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ABSTRACT

This Research Article continues [15]. We begin with giving a profound overview of the structure of arbitrary simple
groups and in particular of the simple locally finite groups and reduce their Sylow theory for the prime p to a quite
famous conjecture by Prof. Otto H. Kegel (see [44], Theorem 2.4: “Let the p-subgroup P be a p-uniqueness subgroup in
the finite simple group S which belongs to one of the seven rank-unbounded families. Then the rank of S is bounded in
terms of P.”) about the rank-unbounded ones of the 19 well-known families of finite simple groups. We introduce a new
scheme to describe the 19 families, the family 7 of types, define the rank of each type, and emphasise the great réle of
Kegel covers: Prof. Kegel rediscovered from Prof. Philip Hall (see [46]) that an infinite simple group has a local system
consisting of countably infinite simple subgroups (see [45], [46] and [44], Theorem 2.5) (and conversely) and if they are
locally finite he discovered groundbreakingly that they have a Kegel cover (see [44], Theorem 2.6), that is, a nested local
system {G,} with maximal normal subgroups M, < G, such that G, N M,+; = <1> so that G, embeds into Gp.1/ M.
This part presents a unified picture of known results all of whose proofs are by reference.

Subsequently we apply new ideas to prove the conjecture for the Alternating Groups.

Thereupon we are remembering Kegel covers and *-sequences and the classification of simple locally finite groups
according to their Kegel covers. Next we suggest a way 1) and a way 2) how to prove and even how to optimise Kegel’s
conjecture step-by-step or peu a peu which leads to Conjecture 1, Conjecture 2 and Conjecture 3 thereby unifying Sylow
theory in locally finite simple groups with Sylow theory in locally finite and p-soluble groups whose joint study directs
very reliably Sylow theory in (locally) finite groups. For any unexplained terminology we refer to [15].

We then continue the program begun above to optimise along the way 1) the theorem about the first type E = “A2” of
infinite families of finite simple groups step-by-step to further types by proving it for the second type E = “A = PSL,".
We apply new ideas to prove Conjecture 2 about the General Linear Groups over locally finite fields, stating that their
rank is bounded in terms of their p-uniqueness, and then break down this insight to the Special Linear Groups and to the
Projective Special Linear (PSL) Groups over locally finite fields. We close with good suggestions for future research
P regarding the remaining rank-unbounded types (the “Classical Groups”) and the way 2), P regarding (locally) finite
and p-soluble groups, and P regarding Cauchy’s and Galois® contributions to Sylow theory in finite groups. We much
hope to enthuse group theorists with these suggestions and are ready to support and to cordinate all related work.

It follows from our two theorems that simple locally finite groups which satisfy the Strong Sylow theorem for even
one Prime p are linear and hence countable if they have a local system of countable simple subgroups each having a
Kegel cover “of alternating type™ or “of projective special linear type™.

We include the beautiful predecessor Research Article [15] as the First Appendix for good reasons. This Research
Article had been presented as a slideshow in a Talk at IGT 2024 on April 11. We include its 16 slides as the Second
Appendix. Slide 1 to Slide 12 had as well been permanently instaled during IGT 2024 as a Permanent Poster.

The Research Article consists of the following seventeen beautiful Chapters:

o Sketch of proof for A"; e Sketch of proof for A =PSL,; ® Introduction; ® Proof of Theorem 1;
® About Kegel covers; @ Planning future research — Part 1; ® Proof of Theorem 2;
@ Proof of Theorem 3; @ Proof of Theorem 4; Planning future research — Part 2;
(@ The First Trilogy and The Second Trilogy and their reviews; ® Acknowledgements;
® Postscript, Luciano De Creszenzo, Felix F. Flemisch, Conflicts of Interest, Pablo Picasso’s L£a Joie de vivre ;
® About the author in Munich, in Freiburg i.Br., in London, in Weiden i.d.OPf., and in Florence in Tuscany in Ttaly;
® 75 References; ® Appendix 1 — Reference [15] with MR Review and Zbl Review;
e Appendix 2 — Talk by Felix F. Flemisch at Ischia Group Theory 2024.
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&4 Dedicated to Prof. Otto H. Kegel on
the occasion of his 90" birthday on 20 July 2024

— Ischia Group Theory 2024 from April 8 to April 13
(see https://www.advgrouptheory.com/GTArchivum/Pictures/gtphotos/OttoKegel.jpg )

Talk presented at IGT 2024 on 11 April 2024, that is,

ﬁ

on the 120%* birthday of Prof. Philip Hall
(see https://mathshistory.st-andrews.ac.uk/Biographies/Hall/ )

Keywords e singular (Sylow) p-subgroup e (very) good Sylow
p-subgroup e p-uniqueness subgroup ® minimal p-unique subgroup
e very beautiful (numerical) Sylow p-invariant p-uniqueness a,
e locally finite group satisfying the Strong Sylow Theorem for the
Prime p, equivalently, the Strong Sylow p-Theorem e simple
group e nested local system o family T of types of known finite
simple groups e simple locally finite group of type Z € T, of
alternating type and of projective special linear type o rank of a
locally finite simple group e classification of the transitive G-sets
e beautiful Kegel cover e x-sequence ® Kegel sequence e simple
locally finite group which is finitary, of 1-type, of p-type, and
of oo-type e P-invariant Sylow p-subgroup e conjugacy class
e P-isomorphic P-orbit e beautiful p-length of a p-soluble finite
group e classical Hall-Higman Theory e locally finite field
e algebraic closure of the beautiful prime field in characteristic p
¢ General Linear Group e Special Linear Group e Projective Special
Linear (PSL) Group e G-module over some (locally finite) field F
e irreducibility e complete reducibility e (non-)modular G-module
e G-isomorphic G-modules e Jordan normal form e Classical Group
e Group of Lie type o twisted Chevalley Group

Note — The rank of a known locally finite simple group is defined
below. For PSL(n, F), and hence for GL(n,F) and SL(n,T), it
is simply n = dim(F"). So we have a rather simple concept of
rank of a linear group which, however, does not contradict any
of the elaborate concepts of rank in the excellent book [13].

Let p be a prime: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41,
43,47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113,
127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193,
197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271,
271, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359,
367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443,
449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541,
547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619,
631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719,
727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821,
823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911,
919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009,
1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, ... ©

In this paper we prove Kegel’s conjecture for A" and for
A = PSL,. It continues [15] F.F. FLEMISCH: “Characterising

Locally Finite Groups Satisfying the Strong Sylow Theorem
for the Prime p”, Adv. Group Theory Appl. 13 (June 2022),

13-39 (see MR4441631 and Zbl 1496.20065). We included that
beautiful predecessor paper completely as an Appendix, although
it is open access, since the current paper cannot be understood
without that predecessor paper — so one needs to have it present
when reading the current paper — and included as well the MR
Review and the Zbl Review and an important comment @

Sketch of proof for A"

Let the finite p-group P act on A". Let  be a point and let
P,:={x € P|a" =a} S P be the stabiliser of a. We denote by
U(P) the set of all subgroups of P and for every U € U(P) by
R(P,U) := {Ux | x € P} the set of all right cosets of U in P.
Then P operates by multiplication from the right for every U €
U(P) transitively on R(P,U) with CorpU := {U"|x € P} as the
kernel. The classification of transitive P-sets reads as follows:
Every transitive P-set Q # @ is P-isomorphic to R(P,P,) for all
o € Q, and for any U, V € U(P) the two sets R(P,U) and R(P,V)
are P-isomorphic if and only if U and V are conjugate in P.
Hence for the action of P we have a bijection between the class
J(P) of all P-isomorphism types of transitive P-sets and the set
of all conjugacy classes (in P) of subgroups of P, and therefore
|7(P)| = gp(JP]) := the number of conjugacy classes of subgroups
of P. Therefore for every P-set Q the class J(P,Q) of P-iso-
morphism types of P-orbits on Q has at most g,(|P|) elements
and since every subgroup of P is a subset containing 1, we can
now summarising deduce |7(P,Q)| < g,(|P|) < [UP)| <2
If P is a p-subgroup of S" which is contained in exactly k € N
Sylow p-subgroups of S"and if m:=k+p + 1, thenn<m
|Plegp(P])-1landn<(p+2)e 2W-1_ 1 fork = 1 (see Page 5),
whence, if not so, P has at least m many P-isomorphic P-orbits
on Q := {1, 2, ..., n} (see Page 5). We are then able to deduce
from this fact the central observation that {S € Syl,S* | S is
P-invariant} =: Sylp(§Q,P) > [SyLS"| >m - 2 >k + 1 by using
beautiful new ideas (see Page 6). O

Sketch of proof for A = PSL,

We are applying a three-stage-approach whilst first proving the
theorem for the General Linear Groups over (commutative)
locally finite fields (Theorem 2), then for the Special Linear
Groups over locally finite fields (Theorem 3) and finally for
the Projective Special Linear (PSL) Groups over locally finite
fields (Theorem 4), thereby using that GL(n,F) = SL(n,F) ¢ F’*
and PSL(n,F) = SL(n,F)/Z(SL(n,F)) (see Page 11 and Page 12).
This can be shown with a very beautiful diagram:

SZ(V)—— Z(V) = F* (F)m™

M M M

det22z™

det

SL(V)C——— GL(V) — % pr

Theorem 3 Theorem 2

PSL(V)——— PGL(V) —» F*/(F*)"

Theorem 4 [ Theorem 4 ]
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The major work is required for the General Linear Groups
with two different and both very beautiful approaches for
characteristic # p and characteristic p. In characteristic # p we
use that, if for a finite p-group P which is operating on a finite-
dimensional vector space V over a locally finite field and a
direct decomposition of V into irreducible P-submodules, there
are k many of the P-submodules P-isomorphic, then at least
|Sylp§k| Sylow p-subgroups of GL(V) are P-invariant (see
Proposition 7 a)). In characteristic p we use that, if k is the
dimension of the P-submodule Cy (P) := {v € V|v" = v for all
x € P} of a non-trivial modular P-module V, then again there
are at least |Sylp§k| many P-invariant Sylow p-subgroups of
GL(V) (see Proposition 7 b)). We then are able to argue that
from Proposition 7 follows that n < (p + 2) * |P|?> - 1 for a
p-uniqueness subgroup P of GL(n, F) (see Lemma 2 on Page 11).
For the transition from GL(n,F) to SL(n, F) we are using that a
p-uniqueness subgroup of SL(n,F) is a p-uniqueness subgroup
of GL(n,F) as well. For the transition from SL(n, F) to PSL(n, F)
we use that P := Q * D(SL(n,F))/D(SL(n,F)) is a p-uniqueness
subgroup of PSL(n,F) when Q is a p-uniqueness subgroup of
SL(n,F), and conversely, together with the Proposition 4 and
the Proposition 6 to get the lower bound p + 2 whence P lies in at
least [Syl,S”* ?| Sylow p-subgroups of PSL(n, F). O

1. Introduction

For any unexplained notation we refer to [15].

Bring to mind that a group is called simple if itself and <1>
are its sole normal subgroups and that a local system for a
group G is a family Z of subgroups such that every element of
G lies in a X-group and for every two Z-groups there exists
another X-group which contains both. The local system X for
the group G is said to be nested if there exists a sequence {U, |
n € N} of subgroups of G such that U, < U, for alln € N
and ¥ = {U, | n € N}. If G is a countable group and {x, | n € N}
an enumeration of G, let U, := <xj, X5, ..., x,> (n € N); then
{U, | n € N} is a nested local system for G. If the locally finite
group G has such a nested local system, then G is countable. If
an infinite group G = <U | U € > possesses a local system X
consisting of simple subgroups, it is simple: suppose N # <1> is
a normal subgroup of G; if NN U = <1> for all U € X then
N=<NNU|U€ZX>=<1>hence NN U= U for some U € X
andsoNNV=Vforall Ve Xsince U, VS WforeachV € X
with some W € X; thus N = G. An infinite simple group has,
according to Philip Hall (see [46], p. 137, which introduces the
beautiful term “bountiful”), some local system consisting of
countably infinite simple subgroups (see [42], p. 18, [43],
Theorem 4.4, [44], Theorem 2.5, and [45] O.H. KEGEL: “Remarks
on uncountable simple groups”, in: Proceedings of Ischia Group
Theory 2016, Int. J. Group Theory 7 (2018)). Thus simplicity is
definitely a countably recognisable group theoretic property
(see [2]). Periodic linear groups are locally finite (see [43],
Theorem 1.L.1) and satisfy the Strong Sylow Theorem for
every Prime p (see [54] and [44], 1.7). Simple periodic linear
groups are countable (see [43], Theorem 1.L.2).

If G is a countably infinite locally finite simple group, then
there will exist a nested local system {R, | n € N} for G of
finite subgroups such that for each n € N the group R, is perfect
and there exists some maximal normal subgroup M,,; of R,
satisfying M,,; N R, = <1>, so that R, / M, is simple and R,
3 Ruy / M,y (see Chapter 3); such a nested local system is
called Kegel cover (or x-sequence) for G. We define the family
T of types of known finite simple groups by using some assumed
well-known symbols: T := {abelian,, A", A = PSL,, B = PQuuin,
C = PSpy, D = PQ o441, A = PSU,, *D = PQ even n, Es, Er,
Es, F4, Gy, 2B2, 3D4, ZE(,, 2F4, ZG, sporadic * }. If G is a known
finite simple group of type = € T, we call p resp. n resp. 2 resp. 4
resp. 6 resp. 7 resp. 8 resp. * (:= the order of G) the rank r(G)
of G. A countably infinite locally finite simple group is called to
be of type = € T, if it just has a Kegel cover X = {(R,, M,) | k € N}
in such a way that infinitely many of the Ry,;/My.,’s belong to
E (wherefore we can replace X by these infinitely many Ry.;’s),
and is called to be of alternating type if it is of type A". Note
that such a group could a priori be of several types but we may
placidly assume by the well-known pigeonhole principle (see
https://en.wikipedia.org/wiki/Pigeonhole_principle) that in fact
all Ry, /M \,1’s belong to the same of the 19 known families.

The following figure (© 2012 by Ivan Andrus [see https:/
irandrus.files.wordpress.com/2012/06/periodic-table-of-groups.pdf
and https://irandrus.wordpress.com/2012/06/17/the-periodic-table-
of-finite-simple-groups/]) depicts the 19 families of known finite
simple groups in a beautiful arrangement called “Periodic Table™:

The Periodic Table Of Finite Simple Groups

Dynkin Diagrams of Simple Lie Algebras

If the locally finite group G satisfies the Strong Sylow
Theorem for the Prime p it contains a p-uniqueness subgroup
(see [15], Theorem 3.9, and [44], Theorem 1.5, in conjunction
with [15], Proposition 2.3). Thus, if for a countably infinite
locally finite simple group G with Kegel cover {(R,My) | k € N}
and p-uniqueness subgroup P we could prove that the ranks of
the Ry.,/My.,’s are bounded in terms of P, then we could very
straightforwardly deduce Prof. Otto H. Kegel’s Theorem 2.7
(see [44]: “For the locally finite simple group G the following
are equivalent: (i) Every countable simple subgroup of G
contains a p-uniqueness subgroup; (i) G satisfies the Strong
Sylow Theorem for the Prime p; (iii) G is linear.”) and his central
Theorem 3.4 (see [44]: “If {F;}.en is a smooth simple straight
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split sequence of finite p-perfect subgroups of the locally finite
group G, then the countably infinite group U = <F;; i € N>
has 2%° maximal p-subgroups.”).

Note — To study crucial configurations, Kegel developed in [44]
the quite excogitated concept of “(smooth simple straight) split
sequences of finite p-perfect subgroups with their associated
ascending sequences of subgroups” which is related to his
equally very fine concept of the “Sylow-separated (ascending)
sequences of p-subgroups with associated sequences of Sylow
p-subgroups” he had developed already nearly ten years earlier
in “O.H. KEGEL: ‘Chain conditions and Sylow’s theorem in
locally finite groups’, in: Symposia Matematica, Volume XVII,
Convegno sui Gruppi Infiniti, Istituto Nazionale di Alta Mate-
matica (INSAM ) ‘Francesco Severi’, Roma, 11-14 Dicembre
1973, Academic Press, London-New York (1976), 251-259.
ISBN 978-0-12612-217-6.”

So, in his four workshop lectures on Sylow theory in locally
finite groups at the famed and such eminent Singapore Group
Theory Conference of June 1987, Kegel stated as a theorem
and proved “by inspection” what is actually a conjecture (see
[44], Theorem 2.4): “Let P be a p-uniqueness subgroup of the
finite simple group S which belongs to one of the seven rank-
unbounded families. Then the rank of S is bounded in terms of P.”
In this paper we prove the conjecture for the case that the finite
simple group S is some A" (n € N) thereby getting Kegel’s
Theorem 2.7 and Theorem 3.4 for the case that the countably
infinite locally finite simple group is of alternating type.

If £ is a local system of countably infinite simple subgroups
of the simple locally finite group G with (G countable = X =
{G}) and PY for each X-group U is a p-uniqueness subgroup of U,
which exists if G satisfies the Strong Sylow Theorem for the
Prime p (see [15]), and {(R.My) |k € N} is foreach U € X a
Kegel cover for U of alternating type, then for each U € X will
exist a k = k(U) € N with P € R.Y, whence PV « M,V / M,V =
PY/PY N M,V is a p-uniqueness subgroup of R,,"/M,," for all
m > k(U), and we could deduce easily from the following
Theorem 1 that the ranks {r (R,,”/M,") | m > k(U)} are bounded
by f,(|PY|) for all U € £, so that all -groups would be linear
(see [47]) and so G would be linear, too, and so also countable.

Theorem 1 (see [14]). Let n € N and let p be a prime
such that p <n. Let P be a finite p-group acting on A".
Let gp(|P)) be the number of conjugacy classes of
subgroups of P and let k be the number of P-invariant
Sylow p-subgroups of A". Then gy(|P|) < 271",
a) If isomorphic subgroups of P are conjugate and
b := log,|P| (so that |P| =: p°), then g,(|P|) <
p((b-2)4+2(b-2)3+(b»2)2)/4»((b-2)2+b-2)/2—90 +(P|- Di(p- 1) +25.
b)Letm:=k+p+ 1. Thenn<m+|P| * gx(|P)) - 1.
Ifk=1, thenn <f,(|P|):=(p+2)+|P| « 2" - 1.

Having proved Theorem 1 we state a way 1) and a way 2) how
to optimise Theorem 1, make a couple of remarks and suggestions
on Planning future research and state three conjectures.

