
Volume 1(3): 1-3J Arti Inte & Cloud Comp, 2022

Open Access

Journal of Artificial Intelligence &
Cloud Computing

ISSN: 2754-6659

Review Article

Strategies for Protecting Against SQL Injection Vulnerabilities in
Web Applications

Irving, Texas, USA

Akshay Chandrachood

*Corresponding author
Akshay Chandrachood, Irving, Texas, USA.

Received: August 16, 2022; Accepted: August 22, 2022; Published: August 30, 2022

Introduction
Web applications have become an inseparable part of modern
companies since they enable smooth interactions as well as the
exchange of data with customers. On the other hand, the security
vulnerability of software systems also grows exponentially as
complexity and distribution become more and more significant.
The SQL injection (SQLi) is one of the most wide-spread and
dangerous attacks tackled by web applications today [1]. SQL
injections attacks are carried out when malicious SQL statements
are injected through application input points, resulting in
unauthorized access, data manipulation, and compromises to
the whole system. The problem of not securing web application
SQLi vulnerabilities efficiently can lead to catastrophic results.
System vulnerabilities in the form of security breaches, data loss,
or performance trouble can easily lead to customer disenchantment
and destruction of brand reputation, revenue drop, and loss of
customer loyalty. In our cut-throat digital landscape, where
consumers prefer quick, dependable, and secure online services,
getting hit by SQLi attacks can cost you a valuable consumer.

The lack of a solid security system is the same as letting the front
door open, which in turn grants access to malicious actors who
violate your systems and data. Teams will land up in the mode of
firefighting, where they are busy with issues that may have already
impacted users and business processes. This reactive approach
may translate into financial losses, extended system downtime, as
well as customer dissatisfaction which might not only negatively
affect the organizational business processes but also undermine
the innovative and adaptive capacity of the organization. Integrity,

data safety, and uninterrupted business operations is essential in
keeping the web applications free of SQLi vulnerabilities. By
an attentive action in this regard, the organizations can identify
and solve the SQLi issues before the situation becomes critical,
hence decrease the risk of data breach, system compromise,
and reputation damage. Achieving satisfactory security levels
enables businesses to build the customer trust and loyalty that is
so necessary to their competitiveness in the digital marketplace.

This paper will lay out in detail the strategies to be used in securing
web applications against SQL injection attacks [2]. The paper
will cover input validation techniques, parameterized queries, the
principle of least privilege, and secure coding techniques. Code
samples will be provided to manifest the secure implementation
techniques for the web developers to use them for the purpose of
improving the security of their web applications.

Input Validation Techniques
One of the fundamental strategies for preventing SQLi attacks is
implementing robust input validation mechanisms. This involves
scrutinizing user input data before processing it to ensure it adheres
to expected patterns and does not contain malicious SQL code.
Several input validation techniques can be employed:

Whitelist Validation
Whitelist validation involves defining a set of acceptable
characters or patterns and rejecting any input that falls outside this
predefined set [3]. This approach is stricter than blacklisting and
can effectively mitigate SQLi attacks by preventing the injection

ABSTRACT
SQL injection (SQLi) is a fundamental web applications security challenge that can greatly affect internet sites which use databases. A malicious actor can
potentially manipulate an insecure application script to insert harmful SQL statements which can then allow hackers to violate their rights, manipulate
the data and even unknowingly catenate the execution of the commands. This paper is about the efficient methods to suppress SQLi flaws. It goes beyond
bound checks and polishing user input data by introducing input validation methods such as whitelist validation and sanitization techniques. For the
secure mode, the process of encoding the queries with placeholders, the separation of code from user data during data insertion, and the use of stored
procedures are all discussed. Maintaining the principle of least privilege by limiting the permissions of database account prevents the attack boasted by
SQL injection attacks from having a wider damage scope. The secure coding practices addressed include the code review process that should be regular, the
security testing techniques e.g. static analysis and dynamic application security testing (DAST), and the training of developers. Code examples illustrate
the way in which these strategies are being applied to different languages and programming safely. Implementing a multi-layered defense through effective
and multiple mitigation techniques significantly increases the security level of web applications from SQLi threats, preventing data breaches and system
compromise while securing trust between users and the system.

