0 − x∗∥}. It follows that, by ( [5], proposition 2.1), the solution goes
to infinity inside the compact set Kx0 ( i.e., τ̄(x0) = ∞), thus, it is not everywhere defined and this
completes the existence argument. Next we discuss the uniqueness, for any given x0 ∈ H , let xs be a
solution of (14) with the initial condition xsol(0) = x0. To this end, we need to consider two cases related
to the equilibrium point of the dynamical system (14); (i) xsol(0) = x∗, and (ii) xsol(0) ∈ H \ {x∗}. In
the first case, we consider the same Lyapunov function V above and following the same guidelines from
the existence argument we would have come to the conclusion that the solution of (14) is non-positive
for any initial point. Hence, xsol is uniquely determined. Let T := inf{t ≥ 0 : xsol(t) = x∗} which is
strictly positive by the continuity of xsol. Next, consider the parameterization Φ : [0, T ) → [0,∞) defined
as follows:

Φ(t) :=

 t

0

σ(xsol(v) dv (15)

Since the integrand σ(xsol(v)) is continuous on H and strictly positive for any v ∈ [0, T ), and since xsol

is continuous on [0, T ), it follows that the function Φ is a strictly increasing continuous function, for
all t ∈ (0, T ). Furthermore, from the inverse function Theorem, it follows that Φ−1 exists and strictly
increasing continuous. Hence, a solution corresponding to the vector field in (14) is also a solution
corresponding to the vector field G, under the parameterization (15). Furthermore, since the vector field
G is locally Lipschitz continuous on H, it can be shown that for any given initial condition, there exists
a unique solution corresponding to G (see [12]), by following similar steps of the existence argument.
Hence, x̄sol is uniquely determined and since the function Φ is injective, with Φ(0) = 0, it follows that
xsol is also uniquely determined.

The following theorem establishes the first main result of the paper.
Theorem 10. For any given λ ∈ (0, 2µ

L2 ), let α =


1− 2λµ+ λ2L2 ∈ (0, 1) and

ϵ(α) =
log(α)

log( 1−α
1+α )

> 0.

Then, the solution x̄ ∈ H of (1) is a fixed time stable equilibrium point of (11) for any α1 ∈ (1−ϵ(α), 1)∩
(0, 1) and α2 ∈ (1, 1 + ϵ(α)).

Proof. By ( [2], Proposition 12.28), it follows that the vector field in (8) is Lipschitz continuous on H,
with a unique equilibrium point and satisfies Proposition (9) (see Remark (1)). Hence, from Proposition
(9), it follows that starting from any initial condition, a solution of (11) exists and is uniquely determined.

8

where

σ(x) =



0, if G(x) = 0;

k1
∥G(x)∥(1−α1)

+
k2

∥G(x)∥(1−α2)
, otherwise,

with k1, k2 > 0, α1 ∈ (0, 1) and α2 > 1. Then, the right hand side of (14) is continuous for all x ∈ H,
and there exist a solution of (14), wich is uniquely determined for all t ≥ 0 and for any initial condition.

Proof. We first treat the existence claim followed by the uniqueness of a solution. Since the piece wise
function σ is continuous on all points belong to the set H\{x∗} and the vector field G is locally Lipschitz
continuous on H, then G is continuous at x∗ ∈ H. Note that limx→x∗ σ(x)G(x) = 0, since α1 ∈ (0, 1)
and α2 > 1. For any given initial point, the equilibrium point x∗ ∈ H of the vector field G can be shown
that it is globally asymptotically stable and hence, it is unique. Using the fact that G is continuous, it
follows from ( [16], Theorem I.1.1) that for any given x0 ∈ H, there exists a solution of (14) on some
interval [0, τ(x0)], with τ(x0) > 0. Moreover, by ( [16], Theorem I.2.1), the maximal interval of existence
for any such solution of (14) is [0, τ̄(x0)). Thanks to the stability theory of dynamical systems such that
we can assume the function V : H → [0,∞) defined as V (x) := 1