A periodic linear group is locally finite (see [43], Theorem
1.L.1) and satisfies the Strong Sylow Theorem for every Prime p
(see [54] and [44], 1.7). As the next undertaking we are proving
Conjecture 2 of Page 8 regarding the General Linear Groups
over locally finite fields (see [14]):

Theorem 2. Let n € N and let p be a prime.

Let T be a locally finite (commutative) field.

a) If F has characteristic p and a, = a,(GL(n, T))
thenn<(p+2)e*pr-1.

b) If F has characteristic # p and a, = a,(GL(n, F))
thenn<(p+2)ep*r-1.

Afterwards we are breaking down Theorem 2 to the Special
Linear Groups over locally finite fields:

Theorem 3. Let n € N and let p be a prime.

Let F be a locally finite (commutative) field.

a) If F has characteristic p and a, = a,(SL(n,F))
thenn<(p+2)ep™r-1.

b) If F has characteristic # p and a, = a,(SL(n, T))
thenn<(p+2)*p*-1.

We continue with breaking down Theorem 3 to the Projective
Special Linear (PSL) Groups over locally finite fields:

Theorem 4. Let n € N and let p be a prime.

Let F be a locally finite (commutative) field and

let P be a minimal p-unique subgroup of PSL(n, T').

a) If F has characteristic p and a, = a,(PSL(n, T))
thenn <f,(|P|) ;== (p +2) * p*r - 1.

b) If T has characteristic # p and a, = a,(PSL(n, F))
then n < f,(|P) := (p +2) * p* - 1.

An infinite simple locally finite group G always has a local
system X consisting of countably infinite simple locally finite
subgroups and each X-group U has a Kegel cover {(R.",M\") |
k € N} (see Page 3). If all the factors R.”/ MY of the Kegel
covers for all Z-groups U are of type = = “A = PSL,”, then G is
called to be of projective special linear type. If G satisfies the
Strong Sylow Theorem for the Prime p, then each X-group U
has a p-uniqueness subgroup PV (see [15]).

For each U € X exists some k = k (U) € N with PY < RY,
whence PYe M,Y/M,.V =~ PY/PUNM,.Vis a great p-uniqueness
subgroup of R,"/M," for all m > k(U). If G is of projective
special linear type, it follows from Theorem 4 that the ranks
{r (Rm/ My) | m > k(U)} will be bounded by f,(|P"|) for all the
X-groups U, which hence are linear and so G will be linear and
therefore also countable (see [47]). Summarising we can see the
consequences of the Strong Sylow Theorem for the Prime p
according to Theorem 1 and Theorem 4:
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Theorem 5. Let G be a simple locally finite group

of alternating type or of projective special linear type
satisfying the Strong Sylow Theorem for the even

one Prime p. Then G is linear and countable. O

Having proved Theorems 1, 2, 3 and 4 we make a couple
of further remarks and suggestions on Planning future research
and announce very beautifully The Second Trilogy.

2. Proof of Theorem 1

Proof. We begin with some general remarks. For any group G
we denote by U(G) the set of all its subgroups and for every
U € U(G) by R(G,U) := {Ux | x € G} the set of all right cosets
of U in G. Then G operates by multiplication from the right for
every U € U(G) transitively on R(G,U) with CorgU := {U" |
x € P} as the kernel. If G acts (from the right) on a set Q, so
that Q is a G-set, and a € Q is any point, then G, := {x € G |
o' =0} S G is the stabiliser of a.. Another G-set ¥ is said to be
G-isomorphic to Q in case there exists a bijection § : Q — ¥
such that &a”") = &a)* for all the oo € Q and x € G. The
classification of transitive G-sets reads as follows (see [50],
Chapter 6): Every transitive G-set Q # @ is G-isomorphic to
R(G,G,) for all o € Q, and for any two U, V € U(G) the two
sets R(G,U) and R(G,V) are G-isomorphic if and only if U and V
are conjugate in G. Hence for the action of P we will have a
bijection between the class J(P) of P-isomorphism types of
transitive P-sets and the set of all conjugacy classes (in P) of
subgroups of P, and so |J(P)| = gy(|P]). Thus for every P-set Q
the class J(P,Q) of P-isomorphism types of P-orbits on Q has
at most g,(|P|) elements and since every subgroup of P is a
subset containing 1, we can summarising deduce that |J(P,Q)|
<gu(P) <[UP) <2

Consider now some n € N and a p-subgroup P of S" for some
prime p which is contained in exactly k € N Sylow p-sub-
groups of S". Then n<(k+p+ 1) |P|*gy(P) -1 *

RATIONALE — Suppose n > (k + p + 1) ¢ |P| » g»(|P]). Then G :=
P is a finite group which operates on the set Q := {1, 2, ..., n}
with [Q > (k + p + 1) * |G| * g5(|G]). We show that the number
of G-isomorphic G-orbits on  must be at least k + p + 1. The
group G partitions Q into r orbits ¥y, ¥, ..., ¥,. Since the orbit
lengths |4, [, ..., |¥,| divide the group order |G|, it follows
that |Q =Z{|¥;| | 1 <i<r}<re*|G|; henceifr>(k+p+1)e
|7(G,Q)|, then by the pigeonhole principle there will be at least
k + p + 1 many G-isomorphic G-orbits on Q. m Therefore P
has at least k + p + 1 many P-isomorphic P-orbits on Q. This
implies, as we show below, that there are at least |Sylp§k+””|
many P-invariant Sylow p-subgroups of S?. Since also |Syl,S"|
>n-2forn € N (see Lemma 1 below), |Syl,8""*'| > (k + p + 1)
-2=(k+ 1)+ (p-2)=>k+1follows. [ ]

a) For all 0 < k < b let jx denote the number of conjugacy
classes of subgroups of index p°* in P. Then clearly jo= 1, j; = 1
and j, = 1, but also j,_; < (|P| - 1)/(p - 1): the Frattini subgroup
O(P) of P has an elementary abelian factor group of rank <b,

since a maximal subgroup of a finite p-group is normal of index
p, whence j,_; represents the number of the one-dimensional
subspaces of the GF(p)-vectorspace P/ ®(P). Now suppose that
the isomorphic subgroups of P are conjugate. Then j, = 2,
since there are two isomorphism types of groups of order p?, the
cyclic group and the elementary abelian group, j; = 5, since there
are five isomorphism types of groups of order p’, and j, < 15,
since there are 14 isomorphism types of groups of order 2* and
15 isomorphism types of groups of order p* for p # 2 (see [23]).
It follows that jo + j1 + jo + j3 + ja + jour +jo < (P| - 1)/(p - 1) + 25.
Considering a chief series for a group of order p* (k € N) one
can determine the number of maximal possible multiplication
tables of groups of order p* and thus obtain rather simply the
estimate ik < P76 for the number i,k of isomorphism types
of groups of order pk (see [28], Theorem 3.1). Since we can
calculate 2{(1{3 -k) /6|5 <k <b-2} = (see under https://www.
numberempire.com/seriescalculator.php) ((b—2)4+2(b-2)3+(b—2)2)/4-
((b-2)*+b-2)/2-90, it now follows the rather cool inequality
S{j |5 <k <b-2} Sp((b»2)4+2(b-2)3+(b-2)2)/4»((b-2)2+b—2)/2—90.
Summarising we get g,(|P|) <

p((b-2)4+2(b-2)3+(b-2)2)/4-((b-2)2+b-2)/2-90+(lPl “D)/(p-1)+25. 0O

b) We may assume that the group P operates faithfully on A"
which is a normal subgroup of index 2 in S". If n <5 or n > 7 the
automorphism group Aut(A") of A" is known to be isomorphic
to the group of inner automorphisms of S" which is isomorphic
to S” (see [51], Satz 1.9). Aut(A®) is the semidirect product of a
group G, of order 2 with s¢ (see [32]). Thus P is (isomorphic to)
a p-subgroup of S" or of C, » S® which normalises k Sylow
p-subgroups of A". Every Sylow 2-subgroup of A" lies in only
one Sylow 2-subgroup of S", since A" contains for n > 5 just as
many Sylow 2-subgroups as has S", and a Sylow 2-subgroup of A"
is its own normaliser in S" (see [59]). Thus the p-subgroup P
of S" (or of C, * S°, if p = 2) lies in exactly k many Sylow
p-subgroups of S". (If k > 2 then even k > p + 1 because the
number of all Sylow p-subgroups of the semidirect product
P« S" is congruent to 1 modulo p.) We digress now and permit a
short memory parenthesis: When G is a finite group, P a
p-subgroup of G and S € Syl,G, then the operation of P by
conjugation on C(G,S) := {S*|x € G} has at least one fixed
point, that is (3x € G)(P* < S), and for P € Syl,G exactly
one, that is, |Syl,G| = |G:NgS| = |C(G,S)| = 1 (mod p); hence G
satisfies the Strong Sylow Theorem for the Prime p, that is, every
U € U(G) conjugates transitively on Syl,U, and thus we have
the Frattini argument for G (and p), that is, if N is a normal

*IfPis a p-uniqueness subgroup of S", thenn<(p +2)*|P|* 21,
If the countable group S™ would satisfy the Sylow Theorem for the
prime p, then by Theorem 3.4 of [15] it would even satisfy the Strong
Sylow p-Theorem, and thus it would by Theorem 3.9 of [15] contain a
p-uniqueness subgroup P. Now S™ has a nested local system { U, |n e N}
with U, = S" for all n € N. Since P is finite, there exists an m € N with
P < U, Then P would be singular in U, for all n € N with n > m and
we get the rubbish n < (p + 2) « |P| » 21! for all n > m. Similarly,
every finite p-subgroup of S™ is contained in at least X, Sylow p-sub-
groups of S™ since S™ does not satisfy the Sylow p-Theorem.
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subgroup of G and P € Syl,N, then NgP covers G/ N, that is,
G=N¢+*NgP.m We now put m :=k + p +1 and are supposing
n>m e |P|* gy(|P]). Then according to the remarks made at the
outset, when arguing for the RATIONALE, there will be at least
m many P-isomorphic P-orbits on Q.

In order to proceed we need a lower bound for |Syl,,§g|:

Lemma 1. Let p be a prime and let n € N.

a) If p > n, then |Syl,S"| = 1.

B) If (p,n) =, 1),(2,2),(2,3),(3,3),(2,4),(3,4)), then
SyL,S"|=(m=1,n-1=1,n=3n-2=1n-1=3n=4).

v) If p <n and n >5, then |Syl,S"|>n.

8) If p < n, then |Syl,S"|>n-2.

RATIONALE — @) S" is a p’-group for p > n since n! = |S"].

B) |Syl,S'| = 1 for all p because of S' = <1> and Syl,S” = {S°}
because of |S*| = 2. Since |S’| = 2 * 3 and |S*| = 2’ « 3 we have
ISyLS’], |SyLS| € {1, 3} and [SylsS?}, |Syl:S*| € {1, 4} because
of |Syl,G| = 1 (mod p). From |S*:A%| = 2 follows that A® is a
normal subgroup of S* whence |Sy12§3| = 3 because S° is non-
abelian. We know that S* has exactly two non-trivial proper
normal subgroups, namely the Klein four-group and the A*, and
therefore has neither a normal Sylow 2-subgroup nor a normal
Sylow 3-subgroup, whence |[Syl,S| = 3 and |Syl,S*| = 4.

v) We show first: (i) If n > 5 then S" contains just one non-
trivial normal subgroup, namely the A". RATIONALE — Let (if
possible) <1> # N < S" be normal in S" with N # A"; then N N A"
= <1> since A" is simple, hence |N] ¢ |A"| = [N« A"| divides |S"|,
and so [N | = 2; as a 2-transitive group S" is primitive whence N
operates trivially or transitively which is clearly impossible for
|N|=2. m Since [SyL,S"| =1 (mod p) it follows from (i), [S":A"|
=2, and |S"| = n! that [Syl,S"| > 3. Since [SyL,S"| = [S":NgS| for
S € Syl,S" it now suffices to show the following: (ii) Let n > 5
and 3 <k <n - 1. Then S" has not any subgroup of index k at all.
RATIONALE — Suppose there exists a subgroup U of S" with
|S":U| = k. The transitive operation of S" on R(S",U) via right
multiplication gives rise to some homomorphism ¢: S" — S,
Because of k <n -1 we have <1> # kernel ¢ S U and since
k >3 we have |kernel ¢| < |A"|. By (i) this is impossible. m

0) follows from point B) and point ). |

We return to the group P operating on Q with at least m
many P-isomorphic P-orbits. Application of Lemma 1 gives
ISyLS"|>m-2=(k+p+1D-2=(k+ D+ (p-2)>k+ 1.
Therefore it remains to prove that if Syl,,(§9, P)={Se Syl,,SQ |
S is P-invariant} and there are at least m many P-isomorphic
P-orbits on €, then |Syl,(S%, P)| > |Syl,S™|. For each 1 <i <r let
V; be the point stabiliser of Q\'¥; in S*; hence V; = §\Pi. Then
we truly have P © D :=<V;| 1 <i<r>. Let B be the set of
permutations on Q which interconvert in entire blocks the
P-isomorphic ¥;’s and let the remaining ¥;’s pointwise fixed.
Then B € S® with B = S™ and wirh B N D = <1>. Because B
interchanges only P-isomorphic P-orbits, it is normalised by D.
Hence K := <B, D> is the semidirect product B ¢ D, and so D is
normal in K with K/D = B. Now let Q € Syl,K with P & Q.

Since D is normal in K and the finite group K satisfies the Sylow
Theorem for the Prime p, we have P & D N Q € Syl,D and by
the Frattini argument (see above) Nx(D N Q)/Np(D N Q) = K/D.
It follows that [Syl,(S,P)| > [{R € Syl,K | P < R}|>|{R € SyL,K |
DN R=D N Q| =ISyl,(N«(D N Q)/Ny(D N 0)| = Syl,(K/D)|
=|Syl,S|. [J Q.E.D. (Quod Erat Demonstrandum)

Corollary. Let G be a simple locally finite group of alternating
type with Kegel covers {(R",MY) | U € =, k € N} as described
on Page 4 satisfying the Strong Sylow Theorem for the Prime p
and let PV for each Z-group U be a p-uniqueness subgroup of U
(see [15]). Then we have the inequality r(Ry"/ M) < f,(|PY]) :=
(p+2)+|PY|+2"1"' - 1 for all m > K(U) and for all U € £, and G
is a linear group and a countable group.

Proof. Our Theorem 1, [47], and [43], Theorem 1.L.2. O

We keep the overall context of the Corollary and let G be a
locally finite group satisfying the Strong Sylow Theorem for the
Prime p and let P be a p-uniqueness subgroup of G. In view of
Theorem 1 it is of rather considerable interest whether resp. when
isomorphic (finite) subgroups of P are conjugate. Therefore let
Q and Q* be isomorphic subgroups of P and also let r be their
common index in P. The left regular representation Ag;: h — gh
for all h € P (g € P) and the right regular representation
pe: h ~ hg™' for all the h € P (g € P) both embed P into the
symmetric group S* on P. Now a famous result by Philip Hall
(see [26], Lemma 1) establishes that either regular representation
maps isomorphic subgroups onto conjugate subgroups: let x — x*
(x € Q) be an isomorphism of Q onto Q*; let {yy, y,, ..., y,} be
a complete set of left coset representatives of Q in P and
{y1*, »*, ..., y.*} be such a set of left coset representatives of
Q% in P; the mapping & y;x » y*x* (x € Q|i=1,2,...,1)is a
permutation of P, so that & € S”; if t € Q and if p is any regular
representation of P, we then have yi*x*f"lp(t)f = yixp(t)¢ =
yi(xt)é = yF(x)* = yFx¥r¥, since * is a homomorphism, so that
f_lp(t)f = p(1¥); hence ¢ transforms p(Q) into p(Q*). m However,
we should in fact need conjugacy not only in S” but in P itself.
This is an open problem. Note that if this would be solved without
restrictions then in a (locally finite) p-group, the simplest locally
finite group satisfying the Strong Sylow Theorem for the Prime p ... ,
isomorphic finite subgroups would be conjugate, a rather striking
property. Hence the solution will probably need restrictions.

Les dieux avaient condamné Sisyphe a rouler
sans cesse un rocher jusqu’au sommet d’une
montagne d’ou la pierre retombait par son propre
poids. ... II faut imaginer Sisyphe heureux.

Die Gétter hatten Sisyphos dazu verurteilt, einen
Felsblock unablissig den Berg hinaufzuwilzen,
von dessen Gipfel der Stein kraft seines eigenen

Gewichts wieder hinunterrollte. ... Wir miissen uns
Sisyphos als einen gliicklichen Menschen vorstellen.

The gods had condemned Sisyphus to ceaselessly
rolling a rock to the top of a mountain, whence
the stone would fall back of its own weight. ...

One must imagine Sisyphus happy.

Gli dei avevano condannato Sisifo a far rotolare
senza posa un macigno sino alla cima di una
montagna, dalla quale la pietra ricadeva per azione
del suo stesso peso. ... Bisogna immaginare Sisifo felice.

K )’.rﬁ Q ‘

Sisifo by Tiziano - Oil on Canvas, 1548 - 1549
© Museo Nacional del Prado, Madrid
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3. About Kegel covers

Let G be a locally finite group. A set of pairs {(H;,M;) |i € J}
is called a Kegel cover for G if, for all i in J, H; is a finite
subgroup of G and M; is a maximal normal subgroup of Hj, and
if for each finite subgroup H of G there exists an i € J with
H < H;and H N M; = <1>; the groups H;/M; (i € J) are called
the factors of the Kegel cover (see [49]). In [14] we introduced
the concept of the *-sequence for G. Let G be a countably
infinite simple locally finite group. We then are defining a
* -sequence for G as a set of pairs {(R,,M,) | n € N} where {R, |
n € N} is a nested local system for G and for all n € N the
group R, is perfect, R, # Ry and M,,, is some maximal normal
subgroup of R, with M., N R, = <1>, that is, the factor R,/ M,,
which is a non-abelian finite simple group, is (isomorphic to) a
proper section of the non-abelian simple group R,/ M,,, and
therefore {R, | n € N} is totally ordered by involvement. Such
a group G has a nice x-sequence (see [14], and [42], p. 20, and
[43], Lemma 4.5, which tough Kegel calls an “approximation
principle”, and [44], Theorem 2.6, and the origin as the rather
smart concept of a so-called “a-Folge” introduced in [41],
Definition 2.1 and Hilfssatz 2.2 [but see the Remark on p. 116
of [43] regarding Hilfssatz 2.2]; see also [49], Lemma 3.4).
Brian Hartley refers to a x-sequence, where the R;’s need not
to be perfect, as a Kegel sequence (see [27], Definition 2.2). He
moreover states rather enlightening that the nomenclature of
covers and sequences is more recent and even dedicates the entire
Chapter 2 of [21] to Kegel sequences and to Kegel covers.

