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Introduction 
Let's take the movement of a ray of light along a mirror circle 
(a=1, b=1: a and b are semi-axes along the X and Y axes). This is 
completely trivial and does not cause any interest! The reflection 
point simply rotates at a certain angle each time. 

Now we stretch the circle along the X axis, take a>1, the situation 
will change! Let's immediately introduce 7 new(?) mathematical 
facts that we found on the computer. They include, among other 
things, four numerical invariants associated with the tandem 
“mirror ellipse + an infinite sequence of reflections of a light ray 
in it” and two exact formulas. Moreover, the main “Formula 
number 2” will have an amazing character.

What can we tell at first glance by looking at the reflections 
of light in an ellipse? 
Obviously, there are two types of movement of a light ray in an 
ellipse: those whose rays do not intersect the segment between the 
foci (all), and those that do (also all). See Figure 1. This statement 
is probably not difficult to prove.

Figure 1: Two possible types of movement of a Light Beam 
inside an Ellipse

Another statement follows from observations. For any non-closed 
(infinite) sequence of reflections, there is always a reflection point 
that is located at an arbitrarily small distance from point C (and, 
similarly, from point D). See Figure 2.

Figure 2: Normal angle (j) for a sequence of Reflections

Let's call half the reflection angle (for the limiting case) at this point 
– φ, the normal angle for this sequence and call this (unproven) 
statement a normal hypothesis.

The normal angle also exists for finite sequences (Figure 3a).

Figure 3a: Let’s add a small angle to ψ4 and the quadrilateral 
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Abstract
An exact formula has been found (on a computer) that predicts the n-th reflection of a light ray in a mirror ellipse. It has a paradoxical character. 
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(the original rhombus) will begin to “travel along the ellipse”, 
changing, passing through the “rectangle phase” along the way. 
That is, the normal angle of the rectangle exists and is equal to ψ4; 
3b:  normal angle ψF separates sequences of 1st and 2nd order (for 
φ>ψ4 the movement is 1st order, for φ<ψF – 2nd).

The First Six Undeniable Facts about Reflections
Let us list, separated by commas, SIX new mathematical facts that 
relate to sequences of reflections in mirror ellipses (or in mirror 
ellipsoid of revolution in RN). See Figure 4-5. (We will present 
the seventh fact – “Formula Number 2” – in a new chapter).

Figure 4: Our first five facts about the Reflection of rays in a 
Mirror Ellipse (and N-dimensional mirror ellipsoid of revolution)

Let's list...
Fact 1: The product of the distances from the foci to the rays of 
the sequence is a constant for any ray. (Our first invariant is the 
product P=d1d2).
Fact 2: The previous statement is also true for any mirror ellipsoid 
of revolution in RN (tested N= 3, 4...).
Fact 3: The bases of the perpendiculars that are drawn from the 
foci to the rays lie on the same circle (let's call it the base circle) 
of radius R with the center at the center of the ellipse. R is the 
radius of the base circle – our second invariant.
Fact 4: The previous statement is also true for any mirror ellipsoid 
of revolution in RN. (R is the radius of the N-dimensional ball in 
RN; tested N = 3, 4...)
Fact 5: how the product P=d1d2 and the base radius R are related 
in two dimension? 

                                                                                      (1)

See Figure 4, fact 6.

Now in reference books and literature only facts No. 1 and 5 are 
given, and in the version for tangents [1, 2]. In the reference book 
they sound like this: “for the flat ellipse, the product P=d1d2 for all 
tangents is the same and equal to b2.” Although these statements 
are a simple transition to the limit of our statements (facts 1 and 
5) as the beam length tends to zero.

All invariants – both the product P=d1d2 and the base radius R – 
are determined simply from the appearance of the initial ray! The 
normal angle can also be determined from it. For angle q=p/2-j we 
have a system of equations sin2(q)(x2-c2)=P; b/x=tg(q); (c2=a2-b2) 
=> x= cos(q)*b/sin(q) => sin2(q)= b2/(b2- c2+P). 

Now comes the sixth remarkable fact (see Figure 5).

Figure 5: If the sequence of reflection points on the ellipse is 
equal to A’EC’, then the lines AC and BD will intersect at the point 
with coordinates (X,0). In reverse order - C'EA' - the intersection 
point will remain the same. (Direct AC and BD will simply switch 
places).