Citation: Akshay Chandrachood (2022) Strategies for Protecting Against SQL Injection Vulnerabilities in Web Applications. Journal of Artificial Intelligence & Cloud
Computing. SRC/JAICC-326. DOI: doi.org/10.47363/JAICC/2022(1)307

J Arti Inte & Cloud Comp, 2022 Volume 1(3): 2-3

of malicious SQL code. Example:
// javascript
// Whitelist validation for alphanumeric input
function validateInput(input) {
 const whitelist = /^[a-zA-Z0-9]+$/;
 return whitelist.test(input);
}

Sanitization and Escaping
Sanitization and escaping involve removing or encoding potentially
malicious characters from user input [4]. This can be achieved by
using built-in functions or libraries specific to the programming
language or framework used. Example:
Sanitization in Python
import mysql.connector
def sanitize_input(input_data):
 conn = mysql.connector.connect(user=’user’,
password=’password’, database=’db_name’)
 cursor = conn.cursor()
 sanitized_data = cursor.escape_string(input_data)
 return sanitized_data

Let’s say you have a simple SQL query to retrieve user information
based on a username:

SELECT * FROM users WHERE username = ‘input_data’

And let’s say an attacker crafted a malicious input like ‘ OR ‘1’=’1,
resulting in the following query:

SELECT * FROM users WHERE username = ‘’ OR ‘1’=’1’

This query would return all rows from the users table, effectively
bypassing any authentication mechanism.

To prevent this, the cursor.escape_string (input_data) method is
used to escape special characters like single quotes, double quotes,
and backslashes. It modifies the input data in a way that it can
safely be included in a SQL statement.

For example, if input_data is ‘ OR ‘1’=’1, after escaping, it
becomes \\’ OR \\’1\\’=\\’1, making it safe to be used in a SQL
query:

SELECT * FROM users WHERE username = ‘\\’ OR \\’1\\’=\\’1’

This query would not return any rows since there is no user with
such a username, effectively protecting against SQL injection
attacks.

Parameterized Queries
Parameterized queries, also known as prepared statements,
are a secure and recommended approach for interacting with
databases [5]. Instead of concatenating user input directly into SQL
statements, parameterized queries separate the SQL code from
the user input data. This prevents the unintended interpretation
of user input as executable code, effectively mitigating SQLi
vulnerabilities.

// Parameterized query in Java
String query = “SELECT * FROM users WHERE username = ?
AND password = ?”;
Prepared Statement statement = connection.prepare Statement
(query);

statement.setString(1, username);
statement.setString(2, password);
ResultSet results = statement.executeQuery();
In this example, the user input (username and password) is treated
as data and not as part of the SQL statement itself, preventing the
injection of malicious code.

Principle of Least Privilege
Principle of least privilege is a fundamental security concept which
insists that the minimum possible permissions and access rights
shall be, of course, given to users, applications, or processes [6].
With web apps, this interpretation means that the user account in
the database, which is used by the application, should be given
the minimal set of permissions to fulfill the tasks it was intended
to do. Following the principle of least privilege helps IP limitation
to be made even more effective. The attacker is still not allowed
to do much harm even if he/she somehow manages to execute
an attack containing malicious SQL code since the database user
account only has limited permissions [7]. Say, for illustration, the
application’s database user account has read-only permission on
particular tables. If the hacker is successful in conducting SQLi
attacks, the damage that could be inflicted will be limited to
tables that do not have modifications or deletions of data since
the account lacks authorization to do so.

Telling the least privilege principle is about not just giving a general
outline but spending time to discuss the exact permissions that will
be assigned to each database function and the application. This
is achieved by creating separate accounts for database users with
rights for particular purposes that are not available to the general
operator. It is better not to use highly privileged administrative
accounts for regular application operations. Regular review of
permissions is another important aspect. In addition to this, it is
also essential to update these permissions from time to time, as
your application develops. Ensure that never are excess privileges
granted without your knowledge. What is more, examining and
tracking activity throughout logs and databases increases the
chances of encountering and combating SQLi activity, regardless
of the implementation of the principle of least privilege. Principle
of least privilege given single cannot wholly mitigate the security
breach, it rather constitutes an important layer in cross-protection
strategy. This makes it difficult to have a successful cyber-attack
while minimizing the implications arising from such attacks,
hence decreasing breach of data, system compromises, and the
financial/reputational effects [8].

Secure Coding Practices
Using secure code methodologies is, therefore, a basic principle
for building secure web apps. Such measures encompass the use
of the industry-approved security standards, compliance with the
coding guidelines, and keeping security in mind with every stage
of the software development cycle.

Code Reviews
Carrying out code reviews on a regular basis will enable to
detect and eliminate SQLi vulnerabilities that may have not been
considered during the application development. The review should
include aspects like user input handling, database interactions and
adherence to secure coding processes.

Security Testing
The test of security tools like static code analysis and Dynamic
application security testing (DAST) can find out SQLi vulnerability
and other security issues in the web application. These testing

Citation: Akshay Chandrachood (2022) Strategies for Protecting Against SQL Injection Vulnerabilities in Web Applications. Journal of Artificial Intelligence & Cloud
Computing. SRC/JAICC-326. DOI: doi.org/10.47363/JAICC/2022(1)307

J Arti Inte & Cloud Comp, 2022 Volume 1(3): 3-3

Copyright: ©2022 Akshay Chandrachood. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

methods should be involved in the development pipeline to be
regularly done so that application security is not compromised
at any stage [9].