2∥x−x∗∥2, to be the Lyapunov function
for the dynamical system (14) along with its trajectory (i.e., solution curve), for any x0 ∈ H, written as:

V̇ (x(t)) = −⟨x(t)− x∗, σ(x(t))G(x(t))⟩,

which implies V̇ (x(t)) ≤ 0, since σ(x) ≥ 0 , ∀ x ∈ H and by using remark (1), for all t ∈ [0, τ̄(x0)),
consequently, V (x(t)) ≤ V (x0) and any solution of (14) defined on [0, τ̄(x0)) lies entirely in the set
Kx0 := {z ∈ H ; ∥z − x∗∥ ≤ ∥x0 − x∗∥}. It follows that, by ( [5], proposition 2.1), the solution goes
to infinity inside the compact set Kx0 ( i.e., τ̄(x0) = ∞), thus, it is not everywhere defined and this
completes the existence argument. Next we discuss the uniqueness, for any given x0 ∈ H , let xs be a
solution of (14) with the initial condition xsol(0) = x0. To this end, we need to consider two cases related
to the equilibrium point of the dynamical system (14); (i) xsol(0) = x∗, and (ii) xsol(0) ∈ H \ {x∗}. In
the first case, we consider the same Lyapunov function V above and following the same guidelines from
the existence argument we would have come to the conclusion that the solution of (14) is non-positive
for any initial point. Hence, xsol is uniquely determined. Let T := inf{t ≥ 0 : xsol(t) = x∗} which is
strictly positive by the continuity of xsol. Next, consider the parameterization Φ : [0, T ) → [0,∞) defined
as follows:

Φ(t) :=

 t

0

σ(xsol(v) dv (15)

Since the integrand σ(xsol(v)) is continuous on H and strictly positive for any v ∈ [0, T ), and since xsol

is continuous on [0, T ), it follows that the function Φ is a strictly increasing continuous function, for
all t ∈ (0, T ). Furthermore, from the inverse function Theorem, it follows that Φ−1 exists and strictly
increasing continuous. Hence, a solution corresponding to the vector field in (14) is also a solution
corresponding to the vector field G, under the parameterization (15). Furthermore, since the vector field
G is locally Lipschitz continuous on H, it can be shown that for any given initial condition, there exists
a unique solution corresponding to G (see [12]), by following similar steps of the existence argument.
Hence, x̄sol is uniquely determined and since the function Φ is injective, with Φ(0) = 0, it follows that
xsol is also uniquely determined.

The following theorem establishes the first main result of the paper.
Theorem 10. For any given λ ∈ (0, 2µ

L2 ), let α =


1− 2λµ+ λ2L2 ∈ (0, 1) and

ϵ(α) =
log(α)

log( 1−α
1+α )

> 0.

Then, the solution x̄ ∈ H of (1) is a fixed time stable equilibrium point of (11) for any α1 ∈ (1−ϵ(α), 1)∩
(0, 1) and α2 ∈ (1, 1 + ϵ(α)).

Proof. By ( [2], Proposition 12.28), it follows that the vector field in (8) is Lipschitz continuous on H,
with a unique equilibrium point and satisfies Proposition (9) (see Remark (1)). Hence, from Proposition
(9), it follows that starting from any initial condition, a solution of (11) exists and is uniquely determined.

8

where

σ(x) =




0, if G(x) = 0;

k1
∥G(x)∥(1−α1)

+
k2

∥G(x)∥(1−α2)
, otherwise,

with k1, k2 > 0, α1 ∈ (0, 1) and α2 > 1. Then, the right hand side of (14) is continuous for all x ∈ H,
and there exist a solution of (14), wich is uniquely determined for all t ≥ 0 and for any initial condition.