Proposition 1. Let G be a countably infinite simple
locally finite group. If {(R,M,) | n € N} is some
* -sequence for G, then it is a Kegel cover for G.

Proof. If H is a finite subgroup of G, there exists an Ry of the
nested local system {R, |n € N} for G with H € R € Ry,
(k € N) and then H N My, = <1>. O

U. MEIERFRANKENFELD (see [49]) classified (with the help
of S. DELCROIX) simple locally finite groups G according to
their Kegel covers (see [10]): finitary (there exists a field F
and a faithful FG-module V such that V(g - 1) = [V, g] is finite
dimensional for all g € G) (see [25]), of 1-type (where each
Kegel cover has an alternating factor), of p-type for a unique
prime p (where each Kegel cover has some classical group in
characteristic p as some factor), and of co-type (which have a
Kegel cover all of whose factors allow embedding of every
finite group). He proved earlier pretty much surprisingly that a
non-finitary such group is either of alternating type (hence of
1-type or of co-type) or (of p-type and of projective special
linear type) (see [48] and the marvellous preprint at https://
users.math.msu.edu/users/meierfra/Preprints/Nflfsg/nflfsg.html).

It had been inadvertently suggested that the results of this
paper were a consequence of [25] and alternatively of “J.L
HALL — B. HARTLEY: ‘A group theoretical characterization of
simple, locally finite, finitary linear groups’, Arch. Math. (Basel)
60, Issue 2 (February1993), 108-114.” since the groups considered
were thought to be finitary. However, this thinking is not true.

The joint paper by Hall and Hartley does not refer to Kegel
covers and especially do both papers not refer to the p-uniqueness
subgroups (Flemisch) resp. to the singular p-subgroups (Kegel).
It had then been wrongly argued that the Kegel kernels M; were not
considered which in the given situation were claimed to be <1>
for all i € N. But the Kegel factors R; /M; were considered and
not only the kernels M; nor were the kernels all <I1>. By rather
vivid imagination it had then been quite wrongly concluded that
the groups considered would become finitary linear locally finite
simple groups which were classified by [25] (which is true).
Even if all this would be true, [25] does not prove the results of
this paper nor all the more so the paper by Hall and Hartley.

4. Planning future research — Part 1

We have seen that a simple locally finite group G can be
covered by countable simple locally finite groups U each of
which possesses a x -sequence {((RY MY) |n € N} and so is in
some sense a limit of the (approximating) sequences RYI MY
(n € N) of finite non-abelian simple groups. If all the factors
of the Kegel covers for all U, that is, all the RY/ MU’s, belong
to the same family = of the infinite families {A", A = PSL,,
B =PQouin, C =PSpy, D = PQ¥ 044, *A = PSU,, °D = PQ evenns
E¢, E;, Eg, Fs, Gy, 2B2, 3])4, 2E6, 2F4, 2G2}, we call G to
be of type Z. We propose to prove Kegel’s conjecture for all
these types seratim, that is, one type after another in the given
succession, and started already with the first type = = “A" 7.

Our Theorem 1 could be optimised in two ways:

1) Extend it from type A" step-by-step to further types E with
an appropriate (similar) function f,, that is, the rank r(G) of a
finite group G of type = is bounded by f,(|P|) whenever P is a
given p-uniqueness subgroup of G.

2) Determine for the type A" and peu a peu for further types =
all the minimal p-unique subgroups, that is, the p-uniqueness
subgroups of the non-abelian simple groups of type A" and of
type =, which are minimal with respect to order (see [15]).

Note that whilst way 2) is of great interest for all types and
also for sporadic * (whereas it is trivial for abelian,), way 1) is
not of interest for the families {Eg, E;, Eg, F4, Go, 2B2, 3D4, ZE(,,
2F4, 2G2} because these families have a fixed rank (label) and so
are infinite only through the underlying field.

We recall from [15] the Theorem 4.1 and its consequences:

Theorem 4.1 (see [14]). Let G be a locally finite group
satisfying the Strong Sylow Theorem for the Prime p.
a) Each Sylow p-subgroup of G contains at least one
(w.r.t. order) minimal p-unique subgroup of G.
b) Every two (w.r.t. order) minimal p-unique subgroups of G
have the same order. O

Let G be a beautiful locally finite group satisfying the Strong
Sylow p-Theorem and let S € Syl,G. According to our Theorem
4.1 a), S contains some (w.r.t. §) minimal p-unique subgroup F.
We define a, = a,(G) € N, by |F| =: p’r, that is, we let a, be the
composition length of F. Then according to our Theorem 4.1 b)
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this definition is independent of the special choice of the Sylow
p-subgroup S of G, whereby in consequence a, is a (numerical)
Sylow p-invariant of G. We call a, the p-uniqueness of G.

Then the optimising way 1) can be stated as follows:
Conjecture 1. Let T := {abelian,, A = PSL,,, B = PQuaq 1,
C = PSp,, D =PQ"in, "A =PSU,, °D = PQ yenns Es, B,
Es, Fs, Gy, By, *Dy, “Eg, *Fy, *G,, sporadic * } be the family
of types of known finite simple groups and let G be a finite
simple group of type Z € T . Then the rank t(G) of G is
bounded in terms of the p-uniqueness ay(G).

Brian Hartley (15 May 1939 until 8 October 1994) in his
Mathematical Review of [44] (see MR981832 [MR 90c #20037
(March 1990)]) stated the following: “If the simple locally finite
group G satisfies the Strong Sylow Theorem for the (even one)
Prime p, then G is linear. This depends on the classification of
finite simple groups and an assertion about singular p-sub-
groups of classical groups. Another proof of this result has
since been given by the reviewer (not yet published).” The
assertion mentioned is Kegel’s conjecture (see [44], Theorem
2.4). However, due to the so very tragic death of Prof. Hartley
in 1994, aged 55 (see [14]), this certainly highly insight gaining
proof was never prepared for publication. Hartley wrote 1994 a
very eye-opening paper on simple locally finite groups (see
[27]) which, however, did not refer to Kegel’s work [44] and
not even included it in its list of 56 references. The paper could
appear only posthumously which most likely is the reason for
the full ignorantness of Kegel’s paper. Hartley’s paper was
meticulously completed and carefully prepared for publication
by Richard E. Phillips (3 December 1936 until 9 November
1999). We consider it much rewarding, even after 30 years, to
inspect Hartley’s estate In Search of not Lost Notes (see Marcel
Proust [10 July 1871 until 18 November 1922]: “A la recherche
du temps perdu” / “In Search of Lost Time” / “Auf der Suche
nach der verlorenen Zeit” / ““Alla ricerca del tempo perduto” / “En
busca del tiempo perdido” / “Em busca do tempo perdido™).

Now as a very first step towards solving Conjecture 1 for
the second type & = “A = PSL,”, we state another conjecture
w.r.t. the general linear group over locally finite fields (see [14]):

Conjecture 2. Let n € N and let p be a prime.

Let T be a locally finite (commutative) field.

a) If F has characteristic p and a, = a,(GL(n, ¥))
thenn<(p+2)spr-1

b) If F has characteristic # p and a, = a,(GL(n, F))
thenn<(p+2)*p*r- 1.

In the entire paper we do not refer to the classification of
finite simple groups (see [23], [61] and Page 3) but prefer to
talk about the 19 families of “known” finite simple groups. Our
efforts are directed towards knowing much better their Sylow
subgroups. We hope to find useful insights about the Sylow
subgroups of classical groups in the ATLAS of Finite Groups
[8] and in the comprehensive literature about them.

The classification of the finite simple groups
(13 sporadic groups above 18 infinite families around another
“sporadic” group and further 13 sporadic groups below)

(© 2022 by Mathsies — Own work, CC BY-SA 4.0,
https://upload.wikimedia.org/wikipedia/commons/archive/a/a9/202
20111205053%?21Classification_of_the_finite_simple_groups.jpg,

28 December 2021, at 15:08 (UTC); [61])

Kegel’s lectures [44] present the very basics of Sylow theory
in locally finite groups, give an overview of the prodigious work
of Brian Hartley and Andrew Rae on the Sylow theory in locally
finite and p-soluble groups, and reveal in great detail the normal
structure for groups satisfying the Strong Sylow Theorem for the
Prime p in the general case (for p > 5). Chapters 2 and 4 of [12]
give a rather good overview as well but alas without appreciating
Kegel’s very insight gaining work properly and avoiding all its
beautiful details. We cite from the Preface of [12]: “The condition
that all the maximal p-subgroups of a locally finite group are
conjugate is a very strong condition indeed; the structure of
those groups has been obtained in the locally p-soluble case
by Hartley and in the general case by Kegel. The Hartley-
Kegel theorem is quite involved so I decided to simply state
the results obtained.” Also, simple groups are not in the scope
of [12] and therefore [12] must be supplemented by [27].

Although this paper is about simple groups we cannot help to
close with a brief attention to p-soluble groups since it is the joint
study of the (locally) simple and the (locally) p-soluble groups
which directs reliably the Sylow theory in (locally) finite groups.

In Chapter “2 Some length type inequalities” of his rather
remarkable contribution [47], Alexandre Turell (see https://people.

w ‘ UNIVERSITY uf

clas.ufl.edu/turull/ meromdo r n m A ) states a conjecture of Thomas
R. Berger (which dates back to John G. Thompson in the 1970’s):
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Conjecture 2.3 (see [3]). Let p be a prime. There exists a
linear function f, such that if G is a finite p-soluble group with
p-length A(G) and P is a subgroup of G of order p* (k € N)
contained in precisely one Sylow p-subgroup then A,(G) < £, (k).

Having studied the very most of the hereof related literature
published by Brian Hartley, by Andrew Rae, and by Thomas R.
Berger, we profess to have happily discovered such a linear
function, namely our nice a,. Therefore we can state Thomas R.
Berger’s conjecture more precisely (and best possible) as our

Conjecture 3. Let p be a prime. Let G be a p-soluble
finite group, J,(G) be its p-length, and a,(G) be its
p-uniqueness. Then J,(G) < ap(G) + 1.

It is much expected that the cases p > 5, p =3 and p = 2
must be treated fairly separately and also that p =3 and p = 2
will require fairly special methods as already indicated by the
available literature. A. Turell gives in Section 2 of [53] a quite
concise overview of the classical Hall-Higman theory created
by P. Hall, G. Higman, A.H.M. Hoare, T.R. Berger, F. Gross
and E.G. Bryukhanova, which introduces for finite p-soluble
groups (best possible) inequalities between their p-length 4,
and the order pbP of a Sylow p-subgroup, its nilpotency class ¢y,
its solubility length d,, its exponent p?, or the rank r, of a
maximal elementary abelian subgroup. Our aim is to extend
the Hall-Higman theory to the very beautiful p-uniqueness p*

of a Sylow p-subgroup, an Herculean WL 2 endeavour.
It is in this context that A. Turell cites T.R. Berger’s conjecture
and presents some results up to 1994 with regard to partly
solving it but they are very gey far from being complete, in
particular concerning the basic results of B. Hartley and A. Rae.
But on the other hand T.R. Berger presents in [3] a, as he says,
reasonably complete list of references up to 1979, including 15
of his own contributions, where eleven are related to p-length
problems, and discusses his method of proof for p-length and
other length type problems in a considerably detailed fashion.

5. Proof of Theorem 2

Proof. We begin with some general remarks (see [9], Chapter II,
and [11], Chapters 1 and 2). Let F be a field, V # {0} be a
vector space over F with its automorphism group GL(V), and
let G be a group. V is called a G-module over F and G operates
on V, if a homomorphism of groups ¢: G — GL(V) is declared.
¢ is then called a linear representation of G on V over F. Every
permutation representation of G on a set Q # @ now induces a
G-module V(Q), called the permutation module of (G,Q) over F.

Therefore to every subgroup U of G belongs the G -module
V(R(G,U)) (see PageS and Page 6) with respect to (w.r.t.)
multiplication from the right. A subspace W of V is called
G-invariant or a G-submodule, if for all x € G we have x*(W)
S W, that is, ¢ induces an operation of G on W. We say that
G operates on V irreducible, if V contains exactly two G-sub-

modules (namely {0} and V), and completely reducible, if to
every G-submodule W of V there exists a G-submodule X of V
with V=W & X, equivalently, if V is decomposable into a direct
sum of minimal G-submodules. G operates on V non-modular, if
char® =0 or charF # 0 and G contains no char ¥ -elements # 1;
otherwise G operates modular on V. Now let V; be another
G-module over F on which G operates via ¢,. Then V is called
G-isomorphic to Vi, if there exists an isomorphism of vector
spaces y: V — V; such that the suckclpbeautiful diagram shown
V—)X \%4

| ol

commutes forallxe G: V,—— V)

Every irreducible G-module is G-isomorphic to a factor module
of V(R(G,<1>)): the class J(G,F) of all G-isomorphism types
of irreducible G-modules is a duly set of (finite-dimensional)
vector spaces over F all of which have their dimension < |G].

We now start the proof of Theorem 2 by quoting two fairly
well-known facts about non-modular linear representations (see
[22], Chapter 3, Theorem 3.1, and [11], Theorem 10.8, for point a),
as well as [9], Theorem 27.22 with Remark 27.25, for point b)).
We denote for point b) by h(G) the class number of G, that is,
the number |{x“ | x € G}| of conjugacy classes of G.

Proposition 2. Let G be a finite group.

a) (Heinrich Maschke, 1898) Every non-trivial non-modular
finite-dimensional G-module is completely reducible.

b) Let F be a field with (charF,|G|) = 1.
Then there are at most h(G) many G-isomorphism
types of irreducible G-modules over F . |

We use Proposition 2 b) straight away to prove the following:

Proposition 3.

a) There exists a function y: N — N with the following property:
If G is a finite group, F a field with (charF,|G|) = 1
and J(G,T) the class of all G-isomorphism types
of irreducible G-modules over F, then J(G,T')
is a genuine set with | J(G, F)| < y(|G)).

b) Let G be a finite group, F a field with (charF,|G|) = 1
and V a finite-dimensional G-module over F.
Let J(G,V) be the set of G-isomorphism types
of irreducible G-submodules of V. Then |J(G,V)| < y(|G)),
where y is the function from point a).

RATIONALE — a) We define y: N — N simply by y(n) := n.

Then h(G) < y(|G]). Since by Proposition 2 b) there is an injective
mapping of 7 (G, T) into {x© | x € G} the assertion follows.

b) follows from point a). [ |
Up next we use Proposition 2 a) and Proposition 3 b) to prove

Proposition 4. Let G be a finite group and k € N. Let V be a finite-
dimensional non-modular G-module with dim(V') > |G| * y(G))| * k,
where y is the function from Proposition 3 a). Then there exist at

least k many G-isomorphic irreducible G-submodules of V.
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RATIONALE — By Proposition 2 a) and a trivial induction on
dim(V) there are m irreducible G-submodules U; of V with V =
@{Ui|1<i<m}.If0#v; € Uithen<y"|x € G>isa
G-submodule of V and thus dim(U;) < |G| (1 <i< m). Now let
J(G,V) be the set of G-isomorphism types of irreducible
G-submodules of V. If m >k ¢ | 7(G, V)| then by the pigeonhole
principle there will be just k many G-isomorphic irreducible
G-submodules of V. Because of dim(V) = X{dim(U;) | 1 <i<m}
and m < {dim(U;) | 1 £i<m} <m ¢ |G|, we have dim(V)/|G| <
m < dim(V). Thus there are at least k many G-isomorphic
irreducible G-submodules of V if only dim(V) >k ¢ |G| * |J(G, V).
So the assertion follows from Proposition 3 b). |

Recall that a finite group G operates modular on a G-module V
if G = <I> or G operates not non-modular on V. Therefore a
finite p-group for the prime p operates modular on every vector
space over the field F if and only if charF = p. We prove next
two elementary facts (see [22], Chapter 2, Lemmata 6.2 and 6.3):

Proposition 5.
a) Let G be a group, N be a normal subgroup of G
and V be a G-module. Then Cy(N) :=
{v e V|v'=vforall x € N} is a G-submodule of V.
b) Let P be a finite p-group for the prime p and let V be
a non-trivial modular P-module. Then Cy(P) # {0}.

RATIONALE — a) Put U := Cy (N). Then U is a subspace of V.
Letu € Uand x € G. Fory € N we have also y[1 € N, since N
is normal in G, and so u”" = u. Therefore we have u*" = u* for
ally € N, thatis, u™ € U.

b) We carry out an induction on |P|. For P = <1> we have Cy(P)
= V and nothing to prove. Let |P| > p and M be a maximal
subgroup of P. Then M is normal in P with |P:M| = p. Put U :=
Cy (M). Then U is by point a) a P-submodule of V and by the
induction hypothesis we have U # {0}. Lety € P\M and y’ €
GL(U) be the restriction of y to U. Then y* € M and <M,y> =
M+ <y>=Pand so Cy(P)=UN Cy(y) = Cy(y’). It remains

RATIONALE — We refine the proof of Proposition 5 b) and carry
out an induction on |P|. For P = <1> we have nothing to prove.
Let |P| > p and M be a maximal subgroup of P. Then M is
normal in P with |P:M| = p. Put U := Cy(M). Lety € P\M and
y* € GL(U) be the restriction of y to U. Then y* € M and
<My>=Me*<y>=Pand so Cy(P)=U N Cy(y) = Cy ).
From Proposition 5 a) and the induction hypothesis follows that
U is a P-submodule of V with dim(U)/p > dim(V)/(|M| * p) =
dim(V)/|P|. It thus remains for us to prove the following:

(&) p e dim(Cy(y)) 2 dim(U) .

Put n := dim(U) and d := dim(Cy(y’)). Let p(X) be the
minimal polynomial of y’ over &. Then pu(X) will divide the
polynomial X” - 1 of F[X], since y’ has order 1 or p in GL(U).
Because of p = charF = charF[X] we have X" - 1 = (X - )*.
Hence 1 is the unique eigenvalue of y’ with Cy (y’) as related
eigenspace. In particular d > 1. Let x(X) := det(y’-X idy) be the
characteristic polynomial of y’ over F. Then y(X) has degree n
and is divided by u(X). In particular U = kernel(y’-idy)" whence
y’ is unipotent. RECALL — Let G be a subgroup of GL(n, ). We
call x € G unipotent if (x — 1)" = 0, that is, if all eigenvalues of x
are 1, and call G unipotent if each element of G is unipotent.
Every unipotent subgroup of GL(n, F) is some conjugate of a
subgroup of UT(n, F), the group of upper triangular matrices. If
char¥ is a prime p, then the unipotent elements of GL(n, ) are
precisely the p-elements and UT(n, ) is a Sylow p-subgroup of
GL(n, ). m Thus there is an F -basis of U such that the matrix
of U w.r.t. this F-basis will lie in UT(n, 7). This matrix can be
decomposed in Jordan normal form as follows. Let T :=y’ - idy
and for each m € N let C,, := kernel(t™). The C,’s are
F -subspaces of U with {0} =Cy S C; € C, © Cpyy1 € ... .
We have C; = Cy (y’) and C, = U. Let k € N be minimal w.r.t.
Cy=Uandputr:=dim(U/ C).

