
J Arti Inte & Cloud Comp, 2022 Volume 1(1): 1-4

Review Article Open Access

Strategic Approaches to AWS Lambda Error Resilience: Insights into
Sync and Async Invocation Dynamics

Senior Lead Software Engineer, Richmond, VA, USA

Balasubrahmanya Balakrishna

Journal of Artificial Intelligence &
Cloud Computing

*Corresponding author
Balasubrahmanya Balakrishna, Senior Lead Software Engineer, Richmond, VA, USA.

Received: March 05, 2022; Accepted: March 16, 2022; Published: March 24, 2022

Keywords: AWS Lambda, ALB to Lambda, Lambda Invocation Types, Async, Sync, X-Ray, Metrics, Logs, PowerTools for Python,
AWS SigV4 Signature

Background
Swift Security Review: AWS Lambda API Frontend by ALB
In the case of ALB to Lambda pattern, shown in Figure 1a below, the 1MB payload limit is a notable constraint. It represents an AWS
hard limit that might initially appear arbitrary but has specific reasons behind its existence. Let's delve into the reasons for this limit.

Figure 1a: ALB Fronted AWS Lambda Architecture

Every invocation of AWS APIs mandates generating and including an AWS SigV4 signature in the request [1]. This process involves
utilizing your AWS ID and Secret keys to compute an HMAC hash, thereby authenticating your call. The process remains consistent
when invoking Lambda-includes all calls to the Lambda Invoke API action, spanning SDK usage, CLI commands, and even interactions
from other AWS services like the Application Load Balancer (ALB) [2].

ISSN: 2754-6659

ABSTRACT
This technical paper focuses on efficient error-handling techniques within Lambda functions and offers helpful insights into connecting AWS Lambda
with an Application Load Balancer (ALB). Engineers can find practical solutions in the discussion, including illustrated code snippets and focusing on
synchronous and asynchronous invocation types.

The article examines the architectural concerns of using an AWS Lambda as the backend for an ALB. With the ALB-to-Lambda architecture in mind,
methods for improving error resilience in Lambda functions in sync and async invoke types are discussed.

The report also discusses the subtle differences between throttle and error, two vital metrics. Using real-world examples, engineers will get the skills to
implement reliable error-handling procedures adapted to various invocation kinds. The insights offered serve as a brief yet thorough reference for maximizing
the performance of AWS Lambda behind an ALB, guaranteeing efficient error management, and tackling the particular difficulties brought forth by sync
and async invocations. This tool provides engineers with practical approaches that will enable them to build robust serverless applications in the AWS cloud.

Citation: Balasubrahmanya Balakrishna (2022) Strategic Approaches to AWS Lambda Error Resilience: Insights into Sync and Async Invocation Dynamics. Journal
of Artificial Intelligence & Cloud Computing. SRC/JAICC-169. DOI: doi.org/10.47363/JAICC/2022(1)157

J Arti Inte & Cloud Comp, 2022 Volume 1(1): 2-4

The signing process comprises four steps, as shown in Figure
1b, culminating in adding the HMAC signature to the request
header. Step 1 involves including the entire request payload
in the calculation, while Step 4 appends the final calculated
signature to the Authorization header [3]. This process utilizes
the computationally expensive SHA256 hashing algorithm,
encountering performance degradation for payloads exceeding
1MB.

Consequently, AWS has imposed a strict payload size limit of
1MB for Lambda functions.

Figure 1b: Signing API Requests Process Overview

A crucial consideration lies in comprehending the importance
of restricting the payload to 1MB, especially in the architectural
pattern where synchronous traffic moves from ALB to Lambda.
This understanding is essential in designing the function and
effectively preventing throttling errors.

Introduction
Comprehending the impact of errors in Lambda code is vital for
understanding how AWS manages Lambda executions.

Recognizing the two modes of Lambda invocation-Sync and
Async-is crucial, given their distinct built-in retry behaviors.