Developer Training
Ensuring the security training of developers and secure coding
training is a critical part of creating a high security culture in the
organization. Developers need to be educated on how to recognize
an SQLi attack, how to interact with databases securely and how
to avoid errors through validation and sanitation techniques.

Developer training programs should cover topics such as:
•	 SQL injections can be avoided if the developers understand

these vulnerabilities and their destructive effects.
•	 Developers should be trained to recognize common coding

patterns and practices that can potentially introduce SQL
injection vulnerabilities into an application. By familiarizing
themselves with these risky coding constructs, developers
can better understand how SQL injection attacks exploit
weaknesses in the code. This knowledge empowers them to
avoid these pitfalls and adopt secure coding techniques that
prevent SQL injection vulnerabilities from being introduced
in the first place.

•	 Implementation of safe programming practices like input
sanitation, parameterization of queries and the principle of
least privilege will result in a secure system.

•	 Being aware of the new and current security threats,
weaknesses, and safeguard measures is very significant.

•	 Security assessment and code review should be planted in the
development process from the beginning to the end.

Moreover, companies should create security conscious culture
and accountability where developers are being asked to consider
and implement security principles in every stage of software
development. Regular knowledge sharing sessions, security code
walkthroughs, and constant team cooperation breed habitual secure
coding and foster a proactive application security mindset.

Through training and maneuvers directed at building a security-
conscious mindset, businesses could reduce the risk of inputting
SQLi vulnerabilities into their web applications which, in the long
run, would strengthen the overall security posture and defend
against data breaches or system compromises [10].

Conclusion
One can see SQL injection flaws as a substantial threat to online
applications, particularly due to the grave possible outcomes, which
can be a leak of data, system violation, financial and reputation
losses. The strategies highlighted in this paper, including input
validation, parameterized query, the principle of least privilege,
and secure coding practices can considerably push the security
posture of the web applications upwards and also minimize the
risks associated with SQLi attacks. These precautions need to
be implemented as a need of a pre-constructive way in every
stage of the development of the software. The security testing
program should follow a regular cycle of SQLi testing, code
reviews and developer training in order to ensure the identification
and remediation of SQLi vulnerabilities. Secure coding practices
and security-thinking mentality should be incorporated by the
users and organizations; only then will they be able to secure their
web applications, protect the sensitive information and maintain
the high level of trust of their users.

References
1.	 Sadeghian A, Zamani M, Manaf AA (2013) A taxonomy

of SQL injection detection and prevention techniques.
2013 International Conference on Informatics and Creative
Multimedia 53-56.

2.	 Sadeghian A, Zamani M, Manaf AA (2013) A taxonomy
of SQL injection detection and prevention techniques.
2013 international conference on informatics and creative
multimedia 53-56.

3.	 Halfond WG, Viegas J, Orso A (2006) A classification of
SQL-injection attacks and countermeasures. Proceedings
of the IEEE International Symposium on Secure Software
Engineering 65-81.

4.	 Kausar MA, Nasar M, Moyaid A (2019) SQL injection
detection and prevention techniques in ASP. NET web
application. International Journal of Recent Technology and
Engineering (IJRTE) 8: 7759-7766.

5.	 Anley C (2002) Advanced SQL injection in SQL server
applications. Next Generation Security Software Ltd https://
crypto.stanford.edu/cs155old/cs155-spring09/papers/sql_
injection.pdf.

6.	 Saltzer JH, Schroeder MD (1975) The protection of
information in computer systems. Proceedings of the IEEE
63: 1278-1308.

7.	 Stuttard D, Pinto M (2011) The web application hacker’s
handbook: Finding and exploiting security flaws. John Wiley &
Sons https://edu.anarcho-copy.org/Against%20Security%20
-%20Self%20Security/Dafydd%20Stuttard,%20Marcus%20
Pinto%20-%20The%20web%20application%20hacker’s%20
handbook_%20finding%20and%20exploiting%20
security%20flaws-Wiley%20(2011).pdf.

8.	 (2021) Top 10 Web Application Security Risks - 2021.
OWASP https://owasp.org/www-project-top-ten/.

9.	 Kareem FQ, Ameen SY, Salih AA, Ahmed DM, Kak SF, et al.
(2021) SQL injection attacks prevention system technology.
Asian Journal of Research in Computer Science 6: 13-32.

10.	 Kumar P, Pateriya RK (2012) A survey on SQL injection
attacks, detection and prevention techniques. In 2012 Third
International Conference on Computing, Communication and
Networking Technologies (ICCCNT’12) 1-5.