Thus, any sequence of reflections {xn,yn} can be translated into a 
one-dimensional sequence {Xn}.

Figure 6: Examples of transforming reflection points on an ellipse 
(x,y) into a one-dimensional representation {X}

Amazing Formula Number 2 (FN2)
Recall that the reflection operation is reversible, and we can reflect 
any ray both forward and backward. This circumstance should 
obviously be extended to the sequence {Xn}.

The book “Cellular Automaton Machines” by Toffoli T. and 
Margolus N presents a standard formula for one-dimensional 
real reversible automata (sequences) [3]:

                                                                                     (1)

where F is an arbitrary function.
Let's assume that our sequences Xn also satisfy formula (1) with 
some function F, and let's try to determine it.

2 2 2
1 2d d a b R= − −

1 1( )n n nX F X X+ −= −
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Let's take a specific sequence of reflections in an arbitrary ellipse 
and construct a two-dimensional graph P: {Xn x Xn-1+Xn+1}. 
Results in Figure 7.

Figure 7a: The figure simultaneously shows both a one-
dimensional representation of Xn (for part of the sequence) and 
a plot {Xn x Xn+1 + Xn-1}. Two singularity points (indicated 
by vertical solid lines) with coordinates in one-dimensional 
representation –XS and +XS are clearly visible on the plot. 
Green straight lines and small rectangles for one-dimensional 
representation indicate those points for which |Xn|<XS; red – 
those for which |Xn|>XS. The dotted vertical lines indicate the 
boundaries of the interval [-Xmin , Xmin] into which the points of the 
one-dimensional representation do not fall at all! (A point on an 
ellipse with coordinates (a,0) goes, in the limit, to the coordinate 
of a one-dimensional representation Xmin; similarly: a point (-a,0) 
goes to -Xmin). Figure 7b is an enlarged view of our ellipse for the 
first few reflections. Point S is a “singularity point” on the ellipse 
(one of four; transitions in one-dimensional representation to -XS). 
The SCD angle is the same as the normal angle for this sequence.

It can be seen that the distribution of points on the plot is very 
similar to the function presented in Figure 7c.

Let's write it like this:
                                                             (2)
Using the first two reflections (four numbers X1, X2, X3, X4), we 
write down a system of two unknowns and determine k and XS 
respectively.
We get

                                                             (3)

where

                                                            (4)

And for the second unknown:

                                                            (5)

This set of formulas (2-5) has our common name: Formula Number 
2 (FN2) where the numbers k and XS – this is our third and fourth 
Invariant. (There are four invariants in total: P, R, k and XS).

To check FN2 it is necessary to compare for each number n 
(Figure 7) two quantities: Xn+1+Xn-1 and its approximation kXn/
(XS2+Xn

2). But both of them are EXACTLY designed for us! This 

means that the error we found is just a computer error! It turns 
out that the two indicated values for all points of the plot always 
coincide up to the sixth to eighth digit, and this is for any ellipse 
and for any initial ray!

Let us give a countable example for our new invariants. They must 
also be matched: XS

2 and k built on the numbers X1, X2, X3, X4; 
on the numbers X2, X3, X4, X5; on the numbers X3, X4, X5, X6 etc.

Let us present the first five XS2 and k for the sequence from Figure 
7: (a=1.165; φ=75o; sequence of the first- order).

XS2: (146027.769, 146027.768, 146027.753, 146027.757, 
146027.753…); k: (228964.474, 228964.471, 228964.421, 
228964.418, 228964.419…). (b= 200, that's why the numbers 
are so big). 

Let us present similar values for the second- order sequence: 
(a=1.565; j=31o). 
XS2: (15392.2605, 15392.2604, 15392.2600, 15392.2601, 
15392.2611 …); k: (717.8548, 717.8555, 717.8555, 717.8553, 
717.8553…) 

This means that formula FN2 is correct and there can be no doubt 
about it!

To use FN2 in practice, we need to learn how to do the inverse 
transformation: from X-large ones we get (x,y) – small ones, i.e. 
coordinates on the ellipse.

This problem can be solved using a standard method, using tables, 
since the correspondence function between X and (x,y) is smooth. 
Let's see what the correspondence between the points of the ellipse 
and the points X looks like for a specific ellipse (a=1.165) at the 
different normal angles φ. See Figure 8.