Then u — urk_l (u € U) induces an isomorphism of U/Cy_
onto an F-subspace of C;. It follows that r < d. We have 1° =
(v’ -idy)” =y’ -idy = 0 since y* has order 1 or p in GL(U) and

for us to prove that Cy(y’) # {0}. Let F be the field over which V. P = char = char#[X] whence image(t") = {0} for allm € N

is being a vector space and let pu(X) be the minimal polynomial
of y’ over F. Then p(X) divides the polynomial X” - 1 of F[X],
since y’ has order 1 or p in GL(U), and p = charF = charF[X]
as well. Therefore X” - 1 = (X - 1)”. Hence pux) =0forx € F if
and only if k = 1, that is, 1 is the only eigenvalue of y’ with
Cy(y’) #£ {0} as its eigenspace. [ |

We are in the very happy position to prove an intriguing
toughening of Proposition 5 b) which is quite definitely not an
elementary insight (see as well [43], p. 41, where, however, this
core assertion is not proved properly and even only for an
elementary abelian P, and [32], Chapter VIII, Lemma 10.17,
where, however, only the very special example is considered
that V is an abelian p-group and P has order p):

Proposition 6. Let P be a finite p-group for the prime p,
F be a field of characteristic p and V be a finite-dimensional
P-module over F. Then dim(Cy(P)) > dim(V)/|P|.

with m 2 p. It follows that k < p. Now for each u € U\Cy | we

define W, := <u, u*, ..., u™"> which will be a y’-invariant
F -subspace of U with dim(W,) = k. The k x k-matrix A(y’) of y’
restricted to W, w.r.t. {uTk’], uTk'z, ..., u*, u} has the shape shown:
171 . . 0
1
Ay’) =
o . . .1

There exist uy, uy, ..., u, € U\ Cry with U= @{W,, | 1 <i<r}.
Then the n x n-matrix A(y’) of ¥y’ w.r.t. the basis {ulfk'l, oo UL,

k'l, e Uy, ., uer'l, ..., uy} of U has the above shape as well.
It now follows that n = k e r and hence n < p e d by the previous
inequalities. This is () to be proved. |

I/[ZT

The inequality of Proposition 6 is best-possible since for every
prime p there exists a faithful finite-dimensional Cp-module V
over GF(p) with dim(Cy(Cp)) = dim(V) /p: let ¢ be a prime such
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that p divides ¢ - 1; the S* is a semidirect product of the S* =
C> » C3 with the four group C> X Co ; this operation can be
generalised to an operation of C, * C, on V := Qp(q» ;ifp=2
one gets for every impair prime ¢ the “generalised S*” of order
2qq ; the (classical) Hall-Higman theory can now be used to
show dim(Cy (Cp)) = dim(V)/p (see Page 8 and Page 9).

We next apply some of the beautiful new ideas of the proof
of Theorem 1 b) and of Proposition 5 to prove for GL(V)
a similar statement as for §Q where Q := {1, 2, ..., n}:

Proposition 7. Let V be a finite-dimensional vector space
over the locally finite (commutative) field F. The finite
p-group P for the prime p shall operate on V.
a) Let charF =pandlet V= ®{U;|1<i<m}
be a direct decomposition of 'V into irreducible
P-submodules according to Proposition 2 a).
Let k be the number of P-isomorphic U;’s.
Then there exist at least |Syl,S"| many
P-invariant Sylow p-subgroups of GL(V).
b) Let charT = p and k := dim(Cy/(P)). Then there are at least
|Sy1,8¥| many P-invariant Sylow p-subgroups of GL(V).

RATIONALE — We may suppose without loss of generality
(w.l.o.g.) that P is a subgroup of GL(V) and operates by
conjugation on GL(V). If § € Syl,GL(V) then Syl,NgLv(S) =
{S} and hence P normalises S if and only if P < S. Therefore
we have to prove the following:

(%) [{S € SyLGL(V) | P < § }| > Sy, Y.

a) We certainly may suppose w.l.o.g. that the first k of the U;’s
are P-isomorphic. Let H; & GL(V') be the point stabiliser of
@{Uj|1<i<m,j#i}; then H; = GL(U;) (1 <i<m). Put D :=
<H|1<i<m>=[]"{H;|1<i<m} SGL(V). Then P < D.
Let B be the set of automorphisms of V which interconvert in
entire blocks the P-isomorphic U;’s and let the remaining U;’s
pointwise fixed. Then B S GL(V) with B = S*and BN D =<1>.
Since B interchanges only P-isomorphic U;’s, it is normalised
by D. Hence K := <B, D> is the semidirect product B * D, and
hence D is normal in K with K/D ~ B. Now let Q € Syl,K with
P S Q. Since D is normal in K, we have P & D N Q € Syl,D
and by the Frattini argument, which follows from the (Strong)
Sylow p-Theorem for the finite K, Nxg(D N Q)/Np(D N Q) =K/D.
It follows that |[{S € Syl,GL(V) | P < S}| > |{S € Syl,GL(V) |
DN S=D N QJ|=SyL(NKD N Q)/Nu(D N Q)| = |Syl(K/D)|
> |Syl,S|. This is the inequality of (%) to be proved.

b) C := Cy (P) is by Proposition 5 a non-trivial P-submodule
of V. Let D := Cgr)(C). Then P S D. Now let C; be a (not
necessarily P-invariant) complement to Cin V, thatis, V= C @ C;.
Let B be the point stabiliser of C;. Then GL(V) =~ B and B N D
=<1>.Forallb € B,d € D and ¢ € C we have c(db) =(c b’l)‘“’
= (ch'l)h = c. Hence B normalises D and so K :=<B,D>=Be*D
whence D is normal in K with K/D = B. Since k = dim(C), the
group B contains a subgroup which is isomorphic to S¥, namely
the group of all permutation matrices of rank k over F (see
[11], § 1.3). Therefore |Syl,B| > |Syl,S"|. Now (%) follows
verbatim as in point a). |

Next we are notably very happy to be able to use the foregoing
Propositions 4 & 6 & 7 together with Lemma 1 of Page 9 to prove
a core Lemma from which Theorem 2 follows immediately. [

Lemma 2. Let n € N and let p be a prime. Let F be a
locally finite (commutative) field and let P be a finite
p-subgroup of GL(n, F') which is contained in exactly
k € N Sylow p-subgroups of GL(n, F).
a) If F has characteristic#p thenn<(k+p+1) e |P|2 -1
b) If F has characteristic p thenn<(k+p + 1) *|P| - 1.
¢) If P is a p-uniqueness subgroup of GL(n, T')

then n < f(|P]) := (p+2)+|P|* - 1.

RATIONALE —a) Letn > (k +p + 1) * |P| ’. By Proposition 4 and
since y(|P|) = |P| by the proof of Proposition 3 a), the space
then has at least k + p + 1 many irreducible P-isomorphic P-sub-
modules. Thus P lies by Proposition 7 a) in at least [Syl,S**"*|
many Sylow p-subgroups of GL(n,7). From Lemma 1) of
Page 6 we can now conclude [Syl,S**"*'|>k +p+1-2>k + 1.

b) Letn > (k + p+ 1) * |P|. We then have dim(Cg"(P)) >k +p +
1 by Proposition 6. Therefore P lies by Proposition 7 b) in at
least |SylpS| many Sylow p-subgroups of GL(n,F). Now follows
from Lemma 1 §) of Page 6 that [Syl,S|>k+p+1-2>k+ 1.

¢) follows from point a) and point b). |

6. Proof of Theorem 3

A subgroup of GL(n, %) is locally finite if and only
if F is locally finite, that is, if every finitely generated
subfield of F is finite. F is locally finite if and only if it
is isomorphic to a subfield of F,, the algebraic closure of
the nice prime field GF(p) = &, , for some prime p, and
hence is countable. Since F,» < F» if and only if m
divides n (m, n € N), we consider the chain F, < F &
Forr e Fortc | of algebraic extensions, where o+ D!
is obtained by just adjoining some root a of an irreducible
polynomial of degree n + 1 over F,, that is, Fyo+D! =
F(e) (n € N). Then TP =\U{E" | n € N} = [since Fpr
c E1 \I{Fr | n € N} (see [4], Section 2.2). All the
subfields of F, (see [4], Section 2.3) correspond to all the
locally finite fields in characteristic p.

Let F* := F\{0} be the multiplicative group of F and
let SL(n,F) := {A € GL(n,F) | det(A) = 1}.

Proof. GL(n, F) = SL(n, F) * F* is the semidirect product
of SL(n, ) with F* and the unique Sylow p-subgroup S,
of F*is F* if charF = p and <1> if charF # p. Thus {S |
S € Syl,GL(n,F)} ={T+S,| T € Syl,SL(n, ¥)} whence
every Sylow p-subgroup of SL(n, F) lies in only one Sylow
p-subgroup of GL(n, F). Hence if P is a p-uniqueness sub-
group of SL(n,F) it is also a p-uniqueness subgroup of
GL(n,F). Therefore n < (p + 2) * |P|2 - 1 if charF # p by
Lemma 2 a) which is Theorem 3b) andn<(p +2) *|P| - 1
if charF = p by Lemma 2 b) which is Theorem 3 a). O
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7. Proof of Theorem 4

Let D(SL(n, F)) := {A € SL(n,F) | A is some scalar
matrix } be the subgroup of SL(n, F) of matrices in which
all off-diagonal entries are zero and the diagonal entries
are any scalars, that is, elements of &, but not all zero.
It is very well-known that D(SL(n, F) is the centre of
SL(n, %) and that PSL(n, ) := SL(n, F) /D(SL(n, F)).

Proof. If S is a beautiful Sylow p-subgroup of SL(n, F),
then S D(SL(n,F))/D(SL(n,F)) = S/Z(S) is a Sylow
p-subgroup of PSL(n, ) where Z(S) denotes the centre
(“Zentrum”) of S. If Q is a p-uniqueness subgroup of
SL(n, F) then P := QD(SL(n, ¥))/D(SL(n, F)) =~ Q/Z(Q)
will be a p-uniqueness subgroup of PSL(n, F) (see [44],
1.6, and [15], Proposition 2.3), and conversely, and n <
£,(|Q|) by Theorem 3. However, even n < f,(|P|) since
otherwise n > (p + 2) * |P| resp. n > (p + 2) « |P[ if
char® = p resp. if char® # p. Since P operates on the
underlying vector space F ", we have dim(Cg (P))>p +2
by Proposition 6 resp. the space F has at least p + 2
many irreducible P-isomorphic P-submodules according
to Proposition 4. Therefore P lies in at least |Syl,S""|
Sylow p-subgroups of PSL(n, ) by Proposition 7 which
is at least 2 by Lemma 1 6) of Page 6. |

8. Planning future research — Part 2

Our proofs of the Conjecture1 of Page 8 for the
types = = “A"” and E = “A = PSL,”, that is, to carve out
the optimising way 1), are characterised by the fact that
we need not at all know their Sylow p-subgroups. There is
no doubt that we can (easily) extend those proofs rather
straightforwardly to the types & € “B = PQuy4 1, C = PSpy,
D = PQ'oq n, “A = PSU,, °D = PQ en »” by considering
thoroughly the respective bilinear form defining these
groups of Lie type, resp. the underlying vector spaces
they act upon as isometries, and their resulting Sylow
p-subgroups (without knowing them). They can well be
considered proved which we shall confirm in a follow-up
paper (see below: the Part 1 of our Second Trilogy).

Optimising Theorem 1, Theorem 2, Theorem 3 and
Theorem 4 along the way 2) of Page 7 is much more
challenging since it requires to determine the (minimal)
p-uniqueness subgroups of A" and of all the classical
groups. Fortunately, a vast literature about these groups
and their Sylow p-subgroups is available, even about the
intersections of their Sylow p-subgroups. The starting
point for future research into these hugely beautiful objects
should be the papers by LEO A. KALOUININE (see [32]-
[40]) and by ALAN J. WEIR (see [55]-[58]) and Theorem
1.4 B of [11] together with [7]. The starting point for
Sylow p-intersections could be [5] which has a sizeable list
of references and all sorts of historical details.

A MATHEMATICIAN, like a painter or a poet, is a maker of patterns.

If his patterns are more permanent than theirs, it is because they are made
with ideas. ... The mathematician’s patterns, like the painter’s or the poet’s,
must be beautiful; the ideas, like the colours or the words,
must fit together in a harmonious way. Beauty is the first test:
there is no permanent place in the world for ugly mathematics.

Godfrey Harold Hardy (7 February 1877 until 1 December 1947).
A Mathematician’s Apology. § 10. July 18, 1940. ISBN 978-1-68422-185-1.
With a foreword by Charles Percy Snow. ISBN 978-1-107-60463-6.

The author is passionately curious about the future.

Der Autor ist sehr leidenschaftlich neugierig auf die Zukunft.
L’auteur est passionnément curieux de 1’avenir.
L’autore & appassionatamente curioso del futuro.

O autor ¢ muito apaixonadamente curioso sobre o futuro.

Felix Fortunatus Flemisch (17 May 1951 until today).
Firenze. April 11, 1992.

We now indicate how to continue the way 1) of Page 7 for
the remaining types = € “B = PQqgan, C = PSp,, D = PQ" 4,
A= PSU,, D= PQ ¢venn” and how to prove the Conjecture 3
of Page 9 by announcing the two follow-up papers “The Strong
Sylow Theorem for the Prime p in the Locally Finite Classical
Groups” and “The Strong Sylow Theorem for the Prime p in
Locally Finite and p-Soluble Groups” which we hope to finalise
in 2025. They are the first two parts of The Second Trilogy about
Sylow Theory in Locally Finite Groups whose third part will
be our forthcoming research paper “Augustin-Louis Cauchy’s and
Evariste Galois’ Contributions to Sylow Theory in Finite Groups”.
The First Trilogy are [15] on p-uniqueness subgroups and [this
paper] on A" and A = PSL, (see the Postscript on Page 15).

Part 1 of The Second Trilogy considers the locally finite
classical groups which are the linear, symplectic, unitary and
orthogonal groups over locally finite fields. The linear groups
are dealt with in this paper and the others are subgroups of the
linear groups which are defined through a non-singular bilinear
form (or a scalar product) which is either skew-symmetric (or
alternate) or Hermitian or symmetric (defining a quadratic form)
as the group of isometries of the form. They were introduced in
the classical books [1] and [60] and are further studied in [6],
[24] and [52]. We do not refer to the groups of Lie type resp. the
Chevalley groups and the twisted Chevalley groups being defined
through a Dynkin diagram automorphism followed by a field
automorphism, which correspond to the classical groups (see
[24], pp. 151-152) and whose fine introductory references are
the “Lecture Notes on Chevalley Groups” by Robert Steinberg
(1967 and 2016) together with the book “Simple Groups of Lie
type” by Roger W. Carter (1972 and 1989). Thus we study
PQ aan> PSpn, PQcvenn, PSU, and PQ ¢yenn and not B, C, D,
* A and *D. Hence the proofs of Part 1 for the further five types
of Classical Groups can and will also eventually be based on our
very beautiful Theorem 2 about the General Linear Groups.

Part 2 of The Second Trilogy considers (locally) finite and
p-soluble groups. It summarises the work by B. Hartley and A. Rae
regarding 4, and p“? (see Page 38 of [15] and the References of
[44]) and the foregoing work on the classical Hall-Higman theory
regarding 4, and pbl’, ¢, d,, p? and 1, by P. Hall, G. Higman,
A.H.M. Hoare, T.R. Berger, F. Gross, E.G. Bryukhanova and
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last but not least by A. Turell [47] as indicated on Page 8 and
Page 9. It then proves Conjecture 3 not only in English but
partly in Portuguese for well-founded historical reasons.

Part 3 of The Second Trilogy pays tribute to Augustin-
Louis Cauchy’s and Evariste Galois’ contributions to Sylow
theory in finite groups. It proves in a unified way Lagrange’s
theorem and Cauchy’s concealed second and third group
theorems by exploring and using the following three rectangles
a.k.a. tableaux which we show here for the first time though
with only minor comments in order to raise inquisitiveness:

@
9

complete the first row consists of all _§ setg Orbi(G)

right elements zx of G (1 <k <M) g|:= G\ H of all

transversal acting on H in the following 2 | orbits of H

forGinH  rows via multiplication from é under G acting
the left by their inverses g by left translation

ti=1=121 Z2 Z3 M o |G= 1Orb(G)

5 2t | b am B <« | Gh=10rb(G)

fg V) ts 23 fg pav) fg A Gfs = tSOrb(G)

tR V) tR 23 fR Zm fR > GtR = tROI‘b(G)

rectangle |G| x [H:G] of elements

set of the first row consists of all right Y | X=<u>;
certain orbits  cosets Gxik of G in H (0 <k <p-1) _@ set of all orbits of H
of Hunder G with the powers of some p-blank x1 E under GOV X,
acting by left  of G in H; the following rows a%‘ the simultaneous actions
translation consist of right cosets of G in H with % | of G by left translation and
the powers of left conjugates of x1 “ | of X by right translation
Gyt =G Gxp Ga? Gyt — | cosets G<x1>=GX
= double coset G1X
Gyt =Gl | Gub |Gx'h Gy’ | cosets G<x2> 1
= double coset G, X
Gxt:=Gls | Gxsts | Gxg'hs GxP 't | cosets G<x3> 13
= double coset Gt3 X
Gxglts=Gls | Gasts | Gag’ts | ... | Gxs"ts < | cosets G<xs>1s
= double coset Gts X
tableau p x [H:G]/p of cosets
set of the first row consists of all right cosets ] |X| = [H|,=p;
certain orbits  G¥eof GInH (0=c< |H|,-1) with the g set of all orbits of H
o Bl sl @ elements of some Sylow p-subgroup X of H, 2 | underGOUX,
ting by left all of whose elements of order p are & P )
A Y = p-blanks of G in H; the following rows § L taneons aAchons
translation consist of right cosets of G in H with g of G by left translation and
the elements of left conjugates of X © | of X by right translation
Gxiot1=G G G G x1pa <> | cosets G {x1c | 0 <c<pb-1}
= GX = double coset G1X
Grnb =Gt Gxn by Ganly Gxapbaty | cosets G{xzc | 0<c<pt-1} 1
= double coset Gt X
Guxnits=Gts Gz ls Gxnls Gxspbats | cosets G{x3c | 0<c<pt-1} 15
= double coset G5 X
Grrotr=Gtr G tr Gamtr Guxrpbatr < | cosets G {xrc | 0<c<pb-1}
= double coset G tr X

rectangle |H|p x [H:G]/|H|, of cosets

Subsequently it first corrects a great misunderstanding of
Cauchy’s work of 1845/1846 in the quite renowned literature
and then presents Cauchy’s work of 1812/1815 in the sincere
succession of the earlier work of Joseph-Louis de Lagrange
(Giuseppe Luigi Lagrangia), of Alexandre-Théophile Vander-
monde and of pioneer Paolo Ruffini, as indicated by Cauchy
himself, thereby identifying and explaining the crucial parts of
Cauchy’s first publication of 1812/1815 on group theory.