Proof. We first treat the existence claim followed by the uniqueness of a solution. Since the piece wise
function σ is continuous on all points belong to the set H\{x∗} and the vector field G is locally Lipschitz
continuous on H, then G is continuous at x∗ ∈ H. Note that limx→x∗ σ(x)G(x) = 0, since α1 ∈ (0, 1)
and α2 > 1. For any given initial point, the equilibrium point x∗ ∈ H of the vector field G can be shown
that it is globally asymptotically stable and hence, it is unique. Using the fact that G is continuous, it
follows from ( [16], Theorem I.1.1) that for any given x0 ∈ H, there exists a solution of (14) on some
interval [0, τ(x0)], with τ(x0) > 0. Moreover, by ( [16], Theorem I.2.1), the maximal interval of existence
for any such solution of (14) is [0, τ̄(x0)). Thanks to the stability theory of dynamical systems such that
we can assume the function V : H → [0,∞) defined as V (x) := 1

2∥x−x∗∥2, to be the Lyapunov function
for the dynamical system (14) along with its trajectory (i.e., solution curve), for any x0 ∈ H, written as:

V̇ (x(t)) = −⟨x(t)− x∗, σ(x(t))G(x(t))⟩,

which implies V̇ (x(t)) ≤ 0, since σ(x) ≥ 0 , ∀ x ∈ H and by using remark (1), for all t ∈ [0, τ̄(x0)),
consequently, V (x(t)) ≤ V (x0) and any solution of (14) defined on [0, τ̄(x0)) lies entirely in the set
Kx0 := {z ∈ H ; ∥z − x∗∥ ≤ ∥x0 − x∗∥}. It follows that, by ( [5], proposition 2.1), the solution goes
to infinity inside the compact set Kx0 ( i.e., τ̄(x0) = ∞), thus, it is not everywhere defined and this
completes the existence argument. Next we discuss the uniqueness, for any given x0 ∈ H , let xs be a
solution of (14) with the initial condition xsol(0) = x0. To this end, we need to consider two cases related
to the equilibrium point of the dynamical system (14); (i) xsol(0) = x∗, and (ii) xsol(0) ∈ H \ {x∗}. In
the first case, we consider the same Lyapunov function V above and following the same guidelines from
the existence argument we would have come to the conclusion that the solution of (14) is non-positive
for any initial point. Hence, xsol is uniquely determined. Let T := inf{t ≥ 0 : xsol(t) = x∗} which is
strictly positive by the continuity of xsol. Next, consider the parameterization Φ : [0, T ) → [0,∞) defined
as follows:

Φ(t) :=

 t

0

σ(xsol(v) dv (15)

Since the integrand σ(xsol(v)) is continuous on H and strictly positive for any v ∈ [0, T ), and since xsol

is continuous on [0, T ), it follows that the function Φ is a strictly increasing continuous function, for
all t ∈ (0, T ). Furthermore, from the inverse function Theorem, it follows that Φ−1 exists and strictly
increasing continuous. Hence, a solution corresponding to the vector field in (14) is also a solution
corresponding to the vector field G, under the parameterization (15). Furthermore, since the vector field
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Consider now an unbounded Lyapunov function V : H → [0,∞) defined as V (x) := 1

2{x − x̄∥2, where,
from Lemma 5, x̄ ∈ H is the unique equilibrium point of the vector field in (11). The time-derivative of
V along the solution of (11), starting from any x0 ∈ H \ {x̄}, reads:

V̇ = −
〈
x− x̄, k1

x− prox(x− λT (x))

∥x− prox(x− λT (x))∥(1−α1)
+ k2

x− prox(x− λT (x))

∥x− prox(x− λT (x))∥(1−α2)

〉

= −
〈
x− x̄, k1

x− x̄

∥x− prox(x− λT (x))∥(1−α1)
+ k2

x− x̄

∥x− prox(x− λT (x))∥(1−α2)

〉

−
〈
x− x̄, k1

x̄− prox(x− λT (x))

∥x− prox(x− λT (x))∥(1−α1)
+ k2

x̄− prox(x− λT (x))

∥x− prox(x− λT (x))∥(1−α2)

〉

By applying the Cauchy–Schwarz inequality on the second term of the right hand side of the above, we
have