Distinguishing Throttles from Errors lies at the heart of Lambda
error handling. AWS makes a clear distinction between these two
scenarios and offers separate metrics: Throttles and Errors-the
Throttles metric increases when there is inadequate concurrency
to invoke the function. Throttled instances leave the function
uninvoked, and no code gets executed. Throttles trigger a 429/
Rate Exceeded error; significantly, they do not contribute to the
count of Invocations or Errors.

Errors stem from either code issues or uncaught exceptions in the
Lambda runtime. AWS attempts to invoke the function in such
cases, executing a code segment. When synchronously invoking
a function, the execution timeline concludes, and it becomes the
client's responsibility to retry the invocationillustrated in the above
API pattern (Figure 1b).

In contrast, asynchronous function invocation by AWS includes
a default of two retries. These retries signify that AWS will
automatically make two additional attempts to invoke the function.
You have control over the number of retries and the maximum
age of each retry.

Exploring Error Handling in the ALB to Lambda API Pattern
for both Sync and Async Invocations
Sync Invoke with Errors
In this scenario, the function deliberately induces an uncaught
exception, followed by a synchronous invocation. This invocation
triggers a singular execution of the function. The function code
and the associated error are below (Figure 2a, 2b and 2c):

Figure 2a: Sync Function Code

Figure 2b: Sync Function Invocation

Figure 2c: Sync Function Error (X-Ray)

Async Invokes with Errors
Now invoke the same function asynchronously using the AWS
CLI. Simply modify the invocation-type flag to 'Event,' as shown
in Figure 3a:

Figure 3a: Async Invocation

A confirmation of the asynchronous invocation is evident from
the X-ray trace, where the response code is 202, and there is an
observable "Dwell time." Following this, AWS automatically
retries the invocation twice. AWS employs an exponential backoff
strategy, introducing longer wait intervals between retries. The
initial retry occurs after 45 seconds, and the second retry occurs
approximately 3 minutes later, as seen in Figure 3b.

Citation: Balasubrahmanya Balakrishna (2022) Strategic Approaches to AWS Lambda Error Resilience: Insights into Sync and Async Invocation Dynamics. Journal
of Artificial Intelligence & Cloud Computing. SRC/JAICC-169. DOI: doi.org/10.47363/JAICC/2022(1)157

J Arti Inte & Cloud Comp, 2022 Volume 1(1): 3-4

Figure 3b: Async Function Error (X-Ray)

Figure 3c displays the logs linked with each of the three invocation
attempts. It is noteworthy that the RequestId stays consistent
across all three attempts.

Figure 3c: Async Invocation: Logs

Asynchronous invocations delegate retry logic responsibility to
AWS, offering a potent mechanism for minimizing the overall
execution duration of your function. In this scenario, implementing
exponential retry in your function code could have extended the
total duration to approximately 3 minutes, resulting in additional
costs. Opting to let the function fail quickly and enabling AWS
to manage the reinvoke process proves to be a more efficient and
cost-effective approach.

Insights On: Caught Exceptions
Structuring code to capture all errors and avoid surfacing any
exceptions to the Lambda runtime.

This approach is essential in specific cases, such as when a function
supports an API. In these instances, the function must provide a
response, define precise error modes, and, most importantly,
safeguard against revealing implementation details [4].

A simple example is outlined below in Figure 4a, and invocation
of the function is shown in Figure 4b:

Figure 4a: Caught Exceptions: Function

Figure 4b: Caught Exceptions: Sync Invocation

As evident from this X-ray trace, shown in Figure 5a, Lambda
does not categorize this as an error, and as a result, the Errors
metric remains unaffected. The code captures the exception and
responds with a descriptive message, demonstrating a deliberate
error-handling strategy.