It then presents what Evariste Galois surely knew about
Cauchy’s group theorems and even already about Sylow’s
theorems by referring to his published papers and with utmost
care to his posthumously published papers and to his manuscripts.

Afterwards it summarises a large number of papers on Early
group theory and early Sylow theory in finite groups centred
around both Cauchy’s and Galois’ work and completes this
résumé with quite exciting own excavations. It then closes with
grateful Acknowledgements and a sizeable list of References
which is and must be chronologically ordered and not by the
names of the authors or institutions as usual.

In the following we describe Part 3 in more detail.

We are planning to revise thoroughly Sylow theory starting
with a really new proof for Cauchy’s known as fundamental
theorem in group theory (look at https://en.wikipedia.org/wiki/
Cauchy%?27s_theorem_(group_theory)) based on beautiful ideas
by Galois. In the forthcoming (third) follow-up Research Article
“Augustin-Louis Cauchy’s and Evariste Galois’ Contributions to
Sylow Theory in Finite Groups” beyond our First Trilogy (look
at Page 15) we first describe and then provide new but classical
and rather unified proofs for the very fundamental theorems by
Lagrange and by Cauchy on finite groups being of — in our
modest opinion — considerable historical relevance.

We can describe consequences of the absence of group
elements of prime order p, in spite of their ready availability in
overgroups, thereby providing a considerably unified and also
heretofore undiscovered approach to the theorems of Lagrange
and of Cauchy and their implications for p-groups. Since this
approach uses only ideas from a very well-known paper by
Augustin-Louis Cauchy presented first in 1812 and then
published later in 1815, this bears considerable historic
relevance. While it is widely acknowledged that Cauchy had
published his fundamental group theorem not until 1845/1846
and had there based it on double cosets of the finite permutation
group and some Sylow p-subgroup of its symmetric overgroup,
one could henceforth well argue that he had presented his
theorem in a truly concealed way already a good thirty years
earlier. Evariste Galois knew both Cauchy’s paper of 1815 and
— based on his own rather perceptive considerations — Cauchy’s
group theorem and even already Sylow’s existence theorem.
Cauchy’s and Galois’ ideas are particularly lucid in the embryonic
case of permutation groups of prime degree p (> 5) when Sylow
p-subgroups of the symmetric overgroup obviously exist. If G = H
with H being finite, then the unified method of proof consists in
arranging the elements of H in a rectangle with |G| columns and
[H:G] rows resp. the (right) cosets of G in H in a rectangle with
p resp. with |H|, columns and [H:G]/p resp. [H:G]/|H|, rows to
obtain information about [H:G] (see the three rectangles above).

Cauchy’s theorem of 1812/1815 is a direct consequence of
[H:<x>] > |G| if x is an element of H of order p with x & G
which we call a p-blank of G in H ©. We find that Lagrange’s
theorem and Cauchy’s theorem are just like two sides of a coin
where “Lagrange” is representing the case po =1 and “Cauchy”
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represents the case p1 = p thereby offering a unified approach
to both theorems. Therefore, “Cauchy” is not only a partial
converse of “Lagrange” but it is in fact a smart “swapping” of
p for 1 as well: p0=10p=p1.

Cauchy depicts 1815 a p-cycle for some prime p as a regular

¢

p-gon N and studies p-cycles in considerable detail.

We present Cauchy’s classical proof of Lagrange’s theorem
and supplement it with a beautiful modern proof. Afterwards
we present Cauchy’s classical proofs of his published first
theorem, of his concealed second theorem and of his concealed
third theorem. Subsequently we introduce double cosets and
show how they lead to a modern proof of Cauchy’s second and
third theorems what Cauchy did as well but not until 1845/1846
after very thoroughly reconsidering, sustainably impressed by a
research paper of Joseph Bertrand, his work of 1812/1815,
that is, after — believe it or not — 30 years.

We continue with first correcting a great misunderstanding
of Cauchy’s work of 1845/1846 in the literature and then
presenting Cauchy’s work of 1812/1815 in the very sincere
succession of the earlier work of Joseph-Louis de Lagrange
(Giuseppe Luigi Lagrangia), Alexandre-Théophile Vander-
monde and Paolo Ruffini, as indicated by Cauchy himself, and
identify, explain and comment the crucial parts of Cauchy’s
first publication on group theory. Finally we proudly present
what Evariste Galois knew already about Cauchy’s group
theorems and about Sylow’s famous theorems by referring to
his published papers and also to his posthumously published
papers. However, this will require quite considerable further
(historical) research. We would be inestimably delighted if
several group theory researcher would help us with this tedious
but very suspenseful work and are ready to coordinate all the
work. We are then closing with fairly comprehensive Acknow-
ledgements and a greatly sizeable list of References.

Augustin-Louis Cauchy
(21 August 1789 until 23 May 1857)

Evariste Galois
(25 October 1811 until 31 May 1832)

9. The First Trilogy and The Second Trilogy
and their reviews

The First Trilogy are the papers

1a) Characterising Locally Finite Groups satisfying the Strong
Sylow Theorem for the Prime p — Part 1 of a Trilogy (see [16]),
1b) Characterising Locally Finite Groups satisfying the Strong
Sylow Theorem for the Prime p — Part 1 of a Trilogy.
Second edition (see [17]),

2) About the Strong Sylow Theorem for the Prime p in Simple
Locally Finite Groups — Part 2 of a Trilogy (see [18]), and

3) The Strong Sylow Theorem for the Prime p in Projective Special
Linear Locally Finite Groups — Part 3 of a Trilogy (see [19]),

and The Second Trilogy are the papers

1) The Strong Sylow Theorem for the Prime p
in the Locally Finite Classical Groups,

2) The Strong Sylow Theorem for the Prime p
in Locally Finite and p-Soluble Groups, and

3) Augustin-Louis Cauchy’s and Evariste Galois’
Contributions to Sylow Theory in Finite Groups.

The mathematical subject matter of The First Trilogy is
described in its review in Contemporary Mathematics, Volume 4,
Issue 3, pp. 484-487 (see [20]). 1a) and 1b) of the Trilogy were
subsequently submitted to Advances in Group Theory and
Applications (AGTA) and peer reviewed and published there
(see [15] and Appendix 1) and received a review by Mathematical
Reviews (see MR4441631) and also a review by Zentralblatt fiir
Mathematik (see Zbl 1496.20065). The Postscript on Page 15
describes briefly the contents of The First Trilogy.

The review in Contemporary Mathematics was enlarged to
a much more detailed review in the Journal of Mathematical
& Computer Applications (JMCA) (see [21]).

The Second Trilogy is not yet published (and even not yet
finally developed) and therefore cannot be reviewed, but a review
along the pattern of [21] is planned and its contents is already
summarised in great detail in Chapter 8 above. This summary
will be the basis of the planned review. It is well-expected that the
published papers will receive a review by Mathematical Reviews
and a review by Zentralblatt fiir Mathematik, at least when being
published by AGTA or by Contemporary Mathematics or by
JMCA including references to the previous publications.

However, with these two trilogies the development of Sylow
theory in (locally) finite groups cannot be finished. In particular,
it is a major challenge to determine all (minimal) p-uniqueness
subgroups for the known finite simple groups and their natural
overgroups, the symmetric and the linear groups, and for the

(locally) p-soluble groups, distinguishing p > 5, p =3 and p = 2.
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Postscript

The research paper [15] (see MR4441631 and Zbl 1496.
20065) has as many “actual” pages as there are “known”
sporadic finite simple groups. As the overwhelming majority
of group theorists (including the author) believe, these 26 groups
are now really all and never in the future further “sporadics” will
appear (not counting the Tits group *F4(2)’ [as some do] because
it did in fact not appear sporadically at the stage). A central
question of Sylow theory in locally finite groups is, as pointed
out by Prof. Otto H. Kegel (see [44]), how the rank of these
altogether seven rank-unbounded families of finite simple groups
{A", A=PSL,, B=PQuuqn, C=PSp,, D=PQ"c, ., A =PSU,,
D= PQ en n} 1s bounded, say, someway (“in terms of”’) by any
p-uniqueness subgroup P. More precisely, let us discover a nice
function f, of the order of P or (much more challenging) of the
p-uniqueness of each of these (classical) groups G, that bounds
the rank: n < f,(|P]) or n < f,(a,(G)). The author answered
Kegel’s question in the affirmative already for all the beautiful
alternating groups A" in his Diplomarbeit [14] and he is now
publishing the answer as Theorem 1 b): n < f,(|P|) ;== (p +2) *
|P| « 271=1 - 1. This is, although it is similar, much worse then
the result obtained for all the beautiful linear groups GL(n, )
(see Lemma 2 ¢) on Page 11). We could optimise our answer
if we would come to know a,(A"), that is, the minimal p-unique
subgroups of the alternating groups. Let us look for them!

In the paper at hand we answered the question as Theorem 4
for the PSL groups A = PSL, thereby completing for the time
being our (in our modest opinion) beautiful (First) Trilogy
— [15] on p-uniqueness subgroups and [this paper] on A" and
A = PSL, — about Sylow Theory in Locally Finite Groups
which provides a number of good suggestions to stimulate and
encourage future research. All of these should become rather
very challenging beautiful open problems for the international
community of (locally finite) group theory researchers. We are
ready to coordinate related research work (see also Page 14). ©
A detailed overview of the 19 families of “known” finite simple
groups is given by the figure “The Periodic Table Of Finite Simple

Groups” (© 2012 by the great Ivan Andrus [see https://irandrus.
files.wordpress.com/2012/06/periodic-table-of-groups.pdf and https:/
irandrus.wordpress.com/2012/06/17/the-periodic-table-of-finite-
simple-groups/]) on Page 3 and by the beautiful figure on Page 8
which shows the 19 families of finite simple groups as 13 sporadic
groups above 18 infinite families around another “sporadic”
group (the Tits group “F4(2)’) and 13 sporadic groups below ©.

Siamo angeli con un’ala soltanto
e possiamo volare solo restando abbracciati.
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Appendix 1
Reference [15] with MR Review and Zbl Review

15. F.F. FLEMISCH: “Characterising Locally Finite Groups Satisfying
the Strong Sylow Theorem for the Prime p”, Adv. Group Theory Appl.
13 (June 2022), 13-39 (see MR4441631 and Zbl 1496.20065).
https://www.advgrouptheory.com/journal/index.php#vol13 and
https://www.advgrouptheory.com/journal/Volumes/13/Flemisch.pdf

While the MR Review is very disgracefully simply stating only the
main result and is telling nothing at all about the new ideas, the Zbl
Review states at least the Abstract as a Summary and all References
but also very regretfully states nothing about the beautiful new ideas ®

For example, we are rightly a little very proud of two discoveries:
1) Theorem 3.6 on Page 28 of [15], which found a symmetry between
non-conjugated Sylow p-subgroups, and then also 2) that the minimal
members of the set Unique,U from Page 35 of [15] should play for a
finite U a very similar important role as its maximal members which
are the Sylow p-subgroups. It then becomes a challenge to determine
the minimal members for sufficiently “known” (locally) finite groups,
in particular for all the “known” finite simple groups and the finite
p-soluble groups, and their core properties, in particular conjugacy and
minimal w.r.t. order vs. minimal w.r.t. inclusion. These are mathe-
matical ideas which propose exciting new directions for (timeless and
eternal) Sylow theory in (locally) finite groups during the coming years
where we intend to join in, to support, to coordinate and to try to shape.
They could not have been included in The First Trilogy and are as well
because of their complexity not scheduled to become part ot The
Second Trilogy. Hence, they will be facinating topics of very hopefully
joint research for the time after publication of The Second Trilogy.

The MR Review is available at MR Lookup under
https://mathscinet.ams.org/mathscinet/relay-station?mr=4441631
and in detail on Page 16 of the eMR Section 1F for January 2023
at https://www.ams.org/mrslisting/2023/1F/2023-1F-01.pdf.

The Zbl Review is available at Zentralblatt MATH
under https://zbmath.org/1496.20065 and its PDF
at https://zbmath.org/pdf/07554056.pdf.

o For the complete Appendix 1, having 33 pages, see Page 21 to Page 53.

Appendix 2

Introduction to the Talk by Felix F. Flemisch at IGT 2024
on April 11", the 120" birthday of Philip Hall

My name is Felix Flemisch. I come from Munich in Bavaria in
Germany. In the 1970ties and 1980ties I was a considerably busy and
faithful student of Prof. Otto H. Kegel 2 in such beautiful Freiburg
1.Br. in Germany. In 2021 I luckily came again in contact with my
adored teacher and met him in person and in good shape during June
and July of 2022 in Freiburg. I present at IGT 2024 a POSTER about a
new paper on Sylow theory in simple locally finite groups which is
based on the famous Kegel covers and a beautiful paper of mine about
rounding off the general Sylow theory in locally finite groups,
friendly published by AGTA, under the rigid supervision of esteemed
Prof. Francesco de Giovanni . Prof. Kegel gave me kindly the hint
to submit the paper to AGTA whose review process improved the paper
substantially so that it now can be the basis for further work on the subject.

Both papers have a quite strong relationship to Prof. Kegel’s work
on Sylow theory, each one proving a conjecture of him and centred
around the gay concept of a p-uniqueness subgroup which is a finite
p-subgroup being friendly contained in such a unique Sylow p-subgroup.
The POSTER shows the twelve slides of my talk as a PowerPoint presen-
tation which include as well tough suggestions to stimulate and encourage
future research. I much hope to enthuse group theorists with them and
I am ready to coordinate related research work. This is my main interest
why I present the POSTER. However, I am sadly aware that locally
finite groups, and their Sylow theory in particular, seem not (yet) to be
current topics of group theory research except some special questions
presented on Tuesday. A limited number of nicely printed copies of the
paper’s abstract, its POSTER in DIN A3, and its preprint are available.
I will deposit them tomorrow morning in SALA CARTAROMANA.
An underlying research paper to this Talk will be published.

e For the complete Appendix 2, having 18 pages and including the beautiful
twelve slides of the presentation, some beautiful photographs of Freiburg i.Br.,
two beautiful photographs of Prof. Otto H. Kegel and four photographs of the
wonderfully beautiful Lake Ammersee in Bavaria, see Page 54 to Page 71.

Copyright: © 2025 Felix F. Flemisch. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original
author and source are credited.
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Flemisch, Felix F.
Characterising locally finite groups satisfying the strong Sylow theorem for the
prime p. (English summary)
Adv. Group Theory Appl. 13 (2022), 13-39.

Let p be a prime and let G be a locally finite group. Then, G is said to satisfy the Sylow
Theorem for the prime p if all maximal p-subgroups of G are conjugate. The group G is
said to satisfy the strong Sylow Theorem for the prime p if every subgroup of G satisfies
the Sylow Theorem for the prime p. Further, a finite p-subgroup P of G is said to be
singular in G if for every finite subgroup F of G containing P there is a unique Sylow
p-subgroup of F containing P. In this paper, it is shown that G satisfies the strong Sylow
Theorem for the prime p if and only if every subgroup S of G contains a finite p-subgroup
which 1s singular in S. This answers a question posed by Otto H. Kegel in 1987. The
paper is based on the author’s thesis from the year 1984 [Lokal endliche Gruppen mit
Sylow p-Satz oder mit min-p. I: Grundbegriffe, ein Charakterisierungssatz und
lokale Prinzipien, Diplomarbeit, Univ. Freiburg, 1984; per bibliography ]. Stefan Kohl
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Endomorphism kernel property for finite groups. (English summary)

Math. Bohem. 147 (2022), no. 3, 347-358.

Summary: “A group G has the endomorphism kernel property (EKP) if every congruence
relation # on G is the kernel of an endomorphism on G In this note we show that all
finite abelian groups have EKP and we show infinite series of finite non-abelian groups
which have EKP.”

MR4440439 20D15 20J99

Kalteh, O. (IR-IAUMS-M; Mashhad); Jafari, S. Hadi (IR-IAUMS-M; Mashhad)
Capable groups of order p*¢. (English summary)

Algebra Discrete Math. 33 (2022), no. 1, 104-115.

A group G is called capable if there exists a group E such that G = E/Z(FE). The
epicenter Z*(@) of G is the smallest central subgroup such that G/Z*(G) is capable.
Obviously, (7 is capable if and only if Z*(G) = 1.

This paper studies the capability of groups of order pg, where p and g are distinct
prime numbers and p > 2. More specifically, by calculating the non-abelian exterior
square (G A (G, the authors determine the epicenter for groups of order p*q in Theorem 2.
As a corollary, they identify the capability of groups of order p3q. Jungiang Zhang
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Let p be a prime and let G be a locally finite group. Then, G is said to satisfy the Sylow
Theorem for the prime p if all maximal p-subgroups of G are conjugate. The group G is
said to satisfy the strong Sylow Theorem for the prime p if every subgroup of GG satisfies
the Sylow Theorem for the prime p. Further, a finite p-subgroup P of G is said to be
singular in G if for every finite subgroup F of G containing P there is a unique Sylow
p-subgroup of F' containing P. In this paper, it is shown that & satisfies the strong
Sylow Theorem for the prime p if and only if every subgroup S of G contains a finite p-
subgroup which is singular in S. This answers a question posed by Otto H. Kegel in 1987.
The paper is based on the anthor’s thesis from the year 1984 [Lokal endliche Gruppen
mit Sylow p-Satz oder mit min-p. I: Grundbegriffe, ein Charakterisierungssatz und lokale
Prinzipien, Diplomarbeit, Univ. Freiburg, 1984; per bibliography]. Stefan Kohl
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Variations on Glauberman’s ZJ theorem. (English summary)

Int. J. Group Theory 11 (2022), no. 2, 43-52.