V̇ ≤−

(
k1

∥x− x̄∥2

∥x− prox(x− λT (x))∥(1−α1)
+ k2

∥x− x̄∥2

∥x− prox(x− λT (x))∥(1−α2)

)

+

(
k1

∥x− x̄∥∥x̄− prox(x− λT (x))∥
∥x− prox(x− λT (x))∥(1−α1)

+ k2
∥x− x̄∥∥x̄− prox(x− λT (x))∥
∥x− prox(x− λT (x))∥(1−α2)

)
(16)

Now be revoking lemma (7) and by using the triangle inequality, since λ ∈ (0, 2µ
L2 ), there exists α ∈ (0, 1)

such that the following inequality:

∥x− prox(x− λT (x))∥ ≤ ∥x− x̄∥+ ∥prox(x− λT (x))− x̄∥ ≤ (1 + α)∥x− x̄∥

holds for all x ∈ H. Similarly, by using the reverse triangle inequality, there exists α ∈ (0, 1) such that
the following inequality:

∥x− prox(x− λT (x))∥ ≥ ∥x− x̄∥ − ∥prox(x− λT (x))− x̄∥ ≥ (1− α)∥x− x̄∥

also holds for all x ∈ H. Using the last two inequalities and Lemma (7), then the inequality (16) will
have the following upper bound:

V̇ ≤−

(
k1 ∥x− x̄∥1+α1

(1 + α)1−α1
+

k2 ∥x− x̄∥1+α2

(1− α)1−α2

)
+

(
αk1 ∥x− x̄∥1+α1

(1− α)1−α1
+

αk2 ∥x− x̄∥1+α2

(1 + α)1−α2

)

=

(
α

(1− α)1−α1
− 1

(1 + α)1−α1

)
k1 ∥x− x̄∥1+α1 +

(
α

(1 + α)1−α2
− 1

(1− α)1−α2

)
k2 ∥x− x̄∥1+α2

=− (1− α)α1−1

[(
1− α

1 + α

)1−α1

− α

]
k1 ∥x− x̄∥1+α1

− (1 + α)α2−1

[(
1− α

1 + α

)α2−1

− α

]
k2 ∥x− x̄∥1+α2 . (17)

From Lemma 2, it follows that there exists ϵ(α) =
log(α)

log
(1− α

1 + α

) > 0 for any α1 ∈ (1 − ϵ(α), 1) ∩ (0, 1)

and α2 ∈ (1, 1 + ϵ(α)). Hence, the proof can be concluded using Lemma 1.

In the special case, when the function w in (3) is chosen to be the indicator function of a non-empty,
closed convex set C ⊆ H, the proximal operator reduces to the projection operator, i.e., ΠC = proxIC ,
where the projection operator is defined as

ΠC = argmin
y∈C

∥x− y∥.
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Thus, the proximal dynamical system reduces to a symbolic projected dynamical system:

ẋ = −k(x−ΠC(x− λF (x))),

with k, λ > 0, which can be used to solve variational inequalities, see, for instance, [7], [31]. Furthermore,
the modified proximal dynamical system now reduces to a modified projected dynamical system:

ẋ = −k(x)(x−ΠC(x− λF (x))),

It is shown in [7] and [31] that the equilibrium point of (19) is globally exponentially stable for a
strongly pseudomonotone and Lipschitz continuous operator F . To establish the fixed-time stability of
the equilibrium point of the modified projected dynamical system, we need to consider the following
corollary, which is a subsequent of Theorem 10.
Corollary 11. For any given λ > 0 with its upper bound is 2µ

L2 , there exist α ∈ (0, 1) and ϵ(α > 0) as
given in Theorem 10, such that the solution x̄ ∈ C in (1), with g = IC , where C is a closed convex set,
is a fixed-time stable equilibrium point of (4) for any α1 ∈ (1− ϵ(α), 1) ∩ (0, 1) and α2 ∈ (1, 1 + ϵ(α)).
Remark 2. In dealing with indicator functions rather than general functions, then we would be restricted
to a particular case, the case of projection operators. In such sense, lemma (7), and corollary (11) remain
valid even if the assumption of strong monotonocity may be relaxed to that of strong pseudomonotonicity
which is a special case of corollary (11).