Figure 5a: Caught Exceptions X-Ray

Consider an asynchronous invocation-where the primary
distinction lies in the response code being 202 instead of 200.
Lambda notably interprets this as a successful invocation and
refrains from initiating retry attempts, as depicted in Figure 6a
and Figure 6b.

Figure 6a: Caught Exceptions: Invocation

Figure 6b: Caught Exceptions: X-Ray

Insights On: Throttles
Let's examine the scenario when throttling occurs. It's crucial to
note that throttles are metered independently and do not contribute
to the counts of Invokes or Errors. In the context of a synchronous
invocation throttled by AWS, the attempt results in a 429 status

Citation: Balasubrahmanya Balakrishna (2022) Strategic Approaches to AWS Lambda Error Resilience: Insights into Sync and Async Invocation Dynamics. Journal
of Artificial Intelligence & Cloud Computing. SRC/JAICC-169. DOI: doi.org/10.47363/JAICC/2022(1)157

J Arti Inte & Cloud Comp, 2022 Volume 1(1): 4-4

Copyright: ©2022 Balasubrahmanya Balakrishna. This is an open-access
article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

code, concluding without any subsequent retries, as shown in
Figure 7a and Figure 7b.

Figure 7a: Throttles: Sync Invocation

Figure 7b: Throttles: Sync Invocation X-Ray

Upon conducting an asynchronous invocation of the same
function, as depicted in Figure 8, observers note a characteristic
"Dwell time." This invocation stays in a Pending status until
reaching the default maximum event age of 6 hours. It is worth
noting that this maximum event age is configurable, spanning
from 1 minute to 6 hours.

Figure 8: Throttles: Async Invocation X-Ray

Approximately 9 minutes later, account concurrency levels permit
AWS to autonomously attempt the execution of the function, as
shown in Figure 9. Subsequently, Attempt #1 achieves success
around the 9-minute mark.

Figure 9: Throttles: Async Invocation Resume X-Ray

Conclusion
To sum up, this technical investigation clarifies the complex
workings of AWS Lambda, especially when used with an
Application Load Balancer (ALB). The thorough examination
addresses various topics, including error-handling techniques and
the subtle differences between synchronous and asynchronous
calls. Breaking down Errors and throttles, focusing on how they
differ and affect Lambda operations.

The paper highlights the value of asynchronous invocations in
shifting retry logic to AWS and offers valuable insights into
the complexities of AWS Lambda error handling. This idea is
very effective, cutting execution time and minimizing possible
expenses.

Furthermore, analyzing asynchronous invocations unveils their
unique features, including exponential backoff automatic retries
and dwell time. The significance of distinct error modes and
preventing implementation information leakage in API through
examples.

The paper gives engineers practical methods for maximizing
Lambda performance while it explores concurrency issues and
payload limitations. Integrating X-Ray traces and log analysis

provides an additional layer of visibility, making comprehending
the nuances at play easier.

In essence, this tech paper serves as a valuable resource for
architects and engineers navigating the intricacies of AWS
Lambda, providing practical insights, efficient error-handling
strategies, and optimization techniques for building resilient and
scalable serverless applications within the AWS environment [5].

References
1.	 Signing AWS API requests. AWS Identity and Access

Management-User Guide https://docs.aws.amazon.com/IAM/
latest/UserGuide/reference_aws-signing.html.

2.	 Invoke. AWS Lambda-Developer Guide https://docs.aws.
amazon.com/lambda/latest/dg/API_Invoke.html.

3.	 Create a signed AWS API request. AWS Identity and Access
Management-User Guide https://docs.aws.amazon.com/IAM/
latest/UserGuide/create-signed-request.html.

4.	 Werner Vogels (2021) AWS re:Invent 2021. YouTube https://
www.youtube.com/watch?v=8_Xs8Ik0h1w&t=4278s.

5.	 Working with Lambda function metrics. AWS Lambda-
Developer Guide https://docs.aws.amazon.com/lambda/latest/
dg/monitoring-metrics.html.