It is well known that the classical ZJ theorem by G. Glauberman has been proved
in various versions, depending on the various possible definitions of the Thompson
subgroup. In this paper the author presents an “axiomatic” version of the ZJ theorem,
and proposes new choices for the family of abelian subgroups of the Sylow p-subgroup
S of the finite group & that can generate a sort of generalized Thompson subgroup for
which a ZJ-type theorem holds. Furthermore, I believe that the paper could be very
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During his lectures to the 1987 Singapore Group Theory Conference [10] Otto H. Kegel
proposed the following question: “/f every subgroup S of the locally finite group G contains

a finite p-subgroup which is singular in S, does G then satisfy the strong Sylow Theorem
for the prime p?” In this paper we answer the question in the affirmative. The paper formed
an essential part of the author’s German Diplomarbeit of 1984 (the “Charakterisierungssatz”)
written before he left academia [4]. We present the Charakterisierungssatz as Theorem 3.9,
and summarise then the result as Theorem 3.10, stating that if G is a locally finite group

and p is a prime, then G satisfies the strong Sylow theorem for the prime p if and only if
every subgroup S of G contains a finite p-subgroup which is singular in S. Subsequently

we present a few novel concepts for Sylow theory in (locally) finite groups to encourage
future research. The paper is divided in four sections: Introduction; Good Sylow p-subgroups
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Characterisini localli finite groups satisfying the strong Sylow theorem for the prime p.

(English) (Zbl 1496.20065

Adv. Group Theory Appl. 13, 13-39 (2022).

Summary: During his lectures to the 1987 Singapore Group Theory Conference Otto H. Kegel proposed
the following question: “If every subgroup S of the locally finite group G contains a finite p-subgroup
which is singular in S, does G then satisfy the strong Sylow Theorem for the prime p?” In this paper
we answer the question in the affirmative. The paper formed an essential part of the author’s German
Diplomarbeit of 1984 (the “Charakterisierungssatz”) written before he left academia [F. F. Flemisch,
“Lokal endliche Gruppen mit Sylow p-Satz oder mit min-p. I: Grundbegriffe, ein Charakterisierungssatz
und lokale Prinzipien”, Diplomarbeit, University of Freiburg, Germany (1984)]. We present the Charak-
terisierungssatz as Theorem 3.9, and summarise then the result as Theorem 3.10, stating that if G is a
locally finite group and p is a prime, then G satisfies the strong Sylow theorem for the prime p if and only
if every subgroup S of G contains a finite p-subgroup which is singular in S. Subsequently we present a
few novel concepts for Sylow theory in (locally) finite groups to encourage future research. The paper is
divided in four sections: Introduction; Good Sylow p-subgroups and p-uniqueness subgroups; Basic the-
orems of Sylow theory in locally finite groups and our Charakterisierungssatz; Novel concepts for Sylow
theory in (locally) finite groups.
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Abstract

During his lectures to the 1987 Singapore Group Theory Conference Otto H. Kegel
proposed the following question: “If every subgroup S of the locally finite group G
contains a finite p-subgroup which is singular in S, does G then satisfy the strong Sy-
low Theorem for the prime p?” In this paper we answer the question in the affirmative.
The paper formed an essential part of the author’s German Diplomarbeit of 1984 (the
“Charakterisierungssatz”) written before he left academia [4]. We present the Charakter-
isierungssatz as Theorem 3.9, and summarise then the result as Theorem 3.10, stating
that if G is a locally finite group and p is a prime, then G satisfies the strong Sylow
theorem for the prime p if and only if every subgroup S of G contains a finite p-sub-
group which is singular in S. Subsequently we present a few novel concepts for Sylow
theory in (locally) finite groups to encourage future research. The paper is divided in
four sections: Introduction; Good Sylow p-subgroups and p-uniqueness subgroups;
Basic theorems of Sylow theory in locally finite groups and our Charakterisierungssatz;
Novel concepts for Sylow theory in (locally) finite groups.

Mathematics Subject Classification (2020): 20D20, 20F50, 20D15

Keywords: singular p-subgroup; good Sylow p-subgroup;
minimal p-unique subgroup

1 Introduction

In his four workshop lectures on Sylow theory in locally finite groups
at the famed Singapore Group Theory Conference of June 1987 [10],
Otto H. Kegel stated that he could not settle the following question: if
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every subgroup S of the locally finite group G contains a finite p-subgroup
which is singular in S, does G then satisfy the strong Sylow Theorem for the
prime p? Recall that the group G of arbitrary cardinality is defined to
be locally finite if every finite subset of G is contained in a finite sub-
group of G and the finite p-subgroup P of the locally finite group G
is said to be singular in G if for every finite subgroup F of G contain-
ing P there is just a unique Sylow p-subgroup of F containing P. Here
a p-group for the prime p is a group of arbitrary cardinality each of
whose elements has order a finite power of p. Then a p-group is fi-
nite if and only if its order is a finite power of p. The locally finite
group G is said to satisfy the Sylow Theorem for the prime p (or the Sy-
low p-Theorem) if the maximal p-subgroups of G are all conjugate in G
and G satisfies the strong Sylow Theorem for the prime p if every sub-
group of G satisfies the Sylow Theorem for the prime p. Kegel’s lec-
tures present the basics of Sylow theory in locally finite groups, give
an overview of the work of Brian Hartley and Andrew Rae on Sy-
low theory in locally p-soluble groups, and reveal in great detail the
normal structure for groups satisfying the strong Sylow Theorem
for the prime p in the general case (for p > 5). Chapters 2 and 4
of [3] give a good overview as well but without appreciating Hart-
ley’s, Rae’s and Kegel’s fundamental papers properly and avoiding
all their beautiful details.

In this publication we turn Kegel’s question into a theorem: If every
subgroup S of the locally finite group G contains a finite p-subgroup which
is singular in S, then G satisfies the strong Sylow Theorem for the prime p.
Since the converse is also true (see [4] and [10]), this characterises
the locally finite groups which satisfy the strong Sylow Theorem for
the prime p. The proof of our Charakterisierungssatz is not presented
in its original form since it was written in German as the main re-
sult of the author’s Diplomarbeit during 1978-1984 (see [4]). We de-
cided against a presentation (for historical reasons) as an amalgam
of English and German and translated all employed parts into En-
glish, thereby introducing a large number of corrections and embel-
lishments, in particular Theorem 3.6.

The central discovery that enabled in those days the proof was
the relationship of p-subgroups which are singular to the good p-sub-
groups (see [12]) and the strongly local p-subgroups (see [13]) of An-
drew Rae. Let G be any locally finite group and let P be a p-subgroup
of G. A local system for G is a family X of finite subgroups such that ev-
ery element of G lies in a Z-group and for every two Z-groups there
exists another X-group which contains both, for example, the local
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system of all finite subgroups of G. The p-group P is said to reduce
into a local system L for G if for every X-group U we have that PN U is
a Sylow p-subgroup of U, and then P is a maximal p-subgroup of G
(see below), P is said to be good if there exists a local system for G
into which P reduces, and P is said to be strongly local or, as we pre-
fer to say, very good if given any local system L for G there exists a
subsystem of X into which P reduces. A very good p-subgroup is of
course good, and, as we show below, any singular p-subgroup P of a
locally finite group G is contained in a unique maximal p-subgroup
of G which is very good and the existence of P enforces the conjugacy
of the good Sylow p-subgroups in countable locally finite groups
We have the ambition to present not only our own results but also
important known results to offer some context and a unified depic-
tion. So when we refer to [4] it does not always mean (although it
almost always means) that we present research results of ourselves.

2 Good Sylow p-subgroups and p-uniqueness
subgroups

A maximal p-subgroup of a locally finite group G is called here a Sy-
low p-subgroup of G and we denote the set of all Sylow p-subgroups
of G by Syl,,G. If a p-subgroup of a locally finite group G reduces
into a local system for G, it is a maximal p-subgroup.

Lemma 2.1 (see [4]) Let p be a prime and let P be a p-subgroup of a
locally finite group G. If there exists a local system L for G into which P
reduces, then P is a Sylow p-subgroup of G.

ProorF — Let S € Syl,, G with P < S. Suppose, P # S. Then there ex-
ists an element x € S\P. Let U € £ with x € U. It follows that (P N U, x)
is a p-subgroup of U with PNU < (PN U, x) < S. This contradicts the
prerequisite PN U € Syl, U. O

Notice that the above result is proved in [3], Lemma 2.2.10, only for
nested local systems and in a more complicated way. The local sys-
tem X for the locally finite group G is said to be nested (in German
geschachtelt) if there is a sequence {U, | n € IN} of finite subgroups
of G such that Uy, < U, 7 forallme N and £ ={U, [ n € N}LIf G
is a countable locally finite group and {x, | n € IN} an enumeration
of G, let Uy, := (x1,%2,...,%xn) (n € N). Then {U, | n € N}is anested
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local system for G. If the locally finite group G has a nested local sys-
tem, then G is countable. We can identify all the good Sylow p-sub-
groups of countable locally finite groups by means of nested local
systems for them.

Lemma 2.2 (see [4]) Let G be a countable locally finite group.

a) If & is a local system for G, then L contains a local subsystem X
which is nested.

b) Let L = {Un, | n € IN} be a nested local system for G. Then there
exist with respect to (w.r.t.) £ good Sylow p-subgroups of G. In par-
ticular, G contains at least one good Sylow p-subgroup.

ProorF — a) Let X be a local system for G and {x,, | n € IN} an
enumeration of G. For x,y € G, we define Uy € £ with x € Uy and
(Uyx, Uy) < Uyy as follows: let Uy, € Z with x7 € Uy,; if subgroups
Uy, x,x3...xn € = are already defined with

X]IX2/X3/-'-/XTL S uX] X2X3...Xn (Tl S N)/

let u G Z With Xn_|_] G U and UX] X2 X3 eee X X141 6 Z Wlth

Xn41 Xn+41

<ux1 X2 X3 eee Xy s uxn+1> < ux1 X2 X3 eee Xm Xnp 1 (n € IN).

Then the countable subset £ := {Uyx, x,x3...x, | T € N} of Zis a
nested local system for G.

b) Let Py € Syl,U;. If
P1 <P2<---<Pn

are already finite p-subgroups of G with P; € Syl,U; (1 <1 < n),
let P41 € SylpUn 1 with Py < Py1 (n € IN). Define S := (J,, Pn.
Then S is a p-subgroup of G, which reduces into X, and so is good
with § € Syl, G by Lemma 2.1. O

Another argument for proving Lemma 2.2 b) comes from Ke-
gel’s Lemma 1.1 of [10] and is very similar to that of Lemma 2.1. Note
also that Lemmata 2.1 and 2.2 a) are (and were) well-known but we
presented slick improved proofs and did not find Lemma 2.2 a) in
the literature. For Lemma 2.2 b) see also [12], 1.11.

We can now introduce the p-uniqueness subgroups and present
the close relationship between them and the good Sylow p-subgroups.
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In [4] we call p-dominant a p-subgroup of the locally finite group G
if it is finite and is contained in a unique Sylow p-subgroup S of G,
and call then S singular (in German einzigartig or einmalig or singulir,
in a double sense). Although “dominant” in German is “dominant”
in English we now find it smarter to define such a p-subgroup of G as
a p-uniqueness subgroup (in German, quite a bit unwieldy, p-Einzigar-
tigkeitsuntergruppe or p-Einmaligkeitsunterquppe) of G for S or w.r.t. S.
We observe that there is no danger of confounding our p-uniqueness
subgroups with the p-uniqueness subgroups which play a major role
in the classification of the finite simple groups (see page 82 of [5]).

Proposition 2.3 Let G be a locally finite group and let p be a prime. Let P
be a finite p-subgroup of G. The following properties are equivalent:

1) P is a p-uniqueness subgroup of G.
2) P is singular in G.

3) Whenever Py and P, are finite p-subgroups of G with P < Py NP,
then (Pq,P3) is a p-group.

PROOF — 1) = 2) Suppose P is not singular in G. Then we have
a finite subgroup F of G such that P is contained in at least two Sy-
low p-subgroups P; and P, of F. Let S; be a Sylow p-subgroup of G
which contains P; (1 = 1,2). If Sy = S, then (Pq,P2) < (S1,S2)NFis
a p-group which contradicts Py € Syl,Fand P, € Syl,F. Thus S; # S».
Therefore P is not a p-uniqueness subgroup of G.

2) = 3) Let P < Py NP, where Py and P, are finite p-subgroups
of G and suppose that F := (Py,P;) is not a p-group. Then P < F
and since (P, P2) is not a p-group there are two distinct Sylow p-sub-
groups Q7 and Q. of F containing P; and P, respectively. But
then P < Q7 N Q7 and so P is not singular in G.

3) = 1) Suppose that 3) holds and that P is not a p-uniqueness
subgroup of G. Then there are distinct Sylow p-subgroups Q7 and Q>
of Gsuch that P < Q1 NQ,. Letx € Q1\Qz2andy € Q,\ Q. It
follows that P; := (P,x) and P, := (P,y) are finite p-groups and
that (Pq,P2) is not a p-group, contradicting 3). O

Kegel discovered insight gaining equivalent conditions for the con-
jugacy of good Sylow p-subgroups in countable locally finite groups.
We expandedly restate and improvedly reprove his result in our ter-
minology thereby adding the property of the existence of a p-unique-
ness subgroup. We also notice hat Kegel’s argument for 2) = 4) on
page 6 and following of [10] is really not fully convincing.
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Theorem 2.4 (see [10], Theorem 1.2) For the countable locally finite
group G and the prime p the following properties are equivalent:

1) There exists a nested local system {G; | i € IN} for G and an index i
such that for every pair j > 1 > ig of indices every Sylow p-sub-
group Py of Gy lies in a unique Sylow p-subgroup P; of G;.

2) There exists a finite p-subgroup Po of G which is singular in G.
3) There exists a p-uniqueness subgroup Py of G.

4) Any two good Sylow p-subgroups of G are conjugate in G.

Proor — 1) = 2) Choose P;, € Syl,G;, and put Py := P;,. Let F
be any finite subgroup of G containing Py. For every index j such
that F < Gj, the unique Sylow p-subgroup of G; containing Py must
contain a Sylow p-subgroup of F, and no other Sylow p-subgroup of F
can contain Py. Clearly 2) = 1). From Proposition 2.3 follow 2) = 3)
and 3) = 2). To show 4) = 1) assume that for any nested local sys-
tem {G; |1 € IN} for G and any index iy, there are infinitely many
pairs j > 1 > ip of indices for which some (and hence any by con-
jugation) Sylow p-subgroup of G; is contained in at least two Sy-
low p-subgroups of G;. We then can construct, similar to Theorem 3.2
or Theorem 3.8 below, 250 maximal p-subgroups of G which are
good by Lemma 2.2 and cannot all be conjugate in G. Thus 4) en-
tails 1), and hence 2). It remains to show 3) = 4). Let P and Q be
good Sylow p-subgroups of G obtained as two unions of Sylow p-sub-
groups of nested local systems {G; |1 € N} and {H; | i € N} for G
(see Lemma 2.2) and let Sy be the unique Sylow p-subgroup of G
containing Py; we show that P is conjugate to Sp and Sy is conjugate
to Q, and therefore P is conjugate to Q; if P and Sy are not conjugate
then one of them must have property (x) of Theorem 3.1 (see below)
which means in particular that it is not singular; so P has property (x);
now P reduces into {G; | i € N}, thatis, PN G; € Syl, G; foralli € IN;
there exists an index iy such that Py < Gj; then Py < P;, for some
unique P, € Syl, Gi,; now, by Sylow’s classical theorem, let x be an
element of Gj;, such that P{‘O =PNGj,; then P{‘O is a finite p-sub-
group of P which is contained in just only one Sylow p-subgroup
of G thereby contradicting property (x) of P; for exactly the same
reasons Sy is conjugate to Q; therefore P must be conjugate to Q. O

Let S be a Sylow p-subgroup of the locally finite group G. A fi-
nite subgroup F of G is called S-dominant if S reduces into every
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subgroup U of G which contains F, that is, SN U € Syl,U for all
subgroups U of G such that F < U.

Lemma 2.5 (see [4]) Let G be a locally finite group, p a prime, S € Syl, G
and F a finite subgroup of G. The following properties are equivalent:

1) Fis S-dominant.
2) For each finite subgroup U of G with F < U we have SNU € Syl, U.

PROOF — 1) = 2) is clear, so we only need to prove that 2) implies 1).
Since F is finite, there exists a local system X for G such that for
each Z-group U we have F < U. Let V be a subgroup of G with F < V.
Then Z; :={VNUu | U e L} is a local system for V into which SNV
reduces. Therefore from Lemma 2.1 follows SNV € Syl, V. O

Lemma 2.6 (see [4]) Let G be a locally finite group and S € Syl, G. The
following properties are equivalent:

1) S is very good.

2) There exists an S-dominant subgroup of G.

PROOF — 1) = 2) Suppose no S-dominant subgroup of G exists.
Then, according to Lemma 2.5, to every finite subgroup F of G there
exists one finite subgroup Uf of G with F < Ur and SN Uf ¢ Syl, U,
Then X := {Uf | F finite subgroup of G} is a local system for G that
possesses no local subsystem into which S reduces.

2) = 1) Let F be an S-dominant subgroup of G and X a local
system for G. Let X1 :={U| U € X and F < U}. Then X, is, because of
the S-dominance of F, a local subsystem of ¥ into which S reduces. O

Lemma 2.7 (see [4]) Let G be a locally finite group and let p be a prime.

a) If Fisap-uniqueness subgroup of G and S is the singular Sylow p-sub-
group of G with F < S, then F is an S-dominant subgroup of G.

b) Every singular Sylow p-subgroup of G is very good.

ProorF — Since b) follows from a) and Lemma 2.6 we only need
to prove a). Let U be a subgroup of G with F < U. Let P € Syl,U
and T € Syl, G with F < SNU < P < T. From F < S and the p-unique-
ness of F follows T = S. Therefore SNU > SNP =P. O

The following consequence of this lemma is a relevant insight.
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Theorem 2.8 (see [4]) Let p be a prime and P be a p-uniqueness subgroup
of the locally finite group G (or, equivalently by Proposition 2.3, let P be a
singular p-subgroup of G). Then the singular Sylow p-subgroup S of G
containing P is very good.

We can now summarise the relationship between good Sylow p-sub-
groups and p-uniqueness subgroups together with the Sylow p-sub-
groups containing them as follows:

e singular Sylow p-subgroups are very good;
e p-uniqueness subgroups are singular, and conversely;

e in countable locally finite groups good Sylow p-subgroups are
identified by nested local systems;

e in countable locally finite groups the existence of a p-uniqueness
subgroup compels the conjugacy of all good Sylow p-subgroups.