Figure 8: An image of 120 reflections in the ellipse with their 
one-dimensional representation at four different initial (normal) 
angles j. For a given ellipse, y4=30.87o and yF=49.36o (see Figure 
3), that is the angle y4 is between Figure 8a and 8b, and the angle 
yF is between Figure 8b and 8c. The percentages below are the 
"probability" of being in the “green” or “red” zone (the percentage 
of the corresponding events out of the total).

The points of the ellipses along the perimeter are painted in 
different colors.

2 2
1 1/ ( )n n S n nX kX X X X+ −= − −

2 2 2
2 3( ) / ( 1)SX gX X g= − −

2 2
3 1 3 2 4 4( ) / ( )g X X X X X X= + +

2 2
2 1 3 2( )( ) /Sk X X X X X= − +
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Those regions whose one-dimensional representations lie within 
the interval [-XS,XS] are outlined in green; those points of the 
ellipse whose X lie outside [-XS,XS] are circled in red; those 
regions where there are no reflection points (Figure 8c, 8d) are 
not circled at all.

Let's imagine a cartoon in which the angle φ continuously changes 
from 90° to 0° and in Figure 8 shows frames from it. What will 
we see?

Initially, the entire ellipse is green. With the beginning of the 
cartoon, the red zone appears and begins to quickly increase, 
“eating” the green one... and at the moment of the angle φ=ψ4 
“eating up” it completely! The entire ellipse turns red. (ψ4 is the 
angle at which the coefficient k in FN2 becomes equal to zero 
and our plot “turns over” around the X axis).

After the angle ψ4 (with a further decrease of the angle φ), the 
green zone appears again – according to the “exclusive OR” 
principle – and begins to increase, “eating” already the red zone. 
This occurs until the second critical point - angle yF.

At this moment (yF is the boundary of the FN1 signature change), a 
significant piece of the green zone simply disappears and becomes 
uncolored (the order of movement changes from 1st to 2nd). After 
this, both zones (green and red) quickly decrease to zero at point 
φ=0. (At the same time, the green zone, as it was – after ψF – 
remains very narrow, as well as the corresponding intervals [XS, 
Xmin], [-Xmin,-XS]). 

By compiling the appropriate tables, you can obtain the inverse 
transformation X -> (x,y). Note that we cannot determine the Y 
coordinate signature from a one-dimensional representation, and 
our answer will always be: either (x,y) or (x,-y)!

Conclusion
Our situation is somewhat reminiscent of the John Horton Conway 
algorithm for determining the relative probability of a sequence 
of heads and tails [4]. This formula p=(AA-AB)/(BB-BA) was 
also be first proposed by John Horton Conway and then proven. 
(AB is an integer obtained from two sequences A and B of heads 
and tails using a simple procedure) [5].

But our formula FN2 will apparently be much more difficult 
to prove. Which follows from a simple difference in notation. 
Compare the notation of Conway's algorithm and our multi-story 
construction for Formula Number Two.

References
1.	 Granino AK, Theresa MK (1961) Mathematical Handbook 

for Scientists and Engineers; Definitions, Theorems, and 
Formulas for Reference and Review. McGraw – Hill. https://
www.amazon.com/Mathematical-Scientists-Engineers-
Definitions-Reference/dp/B0000CKZX7/ref=sr_1_2?qid=
1675223659&refinements=p_27%3AGranino+A.+Korn&s
=books&sr=1-2. 

2.	 Solving problems for examination at the rate "ANALYTIC 
GEOMETRY". http://math.phys.msu.ru/data/24/Zadachi_
angeom.pdf.

3.	 Toffoli T, Margolus N (1987) Cellular Automaton Machines. 
MIT Press. https://people.csail.mit.edu/nhm/cam-book.pdf.

4.	 Yutaka Nishiyama, Steve Humble (2009) Winning odds. 
Plus Maths Org. https://plus.maths.org/content/os/issue55/
features/nishiyama/index.

5.	 Kornyushkin A (2023) Three New(?) Properties of an Ellipse 
and an Ellipsoid of Revolution (Computer Analysis) Curr Tr 
Comp Sci & App 2: 239-243. 