5 Conclusion and Extensions

In Hilbert spaces, convexity on functions and global Lipschitz continuity on the gradients are sufficient for
providing convergence of the sequence generated. Continuous-time dynamical systems propose dynamic
visions into designing consistent schemes for solving unconstrained optimization problems in Hilbert space
and their equivalence class MVIs. This paper is an extension of the work of the authors in [12] into infinite-
dimensional variational problems, in which the solution (the equilibrium point) of the modified proximal
dynamical system converges to the unique solution of the associated MVIP in a fixed time, under the
assumptions of strong monotonicity and Lipschitz continuity on the associated operator. Furthermore,
the proposed proximal dynamical system reduces to a fixed-time stable projected dynamical system,
where the fixed-time stability of the modified projected dynamical system continues to hold, even if the
assumption of strong monotonicity is relaxed to that of strong pseudomonotonicity. One suggestion to
extend this work is by relaxing Lipschitz continuity. Also, the strong monotonocity assumption can be
relaxed to the monotonicity case, like wise, to the more general class of pseudomonotone operators.

Another direction of future research, which has a promising work in the practical scope, is by
applying forward-Euler discretization of the modified proximal dynamical system explicit discrete-time
approximation scheme. However, a robust discrete-time approximation scheme must be chosen for the
generated sequence such that it preserves the convergence behavior of the continuous-time dynamical
system because in general the fixed-time convergence cannot be preserved. Finally, this work could be
generalized to the mixed equilibrium problems or mixed quasivariational inequalities and we predict the
qualitative results to still hold with possibly careful observation and much work especially in the aspect
of globally asymptotically or exponentially stable.

Declarations

The author declares that there was no conflict of interest or competing interest.

References

[1] Alvarez F, Bolte J, Olivier B (2004) Hessian Riemannian gradient flows in convex programming.
SIAM Journal on Control and Optimization 43: 477–501.

[2] Bauschke H H, Combettes P L (2017) Convex Analysis and Monotone Operator Theory in Hilbert
Spaces. Springer, New York.

10

Thus, the proximal dynamical system reduces to a symbolic projected dynamical system:
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Conclusion and Extensions
In Hilbert spaces, convexity on functions and global Lipschitz 
continuity on the gradients are sufficient for providing convergence 
of the sequence generated. Continuous-time dynamical systems 
propose dynamic visions into designing consistent schemes for 
solving unconstrained optimization problems in Hilbert space 
and their equivalence class MVIs. This paper is an extension 
of the work of the authors in Garg K into infinitedimensional 
variational problems, in which the solution (the equilibrium 
point) of the modified proximal dynamical system converges 
to the unique solution of the associated MVIP in a fixed time, 
under the assumptions of strong monotonicity and Lipschitz 
continuity on the associated operator [21]. Furthermore, the 
proposed proximal dynamical system reduces to a fixed-time 
stable projected dynamical system, where the fixed-time stability 
of the modified projected dynamical system continues to hold, 
even if the assumption of strong monotonicity is relaxed to that 
of strong pseudomonotonicity. One suggestion to extend this work 
is by relaxing Lipschitz continuity. Also, the strong monotonocity 
assumption can be relaxed to the monotonicity case, like wise, to 
the more general class of pseudomonotone operators.

Another direction of future research, which has a promising work 
in the practical scope, is by applying forward-Euler discretization 
of the modified proximal dynamical system explicit discrete-
time approximation scheme. However, a robust discrete-time 
approximation scheme must be chosen for the generated 
sequence such that it preserves the convergence behavior of 
the continuous-time dynamical system because in general the 
fixed-time convergence cannot be preserved. Finally, this work 
could be generalized to the mixed equilibrium problems or mixed 
quasivariational inequalities and we predict the qualitative results 
to still hold with possibly careful observation and much work 
especially in the aspect of globally asymptotically or exponentially 
stable.
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