We end the discussion of good Sylow p-subgroups by pointing out
that there exist 1) countable locally finite groups with Sylow p-sub-
groups which are not good (see the note at page 5 of [10]: “It may be
worthwhile to point out that a countable infinite locally finite group
may have maximal p-subgroups which” are not good) and 2) locally
finite groups of cardinality 270 without good Sylow p-subgroups.

First, we let G be a finite group with [Syl, G| > 2, e.g. the symmetric
group S2P of degree 2p for the prime p for which we know surely that

SylpS™P| > 2p—2> 2.
Consider the IN-fold cartesian power

GINI.=T[{Gi | Gi:= G forall ie N}
={(x1,%x2,...) | xy € G; forall i€ N}
of G and notice that it satisfies the Sylow p-Theorem.
Proor — For S, T € Sylme\H there are S;, T; € Syl, Gi = Sylp G (i € IN) such that S,

resp. T, is the cartesian product of the S;’s, resp. the Ti’s. If x; € G; = G with
ST =T (i€ N)and x := (x{)ieN, then $* =T. 0

The group G contains the IN-fold direct power

GIN) .— HO{(Xi)ieN e GINJ | x; = 1 for almost all i € IN},
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which does not satisfy the Sylow p-Theorem.

Proor — LetS, T € SylpG(N). If there is an x € G(N) with ¥ =T, then $*¥™ = T™
for almost all i € IN. Thus for P,Q € Syl, G with P # Q, the groups PIN) and QM)
are not in G™N) —putin GIN — conjugate Sylow p-subgroups of GN). Alternatively,
it follows from |GMN)| = Ny and [Syl, GMN)| = 2%0 — gince ISyl G| > 2 we can refer
to Theorems 3.1 and 3.2 (see below) — that not all Sylow p-subgroups of GIN) can
be conjugate. O

The example G (N) < GINJ ghows that in uncountable locally finite
groups the Sylow p-Theorem is not inherited by normal subgroups.

Moreover, GIN! contains the diagonal subgroup

12
p)

D= {(Xi)ie]N cGN | 3x e G)(VieN)x; :x}

via the isomorphism
5
0:D — G/ ((Xi)iEN) =X

from D onto G with DN GM™) = (1), Since G™) is a normal subgroup
of GIN we have (GUN),D> — DGM): this is a countable subgroup
of GIN). The Sylow p-subgroups of G (resp. of GN)) are cartesian
(resp. direct) products of the Sylow p-subgroups of the Gi’s (i € IN),
namely [[{SAt |1 € N} (resp. [T%(ST | i € N)) for S €Syl, G (n € N),
where m;: GIN! —5 G; is the projection ﬂi((xk)k@N) := x; on the fac-
tor G; (i € IN). Any P € Syl, D normalises exactly one Sylow p-sub-
group S(P) of G (resp. exactly one Sylow P- subgroup SO(P) of GI)),
namely S(P) =[[{P™ |1 € N} (resp SO(P ]_[ {P™ | i€ ]N}) There-
fore every Sylow p-subgroup of D is a p-uniqueness subgroup
of DGN) and PSO(P), for P e SylpD ~ SylpG, is a singular Sy-
low p-subgroup of DGMN) and so is good, even very good, by The-

orem 2.8; these Sylow p-subgroups are conjugate: if Py, P, € Syl D
and P} = P, with x € D, then

(P1SO(P1))* = (P1 [I°(PT i e ND)™
=P, [T°(PT |i e N} =P, SO(P,)

(see also Theorem 2.4). The countable group G™) also has by Lem-
ma 2.2 good Sylow p-subgroups, which are not conjugate, and we
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are able to designate some distinguished of them explicitly: let
Ui =Gy xGyx...xG; (ieN);

then £ = {U; | i € N}NnGM™) is a nested local system for G,
if P; € Syl, Gi = Syl, G (i € IN), then

PO .= (P; x Py x...)nGIY)

is a p-subgroup of G™) which reduces into X and thus is a good Sy-
low p-subgroup of G™N) by Lemma 2.1.

The group DG™N) has indeed also (many) Sylow p-subgroups,
which are not good: since |Syl,G| > 2 we can construct using the
method employed in the proof of Theorem 3.2 or that employed in
the proof of Theorem 3.8 an infinitely (X() high tree of finite p-sub-
groups of DG with (1) as the root which branches properly at
each location with proper inclusions and where two immediate suc-
cessors of each point do not generate a p-group; this tree has 20
branches which constitute 20 many ascending unions of finite p-sub-
groups and thus 20 many p-subgroups P, where any two of them do
not generate a p-group; choosing for each P, a Sylow p-subgroup S,
of DG™) containing P, now gives 250 Sylow p-subgroups of DG N)
(1 < v < 2%0) on the treetop; since the good Sylow p-subgroups of
the countable group DG™) are conjugate (Theorem 2.4), at most X,
of these 20 Sylow p-subgroups can be good; there remain (with
or without the continuum hypothesis) at least 2X¢ — Xy many Sy-
low p-subgroups in the treetop which are not good and too many
to be conjugate in DG™). We note that Rae [12] constructs, by intro-
ducing the unwieldy concept of “weakly goodness” and by referring
to another group he constructed (see [12], 5.11), a countable locally
soluble group possessing a Sylow p-subgroup which is not good (see
[12], 5.31). This example is much more complicated than ours.

Second, let p and q be primes with q = 1 (mod p) and
A:={(a,b|aP =b9 = (ab)P =1).

Then [A| = pq and A has q Sylow p-subgroups and a normal Sy-
low g-subgroup, so is metabelian. If (p, q) = (2,3), then A = 53 is the
symmetric group of degree 3. The group A contains the elements a
and a’ := ab of order p which are not p-consonant, that is, they do
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not generate a p-group. The N-fold cartesian power AN/ of A is
locally finite and metabelian of exponent pq. Laszlé G. Kovécs, Bern-
hard H. Neumann and Hugo de Vries constructed, based on the ele-
ments a and a’ (and exemplarily for (p, q) = (2,3)), an N-fold interdi-
rect power H of A, that is, AN < H < AN with the following prop-
erties (see [11], Theorem 3.7): H is metabelian of exponent q and or-
der 20 with a countable Sylow p-subgroup and a Sylow p-subgroup
of order 250 (hence without Sylow Theorem for the prime p). They
also constructed, using again a and a’, an IN-fold interdirect power H
of A with the following amazing properties (see [11], Theorem 4.4,
and also [12], 1.13): H has order 2%¢, each Sylow p-subgroup of H
is countable, H has a countable normal (hence unique) Sylow g-sub-
group, which has no complement in H, and each Sylow p-subgroup
has a complement in H, which is normal in H and contains elements
of order p. No Sylow p-subgroup of H can be good: suppose a Sy-
low p-subgroup S of H reduces into a local system X for H; we then
choose a Z-group U containing an element x of order p of a comple-
ment of S, and a P € Syl, U containing x; since SN U € Syl, U there is
ay € Uwith PY =SnU; then (x)V < S whereas (x)Y belongs to the
normal complement of S, which is a contradiction.

In the following section we shall point out that there exist count-
able locally finite groups 3) without singular Sylow p-subgroups,
4) with good Sylow p-subgroups which are not very good, and
5) with very good Sylow p-subgroups which are not singular.

3 Basic theorems of Sylow theory in locally finite
groups and our “Charakterisierungssatz”

In this section we first present — with quite considerably improved
proofs — the basics of Sylow theory in locally finite groups (The-
orem 3.1 to Theorem 3.5) and subsequently prepare and carry out
the proof of our Charakterisierungssatz (Theorem 3.6 to Theorem 3.9)
which, in turns, allows us to prove very easily our main theorem (The-
orem 3.10).

In the following statement, the property (x) means that S is not
singular; see the same property (x) on page 8 of [10]. This property
was for the first time discovered by Ali O. Asar [1].
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Theorem 3.1 (see [4], and Theorem 3.6 below for a generalisation)
Any locally finite group G which does not satisfy the Sylow Theorem for the
prime p contains a Sylow p-subgroup S with the following property:

(x) Every finite subgroup of S lies in at least two Sylow p-subgroups
of G.

Proor — Let S and T be two Sylow p-subgroups of G which are
not conjugate (in G). If T is not singular, that is, T does have prop-
erty (%), the result is immediate, so suppose that T is singular and
let Y be a p-uniqueness subgroup for T. We show that then S has
property (x), that is, S is not singular. To this end let X be an arbitrary
finite subgroup of S. Then (X, Y) is a finite group. According to the Sy-
low p-Theorem for finite groups there is an x € G such that X and Y*
lie in the same Sylow p-subgroup of (X,Y). Then (X, Y*) is a p-group.
From the assumption on Y it now follows that (Y*, X) < T*. Hence X
lies in at least the two Sylow p-subgroups S and T* of G. Therefore X
is not a p-uniqueness subgroup for S. O

We now prepare an alternative proof of the basic theorem of Sylow
theory known as the “Asar-Hartley theorem” (see [1] and [3], The-
orem 2.3.11, for the original proof). Our proofs of Theorem 3.2 a)
and b) with reference to a) are much clearer and more detailed than
the original proof by Asar, which may be considered rather cumber-
some. Note also that in [10], Theorem 1.3, Kegel sagely combines The-
orem 3.1 with Theorem 3.2 ¢).

Theorem 3.2 (see [4]) Let G be a locally finite group and let P be a p-sub-
group of G for the prime p.

a) Suppose P has the following property: () To every finite subgroup F
of P there exists an x = x (F) € G with F* < P such that (P,P*) is
not a p-group. Then there are 280 infinite ascending chains

Xi1 < Xi1iz <...< Xiﬁtzn-in <...

IN) such

of finite p-subgroups of G with indices iy € {0,1} (k €
1 <k < n), the

that for all n € IN and each choice of indices iy (
group (Xi i,...in0, Xiji,...in1) IS 10t a p-group.

b) Let P € Syl, G with the property (x). Then P has property ().
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c) Let P € Syl, G with the property (x) and let X be a finite subgroup
of P. Then there are 280 many infinite ascending chains

X< Xi; <Xy <ove < Xijigein <-e-

with the properties from point a).

ProoF — a) Let X be a finite subgroup of P and y an element of G
such that: 1) (P,PY) is not a p-group, and 2) XY < P. Because of the
first property there exists a finite subgroup X of P with X < X such
that (Xo, X3) is not a p-group, and because of the second property we
have (X, XY) < P, hence X # X # XJ. If we substitute in the last two
sentences X by X, we get two finite p-subgroups Xoo and Xp7 of G
with Xo < Xpo and Xp < Xp1 such that (Xpp,Xo1) is not a p-group.
Since PY has the property (f), too, we can quite analogously substi-
tute X by X; := X§ and so get two finite p-subgroups X and Xj;
of G with X; < Xjp0 and X; < X711 such that the subgroup (Xj¢,X11)
is not a p-group. We now have constructed four ascending chains

X< Xo <Xoo, X<Xo<Xo1, X1<Xj0 and X7 <Xjq

of finite p-subgroups of G such that the subgroups (Xo, X1), (X00, Xo01)
and (X719, X71) are not p-groups. Now let n € IN with n > 2 and let
already be constructed 2™ ascending chains

Xi; < Xiji, < oo < Xijiy.oin

of finite p-subgroups of G with indices i, € {0,1} (1 < k < n)
such that for each m € IN with m < n— 1 and each choice of in-
dices iy (1 <k < m) the subgroup (Xi, i,...i,,0,Xi i,...im1, Of G is
not a p-group. Whilst repeating the construction of the first two sen-
tences successively with the 2™ groups Xj,,...i,, in place of X, we get,
because each conjugate of P possesses the property (}), in each case
two p-subgroups X, i,...i,0 and Xj,,...i,1 of G such that

Xigigewin < Xijigein0 N Xiji,. . inl

and
(Xiji0min0r Xig1.nind)

is not a p-group. Therewith we now have constructed 2™+ ascend-
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ing chains

Xil < Xiﬂz <...< Xi1i2...in < Xi1iz---inin+1

having the requested properties. Therefore we can w.r.t. inclusion re-
cursively construct a tree of height Ny of finite p-subgroups of G,
which branches properly at each location with proper inclusions,
hence must contain 270 infinite branches. Also any two immediate
successors of an arbitrary point do not generate a p-group. These
branches are just the required chains.

b) Let F be a finite subgroup of P and R be a Sylow p-subgroup
of G with F < R # P. Then there is an element x in R with x ¢ P
and the group (F,x) is a finite p-group. Let Y = (F,x) N P. Then
we have Y # (F,x). It is well-known that as a finite p-group (F,x)
satisfies the normaliser condition. Therefore Y is a proper subgroup
of N« (Y). Let y be an element in (F,x), but not in Y, which nor-
malises Y. Then y ¢ P. Since y is a p-element and P by assumption
a Sylow p-subgroup of G, it follows that y ¢ Ng(P) and that (P, PY)
is not a p-group. This is the property (f) from point a) for P.”

c) We combine the proofs of point a) and point b). Let R € Syl,G
with X < R#P, x€R\P and T:=PnN (X, x). Being a finite p-group, (X, x)
satisfies the normaliser condition. Hence there exists a t € (X, x)\T
with t € Nx ,)(T). Then (P, P') is not a p-group, since else t € P,
and so there exists a finite subgroup Xp of P with X < Xp such
that with X; := X§ the group (Xo,X;) is not a p-group. Thus, we
have Xo # X # Xj since (X, X') < T is a p-group. Of course, X < X,
but also X < Xj because of t € X. We can repeat this construction
whilst replacing X by Xp and also by its conjugate X;. Thereby we
construct subgroups Xoo, Xo1, X170, X711 and four ascending chains

X < Xo < Xpo, X< Xo < X1, X< X1 <Xq0 and X < X7 < Xq71

of finite p-subgroups of G. We subsequently repeat this construction
with each of the Xj, i,’s and whilst doing this infinitely often we
construct 250 many chains

X < Xﬁ < Xi1i2 <...< Xi1iz...in <...

* Asar [1, Lemma 1] (unwieldy) considers instead of R a p-subgroup Y of G such
that Y < U (= P), chooses y € Y\ U, defines F* := U N (F,y) with F<UNY, finds
F < F* and N, ) (F*) > F*, and finally concludes Ng (F*) < Ng(U), since U is

the unique maximal p-subgroup of Ng(U) and N ) (F*) < Uu.
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of finite p-subgroups of G with the properties from point a). So we
can, starting from an arbitrary subgroup X of P as a “minimal point”
or a “root”, recursively w.r.t. inclusion construct a tree of height X
of finite p-subgroups of G, which branches properly at each location,
hence must contain 2%¢ infinite branches. Also any two immediate
successors of an arbitrary point do not generate a p-group. These
branches are just the required chains. O

Theorem 3.2 enables us to prove very easily the “Asar-Hartley theo-
rem” which characterises locally finite groups satisfying the strong Sy-
low Theorem for the prime p by a cardinality result without the need
to endeavour the continuum hypothesis (for a proof closer to the orig-
inal one of Asar, the reader can consult [10], pp. 8—9).

Theorem 3.3 (see Asar [1], Hartley [6],[8]") Let G be a locally finite
group and p be a prime. Suppose that for every countable subgroup H of G
we have |Syl,H| < 2%0. Then G satisfies the strong Sylow p-Theorem.

PrOOF — Suppose G does not satisty the strong Sylow Theorem for
the prime p. Then there is a subgroup U of G which does not satisfy
the Sylow Theorem for the prime p. Thus according to Theorems 3.1
and 3.2 there are 20 many infinite ascending chains

Xi] < Xi]iz <...< Xiﬂz---in <...

of finite p-subgroups of U with the properties from point a) of The-
orem 3.2. Let M be the set of all p-subgroups of U which are an
ascending union of one of these chains. Then it follows |[M| = 280
and that any two M-groups cannot generate a p-group. Now let

Hp = (Xi,iy...i, [Tk €1{0,1}, 1<k <n) (meN)

and

H:= U Hy,.

neN

Then H is a countable subgroup of U and so of G. Since H contains
every M-group it follows that |Syl,H| = 2¥o. This contradicts the
assumption on the countable subgroups of G. O

* The result for countable locally finite groups was obtained independently by Brian
Hartley using a quite different method which allowed him to generalise it from
the prime p to a set of primes m when the finite groups of a nested local system
have each a nilpotent Hall 7t-subgroup (see [6]). However, Hartley has extended
his proof in [8] to uncountable locally finite groups by another beautiful method.
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The cardinality statement of Theorem 3.3 has an immediate first
corollary for countable locally finite groups.

Theorem 3.4 Let G be a countable locally finite group. The following
properties are equivalent:

1) For every (countable) subgroup H of G we have |Syl, H| < 2o,
2) G satisfies the strong Sylow Theorem for the prime p.

3) G satisfies the Sylow Theorem for the prime p.

4) ISyl, G| < 2o,

5) Every (countable) subset of G is contained in a subgroup U of G with
Syl Ul < 280,

The second corollary of Theorem 3.3 would certainly as a conju-
gacy assertion be very difficult to be proved but is as a cardinality
statement trivial. Recall first that a class of groups X is countably recog-
nisable if, whenever all countable subgroups of a group G belong to X,
then G itself is an X-group (see Baer [2]).

Theorem 3.5 The locally finite group G satisfies the strong Sylow Theo-
rem for the prime p if and only if every countable subgroup of G satisfies
the strong Sylow Theorem for the prime p. In particular, the class Syl-p of
all locally finite groups satisfying the strong Sylow Theorem for the prime p
is countably recognisable.

We now can prove our key discovery whenever the Sylow Theorem
for the prime p is not valid in a countable locally finite group which
shows a symmetry between not conjugate Sylow p-subgroups.

Theorem 3.6 Let G be a countable locally finite group and p be a prime.
If two Sylow p-subgroups of G are not conjugate, then neither is singular.

ProoF — Let S and T be Sylow p-subgroups of G which are not
conjugate. We saw in Theorem 3.1 that one of S or T is not singular.
Without loss of generality (w.l.o.g.) we may suppose that S is not
singular. To prove the result we must show that T is not singular
either. If T is not good, it cannot be singular, since by Theorem 2.8
singular Sylow p-subgroups are very good. So let T be good w.r.t. the
nested local system {G,, | n € N} for G and let F be an arbitrary finite
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subgroup of T. We show that F cannot be a p-uniqueness subgroup
for T and so T is not singular since F is chosen arbitrarily. Since S
and T are not conjugate, we have S # T.

There exists an m = m(F) € IN with F < Gy,. After the renumer-
ation (n —w n+m—1 | n € N}, it is possible to assume F < Gj.
Then F < TN Gy € Syl, Gy. If TN Gy, is the unique Sylow p-subgroup
of Gy, for all n € IN then T is the unique Sylow p-subgroup of G and
we obtain the contradiction that S = T. Hence there is an n € IN such
that G, has a Sylow p-subgroup R with R # T N G;,. Renumbering
again if needed we may assume that R € Syl,G; with R # TN Gjy.
Choose y € R\(TN Gy), so in particular y ¢ T. By the Sylow p-Theo-
rem for finite groups there is an x € G such that (TN G7)* =R and
so F* < Rsince F < TN Gy. From (F¥,y) < R follows that (FXy) is a
finite p-group. Let Y:=(F¥y) N T. Then Y#(FXy) sincey ¢ T.

But Y satisfies, as is well-known, the normaliser condition and so
we can choose z € Ngx ) (Y)\Y. Then z ¢ T since otherwise z belongs
to TN (FX,y) = Y. But z is a p-element outside of T and T € Syl;,G,
and so z ¢ Ng(T). Therefore (T,T?) is not a p-group. In particu-
lar, T # T# and F < TN T?. Therefore the arbitrarily chosen F is not
a p-uniqueness subgroup for T. O

Whenever a countable locally finite group contains a singular Sy-
low p-subgroup then all good Sylow p-subgroups will be conjugate
by Theorem 2.4. Whenever every countable subgroup of a (count-
able) locally finite group contains a singular Sylow p-subgroup then
all Sylow p-subgroups are conjugate. This core insight is spelled out
by the following theorem.

Theorem 3.7 (see [4]) Let G be a locally finite group and let p be a
prime. Suppose that every countable subgroup of G contains a singular Sy-
low p-subgroup. Then G satisfies the strong Sylow Theorem for the prime p.

PrROOF — According to Theorem 3.5 we can assume that G is count-
able, and according to Theorem 3.4 it suffices to show that G satisfies
the Sylow Theorem for the prime p. However, this is now immediate
since by assumption G has a singular Sylow p-subgroup S. Let T
be any Sylow p-subgroup of G. If S and T are not conjugate, then
by Theorem 3.6 neither is singular. With this contradiction S and T
are conjugate and the result follows. O

Since the above result is very significant, we provide an alternative
proof by proving the contrapositive.
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PrROOF — Suppose G does not satisfy the Sylow Theorem for the
prime p. Then, according to Theorem 3.1, Theorem 3.2 b), and Theo-
rem 3.2 a), there are 20 infinite ascending chains

Xi] < Xiﬁz <...< Xiﬂz---in <...

of finite p-subgroups of G with the properties from Theorem 3.2 a).
Let
Un = (Xi,i5...in [l €{0, 1}, 1<k <n) (neN)

and

U= [J Un = (Xyip0, |1 €00,1} T <k <M EN).

Then U is a (countable) subgroup of G and {U,, | n € IN} is a nested
local system for U. We show that U does not contain any singular Sy-
low p-subgroup. Let F* be a finite p-subgroup of U. There exists
an m =m(F*) € N with F* < Uy,. By definition of U, there are
indices j1,52,.++,Jm,---, K1, k2, ..., km, ..., 11, s, ..., Lin with

*

F* < <Xj1iz...jm'Xk1kz,---,km/'"'Xhlz---lm)'
Then

P] = <Xj1jz...ijIXk1k2...kmO/""Xl1]~2---lmo>

and
PZ = <Xj1j2...jm1IXk1k2...km1l . "Xl1 12---lm]>

are finite p-subgroups of U with F* < Py NP, such that (Py,Py) is
not a p-group. We now choose Q1,0, Q2,0 € Sylp, U with P1 < Qg0
and P, < Q. If

Qro<Q11,<...<Q1n and Q20<Q21<...<Q2n

are already p-subgroups of U with Q7 i, Q2 € SylpUm4i (0 <1< n),

let Q1,n—|—1/Q2,n—|—1 € Sylpum—i—n—i—] such that Q1,n < Q],n—H
and Q2,n < Q2,ny1 (N € Np). Let

Q= Qn and Q= |J Qzn

nelNy nelNp

Then Q7 and Q; are both p-subgroups of U with F* < Q1 N Q2 such
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that (Q1,Q2) is not a p-group. Per construction, Q7 and Q; reduce
into the nested local system {U;n4+n | N € Np} for U. By Lemma 2.1,
the groups Q7 and Q; are two good Sylow p-subgroups of U con-
taining F*, that is, F* is not a p-uniqueness subgroup of U. Thus U
does not contain any p-uniqueness subgroup. O

Third, we supplement Theorem 3.7 with an example of a count-
able locally finite group H without the (strong) Sylow Theorem for
the prime p but with a (countable) subgroup U without singular Sy-
low p-subgroups. Let H:=DG™) be the group from p. 21, V:=GMN)
and F be a finite subgroup of the good Sylow p-subgroup P° of V
from p. 21. We show that F cannot be a p-uniqueness subgroup of V.
Since F is finite, there is an m = m(F) € IN with F < U,,. Because
of Syl,G| > 2 there is a Qmy1 € SylpGm41 with Qi1 # Pmya-
Then

QO = (P1 X Py x ..o X P X Qmat XPm+2X...)ﬂG(N)

contains the group F and we have Q° # P°. So V has the distin-
guished good Sylow p-subgroup P° which is not singular (notice
that by Theorem 3.1 there must be such a Sylow subgroup since V
does not satisfy the Sylow p-Theorem). By the second part of the
proof of Theorem 3.7, there is a (countable) subgroup U of V which
does not contain any singular Sylow p-subgroup.

Fourth, let G = S!™) be the countable locally finite group of finitary
permutations on a countably infinite set (that is, which move only
finitely many elements), p a prime, and {n; | i € IN} a sequence in IN
with ny +2p < ny+1 ({1 € N). Then X :={S" |1 € IN}is a nested lo-
cal system for G. By Lemma 2.2 b) there exists an S € Syl,, G which is
good w.r.t. . We know that |Sylp§2p| >2p—22>2.LetTy,Tr e Sylp§ZP
with T; # T,. Let i € IN. Then

S™ o ST x §2P < Shi+t,

We put F; .= S™ x Ty, if S NS%P = T;, and F; := S™ x T; otherwise.
Then we have SNF; & Syl,F; and S™ < Fy < S™i+1. Hence {F; | i € IN}
is a (nested) local system for G containing no local subsystem of X
into which S reduces. Thus S is a good Sylow p-subgroup of G which
is not very good.

Fifth, the good Sylow p-subgroup P® of V := GN) provides an
example of a Sylow p-subgroup which is very good but not singular.
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Let Z* be a local system for V; by Lemma 2.2 a) there exists a nested
local subsystem X7 ={V; | n € N} of £ and by Lemma 2.2 b) there is
a Sylow p-subgroup Q of V which is good w.r.t £;. Since P° is good
w.rt. X = {U; | i € N}, it will contain a conjugate of every finite p-sub-
group P of V: there is a Z-group U = U(P) with P < U; let R € Syl,U
with P < R; by Sylow Theorem there is a y € U with RY = P°N;
hence PY < PO. Therefore

(QN V) < VXN PO

for some x, € V (n € N). Thus VA" NP is a Sylow p-subgroup of Vi,
and therefore [P NV, | = |Q N Vq|. It follows that PO NV, has the size
of a Sylow p-subgroup of V;; (n € IN), and consequently P° reduces
into the subsystem X; of the given local system X*.

The following core result may be very well-known but we can
present a novel and shorter proof.

Theorem 3.8 (see [4]) Let G be a locally finite group and let p be a prime.
To any finite p-subgroup P of G shall pertain two finite p-subgroups Py
and Py of G with P < Py NP, such that (P1,P,) is not a p-group. Then
there will exist a countable subgroup H of G with |Syl,H| = 20,

Proor — We construct recursively an infinite ascending chain
Fo<h <...<F.<...

of finite subgroups of G and for every n € N a set Z,, of p-subgroups
of F such that for every n € INg we have: (i) [Zn| = 2™; (ii) ev-
ery two Z,-groups do not generate a p-group; (iii) for n > 1 ev-
ery X,,_1-group lies in at least two X -groups.

Let Fo := (1) and Ly :={(1)}. Let n € IN and suppose
Fo<Fi<...<Fq7 and {Z;|li<n}

have already been constructed. We let £,, be the set of all finite p-sub-
groups P1,P, of G such that (Py,P;) is not a p-group and there ex-
ists exactly one X,,_j-group P with P < Py N P,. From the proper-
ties (i)—(iii) of ;7 and from the prerequisite on G then follow (i)—(iii)
for Z,,. Let Fy, be the span of all ¥,,-groups. Hereafter F;, is a finite
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subgroup of G with F,,_1 < Fy,. Let

Then H is a countable subgroup of G. Let M be the set of all p-sub-
groups of G which are an ascending union of a chain

So<§S1<...<Sp<...

of finite p-subgroups S; € Z; (i € INp). According to (i) and (iii) we
have |[M| = 2%¢ and according to (ii) any two M-groups cannot gen-
erate a p-group. H contains every M-group, so from the properties
of M (and the countability of H) it follows that [Syl,H| = 2%o0, We
have constructed an infinitely high (Np) tree of finite p-subgroups
of G which branches properly at each location with proper inclusions
and in which any two immediate successors of an arbitrary point do
not generate a p-group. This tree has 2X¢ many infinite branches. O

We are ready to state and prove our Charakterisierungssatz.

Theorem 3.9 (see [4]) Let G be a locally finite group and let p be a prime.
The following properties are equivalent:

1) G satisfies the strong Sylow Theorem for the prime p.
2) In every subgroup U of G every Sylow p-subgroup of U is singular.

3) Every countable subgroup H of G contains a p-uniqueness subgroup
of H.

4) Every countable subgroup H of G contains a singular Sylow p-sub-
group of H.

5) Every countable subgroup of G satisfies the Sylow Theorem for the
prime p.

6) If H is a countable subgroup of G, then |Syl,H| < 20,

PROOF — 2) = 3) and 3) = 4) are clear. 4) = 5) is valid by Theo-
rem 3.7, 5) = 6) is valid by Theorem 3.4, and 6) = 1) is valid by The-
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orem 3.3. It remains to show 1) = 2)." Assume 1) holds and let U < G.
Then U satisfies the strong Sylow Theorem for the prime p. By The-
orems 3.5 and 3.4 we have that [Syl,H| < 2%o for any countable sub-
group H of U. By Theorem 3.8 there is a finite p-subgroup P of U
such that for all finite p-subgroups P; and P, of U with P < P; NP,
the group (P1, P2) is a p-group. By Proposition 2.3 it follows that P is
a p-uniqueness subgroup of U. Let S € Syl, U with P < S. Moreover,
let T € Syl,U and x = x(T) € U with S = T*'. Then P* is a p-uni-
queness subgroup of U with P* < T, and hence T is singular by
means of P*. O

It would have been easier to show that Theorem 3.9 1) implies that
every Sylow p-subgroup S of an arbitrary subgroup U of G is very
good. In fact, let X be a local system for U. By Lemma 2.2 a) there
exists a nested local system X; of £, and by Lemma 2.2 b) there is
a T € Syl,U which reduces into Z;. Since G satisfies the strong Sy-
low Theorem for the prime p, we find an x € U such that S = T*.
Let X, :={Y | Y € L1, x € Y}. Then %, is a local subsystem of X into
which S reduces: for SNY=T*NY=(TNY)* € Syle when Y € X,.

Having proved our Charakterisierungssatz, we are now ready to
prove the announced main theorem characterising the locally finite
groups which satisfy the strong Sylow p-Theorem.

Theorem 3.10 Let G be a locally finite group and let p be a prime. The
following properties are equivalent:

1) G satisfies the strong Sylow Theorem for the prime p.

2) Every subgroup S of G contains a finite p-subgroup which is singular

in S.
ProorF — The result follows from a combination of Proposition 2.3
and Theorem 3.9. O

* In Theorem 1.5 of [10] (If the locally finite group G satisfies the strong Sylow Theorem for
the prime p there exists a finite p-subgroup P which is singular in G), Kegel ingeniously
constructs, by contradiction, an infinite (¥y) tower of countable subgroups of G,
such that none of the finite p-subgroups of a member can be singular in the upper
next, whose union has 2X¢ maximal p-subgroups and therefore contradicts Theo-
rem 3.4.
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4 Novel concepts for Sylow theory
in (locally) finite groups

We end this paper with some further thoughts, a result, and some
questions that could be quite useful for future researchers into Sylow
theory in (locally) finite groups. The status quo of Sylow theory in
locally finite groups has been beautifully summarised in [3] and [10];
here, a special place is occupied by the contributions of Brian Hartley
(see [6],[7],[8]), who also contributed prodigiously to simple locally fi-
nite groups (see [9]). Concerning [9], which appeared posthumously,
we notice that it does not cite [10] (not even in its list of 56 references).
This is regrettable since Hartley states in his 1990 Mathematical Re-
view of [10] the following: “If the simple locally finite group G sat-
isfies the strong Sylow Theorem for the (even one) prime p, then G
is linear. This depends on the classification of finite simple groups
and an assertion about singular p-subgroups of classical groups. An-
other proof of this result has since been given by the reviewer (not
yet published).” However, due to the tragic death of Brian Hartley
on October 8, 1994, aged 55, this certainly very interesting proof was
never prepared for publication. With someone of Hartley’s stature,
there is no question that his word is good enough and that in any
case he supplied a new proof with probably quite a number of new
insights. It might therefore be worthwhile and even most desirable
to inspect Hartley’s estate.

In every locally finite group G, for all subgroups U of G, the
set Uniquep,U of finite p-subgroups which are p-uniqueness sub-
groups of U is non-empty if G satisfies the strong Sylow Theorem
for the prime p, that is, if G belongs to the class Syl-p of locally fi-
nite groups satisfying the strong Sylow Theorem for the prime p,
and should this set be non-empty for a countable U then all the
good Sylow p-subgroups of U are conjugate. Let U be finite. Then
we have already Uniquep U # () because we have Syl, U < Unique, U.
The Sylow p-subgroups of U are of course the maximal members
of Unique, U, with respect to inclusion and order. It is a very very
considerable challenge to try to determine the minimal members
of Uniquep U, with respect to either inclusion or order, in case that U
and Syl, U are sufficiently “known”, in particular if U is a “known” fi-
nite simple group or a p-soluble group. Note that whenever P<Q <R
are p-subgroups of U where Q is a minimal p-uniqueness subgroup,
or will be minimal singular in U, then P is contained in at least two,
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in fact in at least p + 1, Sylow p-subgroups of U and R will be an-
other p-uniqueness subgroup of U. The author is much hoping that
some progress be made to this challenge in the future. For example,
the question of whether (resp. when) the minimal p-uniqueness sub-
groups are conjugate, quite similar to the maximal ones, is surely of
some interest, or, whether minimal w.r.t. inclusion implies minimal
w.r.t. order, the converse being clearly obvious. We would then also
come to better know the p-uniqueness subgroups of locally finite
groups, in particular the simple and the locally p-soluble ones, and,
many thanks to Kegel’s Theorem 4.4, of locally finite groups in gen-
eral belonging to the lovely class Syl-p. A good starting point would
be to study minimal p-uniqueness subgroups of the finite symmetric
and alternating groups where a Sylow 2-subgroup of an alternating
group is a next to maximal 2-uniqueness subgroup of the symmetric
overgroup so that we have to study only the symmetric groups and
to show at least that their ranks are “somehow” bounded in terms
of a p-uniqueness subgroup and in ideal circumstances to determine
all the minimal ones (see what follows).

Let G be a locally finite group, S € Syl,G and F < G. We call F
minimal p-unique w.r.t. S, if F is a minimal p-uniqueness subgroup
of G w.r.t. order such that F < §, that is, F is p-unique with F < S
and each (finite) subgroup P of S with |P| < [F| lies in at least two Sy-
low p-subgroups of G. If there exists an S € Syl, G, such that F is,
w.r.t. S, minimal p-unique, then F is called minimal p-unique (in G).
Obviously, G is p-closed if and only if (1) is minimal p-unique (in G).

Theorem 4.1 (see [4]) Let G be a locally finite group satisfying the
strong Sylow Theorem for the prime p.

a) Each Sylow p-subgroup of G contains at least one minimal p-unique
subgroup of G.

b) Each two minimal p-unique subgroups of G have the same order.

Proor — a) Let S € Syl, G and let U(G, S) be the set of all p-uni-
queness subgroups F of G such that F < S. According to Theorem 3.9
we have U(G,S) # 0 and of course each U(G,S)-group has finite
order. Thus U(G, S) contains (w.r.t. S) a minimal p-unique subgroup
due to the well ordering of IN.

b) Let F; and F, be two minimal p-unique subgroups of G. For
symmetry reasons it suffices to show [Fq| < [F2|. Let §¢, S; € Syl, G
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with F; < S7 and F, < S,. Since G € Syl-p there is an x € G such
that S; = S3. Then F3 is a p-uniqueness subgroup of G with F5 < Sy.
Thus [Fq| < [F5| = |F2| since Fy is minimal p-unique w.r.t. Sy. a

Let G be a locally finite group satisfying the strong Sylow p-The-
orem and let S € Syl,G. According to Theorem 4.1 a) S contains
(w.r.t. S) a minimal p-unique subgroup F. We define a,, = a,(G) € Ng
by |F| =: p®», that is, we let ap be the composition length of F. Accord-
ing to Theorem 4.1 b) this definition is independent of the special
choice of the Sylow p-subgroup S of G. Whereby consequently ay,
is a (numeric) Sylow p-invariant of G. We call a}, the p-unigueness
of G. This Sylow p-invariant enqueues into the list — even is in the
vanguard — of other Sylow p-invariants which play a major role in
(locally) finite group theory, e.g. the order p®» of a Sylow p-subgroup,
its nilpotency class cp, its solubility length d,, its exponent p®»,
the composition length i, — 1 of a proper maximal (w.r.t. order) Sy-
low p-intersection and further. The real peculiarity of a;, is that it is
not determined by a Sylow p-subgroup as abstract p-group alone but
depends on its embedding into the whole group and the respective
relationships to the other Sylow p-subgroups. Then (w.r.t. inclusion
or order maximal) intersections of two or several Sylow p-subgroups
are of interest and deserve further study. For example, two core ques-
tions for Sylow theory in (locally) finite groups are how the p-length
of a finite p-soluble group and the rank of a (known) finite simple
group are bounded in terms of a p-uniqueness subgroup.
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Long live Group Theory and in particular Sylow Theory of Locally Finite Groups!
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